Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z

Abstract

The only immunoglobulin heavy-chain classes known so far in teleosts have been μ and δ. We identify here a previously unknown class, immunoglobulin ζ, expressed in zebrafish and other teleosts. In the zebrafish heavy-chain locus, variable (V) gene segments lie upstream of two tandem diversity, joining and constant (DJC) clusters, resembling the mouse T cell receptor α (Tcra) and δ (Tcrd) locus. V genes rearrange to (DJC)ζ or to (DJC)μ without evidence of switch rearrangement. The zebrafish immunoglobulin ζ gene (ighz) and mouse Tcrd, which are proximal to the V gene array, are expressed earlier in development. In adults, ighz was expressed only in kidney and thymus, which are primary lymphoid organs in teleosts. This additional class adds complexity to the immunoglobulin repertoire and raises questions concerning the evolution of immunoglobulins and the regulation of the differential expression of ighz and ighm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zebrafish igh locus.
Figure 2: Zebrafish igh locus versus mouse Tcra-Tcrd and Igh loci.
Figure 3: Unrooted phylogentic tree of immunoglobulin C region sequences.
Figure 4: DH and JH usage in zebrafish expressed μ and ζ.
Figure 5: Expression of igm and igz during development.
Figure 6: Expression of igm and igz in zebrafish organs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Schatz, D.G.V. (D)J recombination. Immunol. Rev. 200, 5–11 (2004).

    Article  CAS  Google Scholar 

  2. Cannon, J.P., Haire, R.N., Rast, J.P. & Litman, G.W. The phylogenetic origins of the antigen-binding receptors and somatic diversification mechanisms. Immunol. Rev. 200, 12–22 (2004).

    Article  CAS  Google Scholar 

  3. Amemiya, C.T. & Litman, G.W. Complete nucleotide sequence of an immunoglobulin heavy-chain gene and analysis of immunoglobulin gene organization in a primitive teleost species. Proc. Natl. Acad. Sci. USA 87, 811–815 (1990).

    Article  CAS  Google Scholar 

  4. Ghaffari, S.H. & Lobb, C.J. Nucleotide sequence of channel catfish heavy chain cDNA and genomic blot analyses. Implications for the phylogeny of Ig heavy chains. J. Immunol. 143, 2730–2739 (1989).

    CAS  PubMed  Google Scholar 

  5. Daggfeldt, A., Bengten, E. & Pilstrom, L. A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38, 199–209 (1993).

    Article  CAS  Google Scholar 

  6. Danilova, N. & Steiner, L.A. B cells develop in the zebrafish pancreas. Proc. Natl. Acad. Sci. USA 99, 13711–13716 (2002).

    Article  CAS  Google Scholar 

  7. Danilova, N., Hohman, V.S., Kim, E.H. & Steiner, L.A. Immunoglobulin variable-region diversity in the zebrafish. Immunogenetics 52, 81–91 (2000).

    Article  CAS  Google Scholar 

  8. Ghaffari, S.H. & Lobb, C.J. Structure and genomic organization of a second cluster of immunoglobulin heavy chain gene segments in the channel catfish. J. Immunol. 162, 1519–1529 (1999).

    CAS  PubMed  Google Scholar 

  9. Bengten, E. et al. The IgH locus of the channel catfish, Ictalurus punctatus, contains multiple constant region gene sequences: different genes encode heavy chains of membrane and secreted IgD. J. Immunol. 169, 2488–2497 (2002).

    Article  CAS  Google Scholar 

  10. Hordvik, I. The impact of ancestral tetraploidy on antibody heterogeneity in salmonid fishes. Immunol. Rev. 166, 153–157 (1998).

    Article  CAS  Google Scholar 

  11. Brodeur, P.H. & Riblet, R. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur. J. Immunol. 14, 922–930 (1984).

    Article  CAS  Google Scholar 

  12. Ota, T. & Nei, M. Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol. Biol. Evol. 11, 469–482 (1994).

    CAS  PubMed  Google Scholar 

  13. Andersson, E. & Matsunaga, T. Jaw, adaptive immunity and phylogeny of vertebrate antibody VH gene family. Res. Immunol. 147, 233–240 (1996).

    Article  CAS  Google Scholar 

  14. Wilson, M.R. et al. The immunoglobulin M heavy chain constant region gene of the channel catfish, Ictalurus punctatus: an unusual mRNA splice pattern produces the membrane form of the molecule. Nucleic Acids Res. 18, 5227–5233 (1990).

