Skip to main content
Log in

Ten Misconceptions from the History of Analysis and Their Debunking

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d’Alembert, Cauchy, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albeverio S., Høegh-Krohn R., Fenstad J., Lindstrøm T. (1986) Nonstandard methods in stochastic analysis and mathematical physics. Pure and Applied Mathematics, 122. Academic Press, Inc, Orlando, FL

    Google Scholar 

  • Andersen K. (2011) One of Berkeley’s arguments on compensating errors in the calculus. Historia Mathematica 38(2): 219–231

    Article  Google Scholar 

  • Anderson R. (1976) A non-standard representation for Brownian motion and Itô integration. Israel Journal of Mathematics 25(1–2): 15–46

    Article  Google Scholar 

  • Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21

    Article  Google Scholar 

  • Arkeryd L. (2005) Nonstandard analysis. American Mathematical Monthly 112(10): 926–928

    Article  Google Scholar 

  • Bacon, F. (1620). Novum Organum.

  • Baltus C. (2004) D’Alembert’s proof of the fundamental theorem of algebra. Historia Mathematica 31(4): 414–428

    Article  Google Scholar 

  • Barany M. J. (2011) Revisiting the introduction to Cauchy’s Cours d’analyse. Historia Mathematica 38(3): 368–388

    Article  Google Scholar 

  • Bell E.T. (1945) The development of mathematics. McGraw-Hill Book Company, Inc, New York

    Google Scholar 

  • Bell J. L. (2008) A primer of infinitesimal analysis (2nd ed.). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bell, J. L. (2009a). Continuity and infinitesimals. Stanford Encyclopedia of Philosophy. Revised 20 July 2009.

  • Bell, J. L. (2009b). Le continu cohésif. Intellectica, 2009/1(51).

  • Benci V., Di Nasso M. (2003) Alpha-theory: An elementary axiomatics for nonstandard analysis. Expositiones Mathematicae 21(4): 355–386

    Article  Google Scholar 

  • Berkeley, G. (1734). The analyst, a discourse addressed to an infidel Mathematician.

  • Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-classical mathematics 2009 (Hejnice, 18–22 June 2009), pp. 21–24.

  • Borel, E. (1902) Leçons sur les séries à termes positifs, ed. Robert d’Adhemar, Paris (Gauthier-Villars).

  • Borovik, A., Jin, R., & Katz, M. (2012). An integer construction of infinitesimals: Toward a theory of Eudoxus hyperreals. Notre Dame Journal of Formal Logic, 53(4).

  • Borovik, A., & Katz, M. (2011). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, see http://dx.doi.org/10.1007/s10699-011-9235-x and http://arxiv.org/abs/1108.2885.

  • Bos H. J. M. (1974) Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences 14: 1–90

    Article  Google Scholar 

  • Boyer C. (1949) The concepts of the calculus. Hafner Publishing Company, New York

    Google Scholar 

  • Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535

    Article  Google Scholar 

  • Cajori. (1993). A history of mathematical notations (Vol. 1–2). La Salle, IL: The Open Court Publishing Company, 1928/1929. Reprinted by Dover.

  • Cauchy A. L. (1821) Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Imprimérie Royale, Paris

    Google Scholar 

  • Cauchy A. L. (1823) Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal. Imprimérie Royale, Paris

    Google Scholar 

  • Cauchy A.L. (1815) Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (published 1827, with additional Notes). Oeuvres 1(1): 4–318

    Google Scholar 

  • Cauchy, A. L. (1829). Leçons sur le calcul différentiel. Paris: Debures. In Oeuvres complètes (Ser. 2, Vol. 4, pp. 263–609). Paris: Gauthier-Villars, 1899.

  • Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes (Ser. 1, Vol. 12, pp. 30–36). Paris: Gauthier–Villars, 1900.

