「一般の存在定理」を解説文に含む見出し語の検索結果(1~10/12件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/08/14 15:53 UTC 版)「不連続線型写像」の記事における「一般の存在定理」の解説より一般に、空間が完備である場合...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
< 前の結果 | 次の結果 >