「始対象と終対象」を解説文に含む見出し語の検索結果(71~80/210件中)
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
圏論において、エピ射(epimorphism)、エピック射 (epic morphism)、あるいは全射[1] とは、右簡約可能(right cancelable)な射のことを言う。X...
圏論において、エピ射(epimorphism)、エピック射 (epic morphism)、あるいは全射[1] とは、右簡約可能(right cancelable)な射のことを言う。X...
圏論において、エピ射(epimorphism)、エピック射 (epic morphism)、あるいは全射[1] とは、右簡約可能(right cancelable)な射のことを言う。X...
圏論において、エピ射(epimorphism)、エピック射 (epic morphism)、あるいは全射[1] とは、右簡約可能(right cancelable)な射のことを言う。X...
圏論において、エピ射(epimorphism)、エピック射 (epic morphism)、あるいは全射[1] とは、右簡約可能(right cancelable)な射のことを言う。X...
圏論において、エピ射(epimorphism)、エピック射 (epic morphism)、あるいは全射[1] とは、右簡約可能(right cancelable)な射のことを言う。X...
圏論において、圏がデカルト閉(デカルトへい、英語: cartesian closed)であるとは、大雑把に言えば任意の二つの対象の直積上で定義される射が直積因子の一方で定義される射と自然に同一...
圏論において、圏がデカルト閉(デカルトへい、英語: cartesian closed)であるとは、大雑把に言えば任意の二つの対象の直積上で定義される射が直積因子の一方で定義される射と自然に同一...
圏論において、圏がデカルト閉(デカルトへい、英語: cartesian closed)であるとは、大雑把に言えば任意の二つの対象の直積上で定義される射が直積因子の一方で定義される射と自然に同一...