  • Connes A. (1995) Noncommutative geometry and reality. Journal of Mathematical Physics 36(11): 6194–6231

    Article  Google Scholar 

  • Crossley J. (1987) The emergence of number (2nd ed.). World Scientific Publishing Co, Singapore

    Book  Google Scholar 

  • Crowe, M. (1988). Ten misconceptions about mathematics and its history. History and philosophy of modern mathematics (Minneapolis, MN, pp. 260–277, 1985). Minnesota studies in philosophical science, XI. Minneapolis, MN: University of Minnesota Press.

  • Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378

    Article  Google Scholar 

  • D’Alembert, J. (1754). Differentiel. In Encyclopédie, 4.

  • Dauben J. (1995) Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton University Press, Princeton

    Google Scholar 

  • Dauben, J. (1996). Arguments, logic and proof: Mathematics, logic and the infinite. History of mathematics and education: Ideas and experiences (Essen, 1992; Vol. 11, pp. 113–148), Stud. Wiss. Soz. Bildungsgesch. Mathematics. Göttingen: Vandenhoeck & Ruprecht.

  • Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience: New York. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html.

  • Dedekind R. (1872) Stetigkeit und irrationale Zahlen, Freid. Vieweg & Sohn, Braunschweig

    Google Scholar 

  • Dedekind R. (1963) Essays on the theory of numbers. I: Continuity and irrational numbers. II: The nature and meaning of numbers. Authorized translation by Wooster Woodruff Beman Dover Publications, Inc, New York

    Google Scholar 

  • Dehn M. (1900) Die Legendre’schen Sätze über die Winkelsumme im Dreieck. Mathematische Annalen 53(3): 404–439

    Article  Google Scholar 

  • Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213

    Article  Google Scholar 

  • Ehrlich, P. (2005). Continuity. In D. M. Borchert (Ed.), Encyclopedia of philosophy (2nd ed., pp. 489–517). Farmington Hills, MI: Macmillan Reference USA (The online version contains some slight improvements).

  • Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121

    Article  Google Scholar 

  • Ehrlich P. (2012) The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic 18(1): 1–45

    Article  Google Scholar 

  • Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146

    Google Scholar 

  • Euclid. (2007). Euclid’s elements of geometry. Edited, and provided with a modern English translation, by Richard Fitzpatrick, http://farside.ph.utexas.edu/euclid.html.

  • Euler, L. (1770). Elements of algebra (3rd English edition). English translated by John Hewlett and Francis Horner. Orme Longman, 1822.

  • Faltin F., Metropolis N., Ross B., Rota G.-C. (1975) The real numbers as a wreath product. Advances in Mathematics 16: 278–304

    Article  Google Scholar 

  • Fearnley-Sander D. (1979) Hermann Grassmann and the creation of linear algebra. The American Mathematical Monthly 86(10): 809–817

    Article  Google Scholar 

  • Feferman, S. (2009). Conceptions of the continuum [Le continu mathématique. Nouvelles conceptions, nouveaux enjeux]. Intellectica, 51, 169–189. See also http://math.stanford.edu/~feferman/papers/ConceptContin.pdf.

  • Felscher W. (1979) Naive Mengen und abstrakte Zahlen. III. [Naive sets and abstract numbers. III] Transfinite Methoden. With an erratum to Vol. II. Bibliographisches Institut, Mannheim

    Google Scholar 

  • Felscher W. (2000) Bolzano, Cauchy, epsilon, delta. American Mathematical Monthly 107(9): 844–862

    Article  Google Scholar 

  • Fisher G. (1979) Cauchy’s variables and orders of the infinitely small. The British Journal for the Philosophy of Science 30(3): 261–265

    Article  Google Scholar 

  • Fourier, J. (1822). Théorie analytique de la chaleur.

