「Basic Linear Algebra Subprograms」を解説文に含む見出し語の検索結果(91~100/451件中)
線型代数学における有限次元内積空間 V の正規直交基底(せいきちょっこうきてい、英: orthonormal basis)は正規直交系を成すような V の基底である[1] ...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...
例:線型独立なベクトルの集合 例:線型従属なベクトルの集合線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立である...