「数論的代数幾何」を解説文に含む見出し語の検索結果(21~30/30件中)
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
谷山–志村予想(たにやま-しむらよそう、英: Modularity Theorem)とは、「有理数体上に定義された楕円曲線はすべてモジュラーである」という定理である。1955年に日本の数学者の...
< 前の結果 | 次の結果 >