  • Fowler D. H. (1992) Dedekind’s theorem: \({\sqrt 2\times\sqrt 3=\sqrt6}\) . American Mathematical Monthly 99(8): 725–733

    Article  Google Scholar 

  • Fraenkel A. (1967) Lebenskreise. Aus den Erinnerungen eines jüdischen Mathematikers. Deutsche Verlags-Anstalt, Stuttgart

    Google Scholar 

  • Freudenthal H. (1971) Did Cauchy plagiarise Bolzano?. Archive for History of Exact Sciences 7: 375–392

    Article  Google Scholar 

  • Gerhardt, C. I. (ed.) (1850–1863). Leibnizens mathematische Schriften. Berlin and Halle: Eidmann.

  • Gilain, C. (1989). Cauchy et le cours d’analyse de l’Ecole polytechnique. With an editorial preface by Emmanuel Grison. Bulletin Society des amis de la Bibliothèque, Ecole Polytechnique, Vol. 5

  • Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191

    Article  Google Scholar 

  • Giordano P. (2010) The ring of Fermat reals. Advances in Mathematics 225(4): 2050–2075

    Article  Google Scholar 

  • Giordano, P., & Katz, M. (2011). Two ways of obtaining infinitesimals by refining Cantor’s completion of the reals. See http://arxiv.org/abs/1109.3553.

  • Gordon, E. I., Kusraev, A. G., & Kutateladze, S. S. (2002). Infinitesimal analysis. Updated and revised translation of the 2001 Russian original. Translated by Kutateladze. Mathematics and its applications (Vol. 544). Dordrecht: Kluwer.

  • Grabiner J. (1983) Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematics Monthly 90(3): 185–194

    Article  Google Scholar 

  • Grattan-Guinness I. (2004) The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica 31: 163–185

    Article  Google Scholar 

  • Gray J. (2008) Plato’s ghost. The modernist transformation of mathematics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Guicciardini, N. (2011). Private communication, 27 november.

  • Hawking, S., (Ed.) (2007). The mathematical breakthroughs that changed history. Philadelphia, PA: Running Press (originally published 2005).

  • Hewitt E. (1948) Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society 64: 45–99

    Article  Google Scholar 

  • Hoborski, A. (1923). Aus der theoretischen Arithmetik (German). Opusc. math. Kraków, 2 11–12 (1938).

    Google Scholar 

  • Hrbáček K. (1978) Axiomatic foundations for nonstandard analysis. Fundamenta Mathematicae 98(1): 1–19

    Google Scholar 

  • Hrbacek K. (2007) Stratified analysis? The strength of nonstandard analysis. Springer, Vienna, pp 47–63

    Book  Google Scholar 

  • Hrbacek K., Lessmann O., O’Donovan R. (2010) Analysis with ultrasmall numbers. American Mathematics Monthly 117(9): 801–816

    Article  Google Scholar 

  • R., R. (1940) OEuvres complètes. Martinus Nijhoff, La Haye

    Google Scholar 

  • Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1−.9. in a post-triumvirate era. Educational Studies in Mathematics, 74 (3), 259–273. See http://arxiv.org/abs/arXiv:1003.1501.

  • Katz K., Katz M. (2010) When is 0.999…less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30

    Google Scholar 

  • Katz, K., & Katz, M. (2011a). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. See http://www.mitpressjournals.org/toc/posc/19/4 and http://arxiv.org/abs/1108.4201.

    Google Scholar 

  • Katz, K., & Katz, M. (2011b). Stevin numbers and reality. Foundations of Science. See http://dx.doi.org/10.1007/s10699-011-9228-9 and http://arxiv.org/abs/1107.3688.

  • Katz, K., & Katz, M. (2011c) Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica, 56(2), 223–302. See http://arxiv.org/abs/1110.5456.

  • Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. See http://dx.doi.org/10.1007/s10699-011-9223-1 and http://arxiv.org/abs/1104.0375.

  • Katz, K., & Sherry, D. (2012). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis (to appear).

