「計算可能数」を解説文に含む見出し語の検索結果(131~140/148件中)
円周率 π は超越数であるため、コンパスと定規を有限回用いて円と等面積の正方形を作図することは不可能である。超越数(ちょうえつすう、英: transcendental number)...
円周率 π は超越数であるため、コンパスと定規を有限回用いて円と等面積の正方形を作図することは不可能である。超越数(ちょうえつすう、英: transcendental number)...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
アラン・チューリング生誕Alan Mathison Turing (1912-06-23) 1912年6月23日 イギリス イングランド・ロンドン・メイダヴェール(英語版)死没1954年6月7日(19...
アラン・チューリング生誕Alan Mathison Turing (1912-06-23) 1912年6月23日 イギリス イングランド・ロンドン・メイダヴェール(英語版)死没1954年6月7日(19...