Skip to main content

Advertisement

Log in

Trends to store digital data in DNA: an overview

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

There has been an ascending growth in the capacity of information being generated. The increased production of data in turn has put forward other challenges as well thus, and there is the need to store this information and not only to store it but also to retain it for a prolonged time period. The reliance on DNA as a dense storage medium with high storage capacity and its ability to withstand extreme environmental conditions has increased over the past few years. There have been developments in reading and writing different forms of data on DNA, codes for encrypting data and using DNA as a way of secret writing leading towards new styles like stenography and cryptography. The article outlines different methods adopted for storing digital data on DNA with pros and cons of each method that has been applied plus the advantages and limitations of using DNA as a storage medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shrivastava S, Badlani R (2014) Data storage in DNA. Int J Electr Energy 2:119–124

    Article  Google Scholar 

  2. Hakami HA, Chaczko Z, Kale A (2015) Review of big data storage based on DNA computing. In: Proceedings of the Asia-Pacific Conference on Computer-Aided System Engineering (APCASE’15), Quito Ecuador, pp 113–117

  3. Castillo M (2014) From hard drives to flash drives to DNA drives. Am J Neuroradiol 35:1–2

    Article  CAS  Google Scholar 

  4. Allentoft ME, Scofield RP, Oskam CL, Hale ML, Holdaway RN, Bunce M (2012) A molecular characterization of a newly discovered megafaunal fossil site in North Canterbury, South Island, New Zealand. J R Soc N Z 42:241–256

    Article  Google Scholar 

  5. Borda M, Tornea O (2010) DNA secret writing techniques. In: Proceedings of the 8th International Conference on Communications (COMM’10). Bucharest, Romania, pp 451–456

  6. Davis J (1996) Microvenus. Art J 55:70–74

    Article  Google Scholar 

  7. DeSilva PY, Ganegoda GU (2016) New trends of digital data storage in DNA. Biomed Res Int 8072463:14

    Google Scholar 

  8. Kac E (1999) “Genesis-art of DNA,” http://www.ekac.org/geninfo

  9. Arita M (2004) Writing information into DNA. Asp Mol Comput 2950:23–35

    Article  Google Scholar 

  10. Smith GC, Fiddes CC, Hawkins JP, Cox JPL (2003) Some possible codes for encrypting data in DNA. Biotech Lett 25:1125–1130

    Article  CAS  Google Scholar 

  11. Yatchie N, Ohashi Y, Tomita M (2008) Stabilizing synthetic data in the DNA of living organisms. Syst Synth Biol 2:19–25

    Article  Google Scholar 

  12. Doig AJ (1997) Improving the efficiency of the genetic code by varying the codon length—the perfect genetic code. J Theor Biol 188:355–360

    Article  CAS  Google Scholar 

  13. Ailenberg M, Rotstein OD (2009) An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques 47:747–754

    Article  CAS  Google Scholar 

  14. Sanger F, Nicklen S, Coulson AR (1997) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  Google Scholar 

  15. Cui G, Li C, Li H, Li X (2009) dna computing and its application to information security field. In: Proceedings of the 5th International Conference of Natural Computation, Tianjian, China; IEEE, pp 14–16

  16. Ning K (2009) A pseudo DNA Cryptography method. http://arxiv.org/abs/0903.269

  17. Gehani A, LaBean T, Reif J (2003) DNA-based cryptography. In aspects of molecular computing, pp 167–188. Springer, Berlin

    Book  Google Scholar 

  18. Yachie N, Ohashi Y, Tomita M (2008) Stabilizing synthetic datain the DNA of living organisms. Syst Synth Biol 2:19–25

    Article  Google Scholar 

  19. Bancroft C, Bowler T, Bloom B, Clelland CT (2001) Long term storage of information in DNA. Science 293:1763–1765

    Article  CAS  Google Scholar 

  20. Yachie N, Sekiyama K, Sugahara J, Ohashi Y, Tomita M (2007) Alignment-based approach for durable data storage into living organisms. Biotechnol Prog 23:501–505

    Article  CAS  Google Scholar 

  21. Yazdi SMHT, Yuan Y, Ma J, Zhao H, Milenkovic O (2015) A rewritable, random-access DNA-based storage system. Sci Rep 5:14138

    Article  Google Scholar 

  22. Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E (2013) Towards practical, high-capacity, low maintenance information storage in synthesized DNA. Nature 494:77–80

    Article  CAS  Google Scholar 

  23. Chan CY, Ioannidis YE (1999) An efficient bitmap encoding scheme for selection queries. ACM SIGMOD Record ACM 28(2):215–226

    Article  Google Scholar 

  24. Cosemans S, Dehaene W, Catthoor F (2008) A 3.6 pJ/access 480 MHz, 128Kbit on-Chip SRAM with 850 MHz boost mode in 90 nm CMOS with tunable sense amplifiers to cope with variability. In Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European IEEE, pp 278–281