    Article  CAS  Google Scholar 

  15. Bengten, E., Leanderson, T. & Pilstrom, L. Immunoglobulin heavy chain cDNA from the teleost Atlantic cod (Gadus morhua L.): nucleotide sequences of secretory and membrane form show an unusual splicing pattern. Eur. J. Immunol. 21, 3027–3033 (1991).

    Article  CAS  Google Scholar 

  16. Hordvik, I., Voie, A.M., Glette, J., Male, R. & Endresen, C. Cloning and sequence analysis of two isotypic IgM heavy chain genes from Atlantic salmon, Salmo salar L. Eur. J. Immunol. 22, 2957–2962 (1992).

    Article  CAS  Google Scholar 

  17. Lee, M.A., Bengten, E., Daggfeldt, A., Rytting, A.S. & Pilstrom, L. Characterization of rainbow trout cDNAs encoding a secreted and membrane-bound Ig heavy chain and the genomic intron upstream of the first constant exon. Mol. Immunol. 30, 641–648 (1993).

    Article  CAS  Google Scholar 

  18. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeller, C. Sequences of Proteins of Immunological Interest (US Department of Health and Human Services, National Institutes of Health, Washington, 1991).

    Google Scholar 

  19. Wiersma, E.J. et al. Analysis of IgM structures involved in J chain incorporation. J. Immunol. 158, 1719–1726 (1997).

    CAS  PubMed  Google Scholar 

  20. Wilson, M. et al. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc. Natl. Acad. Sci. USA 94, 4593–4597 (1997).

    Article  CAS  Google Scholar 

  21. Stenvik, J. & Jorgensen, T.O. Immunoglobulin D (IgD) of Atlantic cod has a unique structure. Immunogenetics 51, 452–461 (2000).

    Article  CAS  Google Scholar 

  22. Hordvik, I. Identification of a novel immunoglobulin delta transcript and comparative analysis of the genes encoding IgD in Atlantic salmon and Atlantic halibut. Mol. Immunol. 39, 85–91 (2002).

    Article  CAS  Google Scholar 

  23. Srisapoome, P., Ohira, T., Hirono, I. & Aoki, T. Genes of the constant regions of functional immunoglobulin heavy chain of Japanese flounder, Paralichthys olivaceus. Immunogenetics 56, 292–300 (2004).

    Article  CAS  Google Scholar 

  24. Saha, N.R., Suetake, H., Kikuchi, K. & Suzuki, Y. Fugu immunoglobulin D: a highly unusual gene with unprecedented duplications in its constant region. Immunogenetics 56, 438–447 (2004).

    CAS  PubMed  Google Scholar 

  25. Hordvik, I., Thevarajan, J., Samdal, I., Bastani, N. & Krossoy, B. Molecular cloning and phylogenetic analysis of the Atlantic salmon immunoglobulin D gene. Scand. J. Immunol. 50, 202–210 (1999).

    Article  CAS  Google Scholar 

  26. Hirono, I., Nam, B.H., Enomoto, J., Uchino, K. & Aoki, T. Cloning and characterisation of a cDNA encoding Japanese flounder Paralichthys olivaceus IgD. Fish Shellfish Immunol. 15, 63–70 (2003).

    Article  CAS  Google Scholar 

  27. Gillies, S.D., Morrison, S.L., Oi, V.T. & Tonegawa, S. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33, 717–728 (1983).

    Article  CAS  Google Scholar 

  28. Sakai, E., Bottaro, A., Davidson, L., Sleckman, B.P. & Alt, F.W. Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions. Proc. Natl. Acad. Sci. USA 96, 1526–1531 (1999).

    Article  CAS  Google Scholar 

  29. Magor, B.G. et al. An Ig heavy chain enhancer of the channel catfish Ictalurus punctatus: evolutionary conservation of function but not structure. J. Immunol. 153, 5556–5563 (1994).

    CAS  PubMed  Google Scholar 

  30. Cioffi, C.C. et al. An IgH enhancer that drives transcription through basic helix-loop-helix and Oct transcription factor binding motifs. Functional analysis of the Eμ3′ enhancer of the catfish. J. Biol. Chem. 276, 27825–27830 (2001).

    Article  CAS  Google Scholar 

  31. Magor, B.G., Ross, D.A., Pilstrom, L. & Warr, G.W. Transcriptional enhancers and the evolution of the IgH locus. Immunol. Today 20, 13–17 (1999).

    Article  CAS  Google Scholar 

  32. Ellestad, K.K. & Magor, B.G. Evolution of transcriptional enhancers in the immunoglobulin heavy chain gene:functional characteristics of the zebrafish E(mu)3′ enhancer. Immunogenetics (in the press).

