「行列指数」を解説文に含む見出し語の検索結果(111~120/670件中)
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2020年1月)この記事で示されている出...
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2020年1月)この記事で示されている出...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学では、ベクトル空間のベクトルに対比するものとしての実数をスカラー(英: scalar)と呼び、ベクトルを定数倍して別のベクトルを作り出す演算としてスカラー倍が定義される[1&...
線型代数学では、ベクトル空間のベクトルに対比するものとしての実数をスカラー(英: scalar)と呼び、ベクトルを定数倍して別のベクトルを作り出す演算としてスカラー倍が定義される[1&...
線型代数学では、ベクトル空間のベクトルに対比するものとしての実数をスカラー(英: scalar)と呼び、ベクトルを定数倍して別のベクトルを作り出す演算としてスカラー倍が定義される[1&...