「束 (代数学)」を解説文に含む見出し語の検索結果(21~30/106件中)
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
数学の代数学における GCD整域(GCDせいいき、英: GCD domain)は、整域 R であって任意のふたつの非零元が最大公約元 (GCD) をもつという性質をもつものである[注 ...
数学の代数学における GCD整域(GCDせいいき、英: GCD domain)は、整域 R であって任意のふたつの非零元が最大公約元 (GCD) をもつという性質をもつものである[注 ...
数学の代数学における GCD整域(GCDせいいき、英: GCD domain)は、整域 R であって任意のふたつの非零元が最大公約元 (GCD) をもつという性質をもつものである[注 ...
K-理論(Kりろん、英: K-theory)は、大まかには、大きな行列を用いて定まる空間の不変量についての理論である[1]。位相空間やスキーム上で定義されたベクトル束で生成され...