  33. Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002).

    Article  CAS  Google Scholar 

  34. Krangel, M.S., Carabana, J., Abbarategui, I., Schlimgen, R. & Hawwari, A. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor α/δ locus. Immunol. Rev. 200, 224–232 (2004).

    Article  CAS  Google Scholar 

  35. Desiderio, S.V. et al. Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 311, 752–755 (1984).

    Article  CAS  Google Scholar 

  36. Willett, C.E., Zapata, A.G., Hopkins, N. & Steiner, L.A. Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 182, 331–341 (1997).

    Article  CAS  Google Scholar 

  37. Zapata, A. & Amemiya, C.T. Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbiol. Immunol. 248, 67–107 (2000).

    CAS  PubMed  Google Scholar 

  38. Ventura-Holman, T., Jones, J.C., Ghaffari, S.H. & Lobb, C.J. Structure and genomic organization of VH gene segments in the channel catfish: members of different VH gene families are interspersed and closely linked. Mol. Immunol. 31, 823–832 (1994).

    Article  CAS  Google Scholar 

  39. Honjo, T., Muramatsu, M. & Fagarasan, S. AID: how does it aid antibody diversity? Immunity 20, 659–668 (2004).

    Article  CAS  Google Scholar 

  40. Zhao, Y., Pan-Hammarstrom, Q., Zhao, Z. & Hammarstrom, L. Identification of the activation-induced cytidine deaminase gene from zebrafish: an evolutionary analysis. Dev. Comp. Immunol. 29, 61–71 (2005).

    Article  CAS  Google Scholar 

  41. Glusman, G. et al. Comparative genomics of the human and mouse T cell receptor loci. Immunity 15, 337–349 (2001).

    Article  CAS  Google Scholar 

  42. Rumfelt, L.L. et al. A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proc. Natl. Acad. Sci. USA 98, 1775–1780 (2001).

    Article  CAS  Google Scholar 

  43. Diaz, M., Stanfield, R.L., Greenberg, A.S. & Flajnik, M.F. Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 54, 501–512 (2002).

    Article  CAS  Google Scholar 

  44. Havran, W.L. & Allison, J.P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335, 443–445 (1988).

    Article  CAS  Google Scholar 

  45. Waters, W.R. & Harp, J.A. Cryptosporidium parvum infection in T-cell receptor (TCR)-α- and TCR-δ-deficient mice. Infect. Immun. 64, 1854–1857 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hayday, A.C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    Article  CAS  Google Scholar 

  47. Ramsburg, E., Tigelaar, R., Craft, J. & Hayday, A. Age-dependent requirement for γδ T cells in the primary but not secondary protective immune response against an intestinal parasite. J. Exp. Med. 198, 1403–1414 (2003).

    Article  CAS  Google Scholar 

  48. Rothstein, T.L. Cutting edge commentary: two B-1 or not to be one. J. Immunol. 168, 4257–4261 (2002).

    Article  CAS  Google Scholar 

  49. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (The University of Oregon Press, Eugene, Oregon, 1995).

    Google Scholar 

  50. Sleckman, B.P., Carabana, J., Zhong, X. & Krangel, M.S. Assessing a role for enhancer-blocking activity in gene regulation within the murine T-cell receptor α/δ locus. Immunology 104, 11–18 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Rexroad and R. Athey of the US Department of Agriculture National Center for Cool and Cold Water Aquaculture Research Center for providing the rainbow trout cDNA clones. Supported in part by the National Institutes of Health (R01 AI08054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A Steiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Southern blot analysis of zebrafish genomic DNA with Cμ probe. (PDF 136 kb)

Supplementary Fig. 2

Classification of VH families. (PDF 216 kb)

Supplementary Fig. 3

Unrooted phylogenetic tree of VH sequences. (PDF 142 kb)

Supplementary Fig. 4

Alignment of the amino acid sequences encoded by Cμ and Cζ of zebrafish and other species. (PDF 152 kb)

Supplementary Fig. 5

A conserved sequence in the Cμ-Cδ intergenic region. (PDF 179 kb)

Supplementary Table 1

V, D and J gene segments in the zebrafish igh locus (PDF 125 kb)

Supplementary Table 2

Tools and databases used in the identification of igh genes (PDF 104 kb)

Supplementary Table 3

Comparison of CDR3 regions of μ and ζ cDNA and genomic cDNA (PDF 109 kb)

Supplementary Table 4

Primers (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilova, N., Bussmann, J., Jekosch, K. et al. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 6, 295–302 (2005). https://doi.org/10.1038/ni1166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing