「有界線型作用素」を解説文に含む見出し語の検索結果(131~140/172件中)
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学、特に抽象代数学における対合環(ついごうかん、英: involutive ring, involutory ring)、∗-環(スターかん、英: ∗-rin...
数学、特に抽象代数学における対合環(ついごうかん、英: involutive ring, involutory ring)、∗-環(スターかん、英: ∗-rin...