「アレクサンダーの定理」を解説文に含む見出し語の検索結果(11~20/47件中)
ひねり数(ひねりすう、Writhe/Writhe number)とは、位相幾何学の一分野である結び目理論において、有向結び目・有向絡み目の射影図に対して定義される量。ねじれ数、テイト数、交点符号和とも...
ひねり数(ひねりすう、Writhe/Writhe number)とは、位相幾何学の一分野である結び目理論において、有向結び目・有向絡み目の射影図に対して定義される量。ねじれ数、テイト数、交点符号和とも...
ひねり数(ひねりすう、Writhe/Writhe number)とは、位相幾何学の一分野である結び目理論において、有向結び目・有向絡み目の射影図に対して定義される量。ねじれ数、テイト数、交点符号和とも...
ひねり数(ひねりすう、Writhe/Writhe number)とは、位相幾何学の一分野である結び目理論において、有向結び目・有向絡み目の射影図に対して定義される量。ねじれ数、テイト数、交点符号和とも...
ひねり数(ひねりすう、Writhe/Writhe number)とは、位相幾何学の一分野である結び目理論において、有向結び目・有向絡み目の射影図に対して定義される量。ねじれ数、テイト数、交点符号和とも...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1984年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結...
数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1984年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結...