  25. Cruz RPG, Withers JB, Li Y (2004) Dinucleotide junction cleavage versatility of 817 deoxyribozyme. Chem Biol 11:5767. https://doi.org/10.1016/j.chembiol.2003.12.012

    Article  CAS  Google Scholar 

  26. Sangwan N (2012) Text encryption with huffman compression. Int J Comput Appl 54:29–32

    Google Scholar 

  27. Zhang Y, Bochen Fu LH (2012) Research on DNA cryptography. In: Sen J (ed) Applied cryptography and network security. pp 357–376, InTech, Rijeka, Croatia, http://www.intechopen.com/books/applied-cryptography-and-networksecurity/ research-on-dna-cryptography

    Google Scholar 

  28. Borda M (2011) Fundamentals in information theory and coding. Springer, Berlin

    Book  Google Scholar 

  29. Borda ME, Tornea O, Hodorogea T (2009) Secret writing by DNA hybridization. Acta Technica Napocensis Electron Telecommun 50:21–24

    Google Scholar 

  30. Blaum M, Litsyn S, Buskens V, Tilborg HC (1993) Error correcting codes with bounded running digital sum. IEEE Trans Inf Theory 39:216–227

    Article  Google Scholar 

  31. Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48:463–465

    Article  CAS  Google Scholar 

  32. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nature 5:16–18

    CAS  Google Scholar 

  33. Church GM, Gao Y, Kosuri S (2012) Next-generation digital information storage in DNA. Science 337:1628

    Article  CAS  Google Scholar 

  34. Ogihara M, Ray A (1999) Simulating Boolean circuits on a DNA computer. Algorithmica 25:239–250

    Article  Google Scholar 

  35. Boneh D, Dunworth C, Lipton RJ, Sgall JÍ (1996) On the computational power of DNA. Discret Appl Math 71:79–94. https://doi.org/10.1016/S0166-218X(96)00058-3. (Describes a solution for the boolean satisfy ability problem)

    Article  Google Scholar 

  36. Kari L, Gloor G, Yu S (2000) Using DNA to solve the bounded post correspondence problem. Theor Comput Sci 231:192–203. https://doi.org/10.1016/s0304-3975(99)00100-0. (Describes a solution for the bounded Post correspondence problem, a hard-on-average NP-complete problem)

    Article  Google Scholar 

  37. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429

    Article  CAS  Google Scholar 

  38. Jerome B, Yin P, Monica EO, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340:599–603

    Article  Google Scholar 

  39. Amos M et al (2002) Topics in the theory of DNA computing. Theor Comput Sci 287:3–38. https://doi.org/10.1016/s0304-3975(02)00134-2

    Article  Google Scholar 

  40. Ravinderjit SB (2001) Solution of a satisfiability problem on a gel-based DNA computer. DNA computing. Springer, Berlin, pp 27–42

    Google Scholar 

  41. Macdonald J, Stefanovic D, Stojanovic M (2009) Des assemblages d’ADN rompus au jeu et au travail, Pour la Science, pp 68–75

  42. Nayebi A (2009) Fast matrix multiplication techniques based on the Adleman-Lipton model, arXiv: 0912.0750

  43. Wong JR, Lee KJ, Jian-Jun S, Shao F (2015) Magnetic fields facilitate DNA-mediated charge transport. Biochemistry 54:33923399. https://doi.org/10.1021/acs.biochem.5b00295

    Article  Google Scholar 

  44. Santoro SW, Joyce GF (1994) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci 94:4262–4266. https://doi.org/10.1073/pnas.94.9.4262

    Article  Google Scholar 

  45. Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular automaton. Nat Biotechnol 21:10691074. https://doi.org/10.1038/nbt862

    Article  CAS  Google Scholar 

  46. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Article  CAS  Google Scholar 

  47. Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2:e424. https://doi.org/10.1371/journal.pbio.0020424

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huffman DA (1953) A method for the construction of minimum-redundancy codes. Proc IRE 40:1098–1101

    Article  Google Scholar 

  49. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  50. Milenkovic O, Kashyap N (2006) On the design of codes for DNA computing. In coding and cryptography. Springer, New York, pp 100–119

    Google Scholar 

  51. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  52. Bornholt J, Lopez R, Carmean DM, Ceze L, Seelig G, Strauss K (2016) A DNA-based archival storage system. ASPLOS, ACM, New York. https://doi.org/10.1145/2872362.2872397

    Book  Google Scholar 

Download references

Acknowledgements

This work is carried out with the help of prestigious material of the libraries and special thanks to Institute of Industrial Biotechnology, Government College University, Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram ul Haq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclosure

The authors assure the integrity and quality of our research work. It is also stated that there is no plagiarism in this work and all points taken from other authors are well cited in the text. This study is completely independent and impartial.

Research involving human participants and/or animals

This article does not contain any studies conducted on human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, F., Haq, I.u., Ali, H. et al. Trends to store digital data in DNA: an overview. Mol Biol Rep 45, 1479–1490 (2018). https://doi.org/10.1007/s11033-018-4280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4280-y

Keywords

Navigation