「リースの表現定理」を解説文に含む見出し語の検索結果(31~40/124件中)

Jump to navigationJump to search数学における符号付測度(ふごうつきそくど、英: signed measure)とは、負の値を取ることも許されることで一般化された...
Jump to navigationJump to search数学における符号付測度(ふごうつきそくど、英: signed measure)とは、負の値を取ることも許されることで一般化された...
数学において、集合代数 Σ に対する ba-空間(baくうかん、英: ba space)ba(Σ) とは、Σ 上のすべての有界かつ有限加法的な符号付測度からなるバナッハ空間である。ノルムは次のように絶...
数学において、集合代数 Σ に対する ba-空間(baくうかん、英: ba space)ba(Σ) とは、Σ 上のすべての有界かつ有限加法的な符号付測度からなるバナッハ空間である。ノルムは次のように絶...
数学において、集合代数 Σ に対する ba-空間(baくうかん、英: ba space)ba(Σ) とは、Σ 上のすべての有界かつ有限加法的な符号付測度からなるバナッハ空間である。ノルムは次のように絶...
数学の解析学、特に函数解析学の分野において、実数あるいは複素数に値を取るコンパクトハウスドルフ空間上の連続函数(コンパクトハウスドルフくうかんじょうのれんぞくかんすう、英: continuous fu...
数学の解析学、特に函数解析学の分野において、実数あるいは複素数に値を取るコンパクトハウスドルフ空間上の連続函数(コンパクトハウスドルフくうかんじょうのれんぞくかんすう、英: continuous fu...
ベルグマン核 (ベルグマンかく、英: Bergman kernel) は、数学の多変数複素関数論において、領域 D in Cn 上のすべての二乗可積分正則関数からなるヒルベルト空間に...
ベルグマン核 (ベルグマンかく、英: Bergman kernel) は、数学の多変数複素関数論において、領域 D in Cn 上のすべての二乗可積分正則関数からなるヒルベルト空間に...
数学の、特に測度論の分野における複素測度(ふくそそくど、英: complex measure)とは、複素数値を取ることも許すことで概念として一般化された測度のことである。すなわち、大きさ(長さ、面積、...




カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

©2025 GRAS Group, Inc.RSS