「基底_(線型代数学)」を解説文に含む見出し語の検索結果(91~100/697件中)
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
数学の特に線型代数学あるいはより一般の函数解析学において、ベクトル空間内の与えられたベクトルからなる集合の(線型に)張る部分空間 (linear span) あるいは線型包(せんけいほう、英:...
数学の特に線型代数学あるいはより一般の函数解析学において、ベクトル空間内の与えられたベクトルからなる集合の(線型に)張る部分空間 (linear span) あるいは線型包(せんけいほう、英:...
数学の特に線型代数学あるいはより一般の函数解析学において、ベクトル空間内の与えられたベクトルからなる集合の(線型に)張る部分空間 (linear span) あるいは線型包(せんけいほう、英:...
Jump to navigationJump to searchこの記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年12月...
Jump to navigationJump to searchこの記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年12月...
Jump to navigationJump to searchこの記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年12月...
ユニタリ行列(ユニタリぎょうれつ、英: unitary matrix)は、次を満たす複素正方行列 U として定義される。 U ∗ U = U U ∗ = I {\d...
ユニタリ行列(ユニタリぎょうれつ、英: unitary matrix)は、次を満たす複素正方行列 U として定義される。 U ∗ U = U U ∗ = I {\d...
ユニタリ行列(ユニタリぎょうれつ、英: unitary matrix)は、次を満たす複素正方行列 U として定義される。 U ∗ U = U U ∗ = I {\d...