「アフィン代数多様体の座標環とヒルベルトの零点定理」を解説文に含む見出し語の検索結果(1~7/7件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/05/23 00:10 UTC 版)「代数多様体」の記事における「アフィン代数多様体の座標環とヒルベルトの零点定理」の解説本...
体上有限生成環 (たいじょうゆうげんせいせいかん; finitely generated ring over a field)とは、ある(可環な)体 k 上有限個の元で生成される可換環の事を言う。k ...
体上有限生成環 (たいじょうゆうげんせいせいかん; finitely generated ring over a field)とは、ある(可環な)体 k 上有限個の元で生成される可換環の事を言う。k ...
代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数多項式からなる連立方程式の解集合として定義される図形である。代数幾何学の最も主要な研究対象であり、デカル...
代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数多項式からなる連立方程式の解集合として定義される図形である。代数幾何学の最も主要な研究対象であり、デカル...
代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数多項式からなる連立方程式の解集合として定義される図形である。代数幾何学の最も主要な研究対象であり、デカル...
代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数多項式からなる連立方程式の解集合として定義される図形である。代数幾何学の最も主要な研究対象であり、デカル...
< 前の結果 | 次の結果 >