  • Katz, M., & Tall, D. (2011). The tension between intuitive infinitesimals and formal mathematical analysis. In B. Sriraman (Ed.), Crossroads in the history of mathematics and mathematics education. The Montana Mathematics Enthusiast Monographs in Mathematics Education (Vol. 12). Charlotte, NC: Information Age Publishing, Inc. See http://arxiv.org/abs/1110.5747 and http://www.infoagepub.com/products/Crossroads-in-the-History-of-Mathematics.

  • Katz V. J. (1993) Using the history of calculus to teach calculus. Contributions from History, Philosophy and Sociology of Science and Education. Science & Education 2(3): 243–249

    Article  Google Scholar 

  • Keisler H. J. (1986) Elementary calculus: An infinitesimal approach (2nd Ed.). Prindle, Weber & Schimidt, Boston

    Google Scholar 

  • Keisler, H. J. (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, Synthese Lib. (Vol. 242, pp. 207–237). Dordrecht: Kluwer.

  • Keisler, H. J. (2008a). The ultraproduct construction. In Proceedings of the ultramath conference, Pisa, Italy.

  • Keisler, H. J. (2008b). Quantifiers in limits. Andrzej Mostowski and Foundational Studies (pp. 151–170). Amsterdam: IOS.

  • Klein, F. (1908). (Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis). Translation by E. R. Hedrick & C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).

  • Kleiner I., Movshovitz-Hadar N. (1994) The role of paradoxes in the evolution of mathematics. American Mathematical Monthly 101(10): 963–974

    Article  Google Scholar 

  • Knobloch E. (2002) Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Foundations of the formal sciences, 1 (Berlin, 1999). Synthese 133(1–2): 59–73

    Article  Google Scholar 

  • Koetsier T. (2009) Lakatos, Lakoff and Núñez: Towards a Satisfactory Definition of Continuity. In: Hanna G., Jahnke H., Pulte H. (eds) Explanation and proof in mathematics. Philosophical and Educational Perspectives. Springer, Berlin

    Google Scholar 

  • Lagrange, J.-L. (2009). (1811) Mécanique Analytique. Courcier. Reissued by Cambridge University Press.

  • Lakatos I. (1976) Proofs and refutations. The logic of mathematical discovery. Edited by John Worrall and Elie Zahar. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lakatos, I. (1978). Cauchy and the continuum: The significance of nonstandard analysis for the history and philosophy of mathematics. The Mathematical Intelligencer, 1(3), 151–161 (paper originally presented in 1966).

  • Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica 14(3): 258–274

    Article  Google Scholar 

  • Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245

    Article  Google Scholar 

  • Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128

    Article  Google Scholar 

  • Laugwitz D. (1997) On the historical developement of infinitesimal mathematics. Part II. The conceptual thinking of Cauchy. Translated from the German by Abe Shenitzer with the editorial assistance of Hardy Grant. American Mathematical Monthly 104(7): 654–663

    Article  Google Scholar 

  • Lawvere F. W. (1980) Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body. Third Colloquium on Categories (Amiens, 1980), Part I. Cahiers Topologie Géom. Différentielle 21(4): 377–392

    Google Scholar 

  • Leibniz G. (2001) The Labyrinth of the continuum (Arthur, R., translator and editor). Yale University Press, New Haven

    Google Scholar 

  • Leibniz. (1701). Mémoire de M.G.G. Leibniz touchant son sentiment sur le calcul differéntiel. Mémoires de Trévoux, 1701(November), 270–272. Reprinted in (Gerhardt, 1850–1863, Vol. 5, p. 350).

  • Leibniz. (1710). GM V, pp. 381-2 (in Gerhardt (1850–1863)).

  • Levy S. H. (1991) Charles S. Peirce’s Theory of Infinitesimals. International Philosophical Quarterly 31: 127–140

    Article  Google Scholar 

  • Lightstone A. H. (1972) Infinitesimals. American Mathematical Monthly 79: 242–251

    Article  Google Scholar 

  • Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.

