Weblio 辞書 > 辞書・百科事典 > フロベニウスの定理_(代数学)の解説 > フロベニウスの定理_(代数学)の全文検索
「フロベニウスの定理_(代数学)」を解説文に含む見出し語の検索結果(1~10/45件中)

代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
ナビゲーションに移動検索に移動この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。出典検索?: "固有多項式" –...
< 前の結果 | 次の結果 >




カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

©2025 GRAS Group, Inc.RSS