  • Lutz R., Albuquerque L. (2003) Modern infinitesimals as a tool to match intuitive and formal reasoning in analysis. Logic and mathematical reasoning (Mexico City, 1997). Synthese 134(1–2): 325–351

    Article  Google Scholar 

  • Lützen J. (1982) The prehistory of the theory of distributions. Studies in the history of mathematics and physical sciences Vol. 7. Springer, New York

    Book  Google Scholar 

  • Lützen, J. (2003). The foundation of analysis in the 19th century. A history of analysis. History of Mathematics (Vol. 24, pp. 155–195). Providence, RI: American Mathematical Society.

  • Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers. Pasadena: Mathematics Department, California Institute of Technology’ second corrected ed.

  • Madison E., Stroyan K. (1977) Reviews: Elementary calculus (Review of first edition of Keisler (1986)).. American Mathematical Monthly 84(6): 496–500

    Article  Google Scholar 

  • Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: Unveiling and optical diagrams in mathematics. Foundations of Science 10(1): 7–23

    Article  Google Scholar 

  • Malet A. (2006) Renaissance notions of number and magnitude. Historia Mathematica 33(1): 63–81

    Article  Google Scholar 

  • Mancosu P. (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. The Clarendon Press/Oxford University Press, New York

    Google Scholar 

  • Mancosu, P. (eds) (2008) The philosophy of mathematical practice. Oxford University Press, Oxford

    Google Scholar 

  • Mancosu P. (2009) Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable?. The Review of Symbolic Logic 2(4): 612–646

    Article  Google Scholar 

  • Mancosu, P., & Vailati, E. (1990). Detleff Clüver: An early opponent of the Leibnizian differential calculus. Centaurus, 33(4), 325–344.

    Google Scholar 

  • Marsh, J. (1742). Decimal arithmetic made perfect. London.

  • McClenon R. B. (1923) A contribution of Leibniz to the history of complex numbers. American Mathematical Monthly 30(7): 369–374

    Article  Google Scholar 

  • Mormann T. (2008) Idealization in Cassirer’s philosophy of mathematics. Philosophia Mathematica (3) 16(2): 151–181

    Article  Google Scholar 

  • Naets J. (2010) How to define a number? A general epistemological account of Simon Stevin’s art of defining. Topoi 29(1): 77–86

    Article  Google Scholar 

  • Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin of American Mathematical Society 83(6): 1165–1198

    Article  Google Scholar 

  • Newton, I. (1671). A treatise on the methods of series and fluxions. In Whiteside (1969) (Vol. III), pp. 33–35.

  • Newton, I. (1946). Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world. A revision by F. Cajori of A. Motte’s 1729 translation. Berkeley: University of California Press.

  • Newton, I. (1999). The principia: Mathematical principles of natural philosophy. Translated by I. B. Cohen & A. Whitman, preceded by A guide to Newton’s Principia by I. B. Cohen. Berkeley: University of California Press.

  • Peirce, C. S. (1976). The new elements of mathematics, Vol. III/1. Mathematical miscellanea. Edited by Carolyn Eisele. Atlantic Highlands, NJ: Mouton Publishers/The Hague-Paris/Humanities Press.

  • Pourciau B. (2001) Newton and the notion of limit. Historia Mathematica 28(1): 18–30

    Article  Google Scholar 

  • Putnam H. (1975) What is mathematical truth? Proceedings of the American Academy Workshop on the Evolution of Modern Mathematics (Boston, Mass., 1974). Historia Mathematica 2(4): 529–533

    Article  Google Scholar 

  • Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  • Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199

    Article  Google Scholar 

  • Russell B. (1903) The principles of mathematics. Routledge, London

    Google Scholar 

  • Rust H. (2005) Operational semantics for timed systems. Lecture Notes in Computer Science 3456: 23–29. doi:10.1007/978-3-540-32008-1_4

    Article  Google Scholar 

  • Schubring G. (2005) Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th century France and Germany sources and studies in the history of mathematics and physical sciences. Springer, New York

    Google Scholar 

  • Sepkoski D. (2005) Nominalism and constructivism in seventeenth-century mathematical philosophy. Historia Mathematica 32(1): 33–59

    Article  Google Scholar 

  • Sherry D. (1987) The wake of Berkeley’s Analyst: Rigor mathematicae?. Studies in History and Philosophical Science 18(4): 455–480

    Article  Google Scholar 

  • Sherry D. (1993) Don’t take me half the way: On Berkeley on mathematical reasoning. Studies in History and Philosophical Science 24(2): 207–225

    Article  Google Scholar 

  • Sinaceur H. (1973) Cauchy et Bolzano. Reviews of Histoire in Science and Applications 26((2): 97–112

    Article  Google Scholar 

  • Skolem Th. (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161

    Google Scholar 

  • Smale S. (1981) The fundamental theorem of algebra and complexity theory. Bulletin of the American Mathematical Society (N.S.) 4(1): 1–36

    Article  Google Scholar 

  • Smith D. E. (1920) Source book in mathematics. Mc Grow-Hill, New York

    Google Scholar 

  • Stevin, S. (1585). L’Arithmetique. In A. Girard (Ed.), Les Oeuvres Mathematiques de Simon Stevin (Leyde, 1634), part I (pp. 1–101).

  • Stevin, S. L’Arithmetique. In A. Girard (Ed.), 1625, part II. Online at http://www.archive.org/stream/larithmetiqvedes00stev#page/353/mode/1up.

  • Stevin, S. (1958). The principal works of Simon Stevin (Vols. IIA, IIB). In D. J. Struik, C. V. Swets, & Zeitlinger (Eds.), Mathematics (Vols. IIA: v+pp. 1–455 (1 plate), IIB: 1958 iv+pp, pp. 459–976). Amsterdam.

  • Strømholm P. (1968) Fermat’s methods of maxima and minima and of tangents. A reconstruction. Archive for History of Exact Sciences 5(1): 47–69

    Article  Google Scholar 

  • Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970; Vol. 69, pp. 47–64). Studies in Logic and Foundations of Mathematics. Amsterdam: North-Holland.

  • Tall D. (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. The Mathematical Gazette 64: 22–49

    Article  Google Scholar 

  • Tall D. (1991) The psychology of advanced mathematical thinking. In: Tall D. O. (eds) Advanced mathematical thinking mathematics education library, 11. Kluwer, Dordrecht

    Chapter  Google Scholar 

  • Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. In Transforming Mathematics Education through the use of Dynamic Mathematics. ZDM (pp. 1–11) (June 2009).

  • Tao T. (2010) An epsilon of room, II. Pages from year three of a mathematical blog. American Mathematical Society, Providence, RI

    Google Scholar 

  • Tarski A. (1930) Une contribution à la théorie de la mesure. Fundamenta Mathematicae 15: 42–50

    Google Scholar 

  • Urquhart, A. Mathematics and physics: Strategies of assimilation. In Mancosu (2008), pp. 417–440.

  • van der Waerden B. L. (1985) A history of algebra. From al-Khwarizmi to Emmy Noether. Springer, Berlin

    Google Scholar 

  • Weil A. (1973) Book review: The mathematical career of Pierre de Fermat. Bulletin of the American Mathematical Society 79(6): 1138–1149

    Article  Google Scholar 

  • Weil A. (1984) Number theory. An approach through history. From Hammurapi to Legendre. Birkhäuser Boston, Inc, Boston

    Google Scholar 

  • Whiteside, D. T. (Ed.) (1969). The mathematical papers of Isaac Newton. In D. T. Whiteside with the assistance in publication of M. A. Hoskin and A. Prag (Eds.) (Vol. III, pp. 1670–1673). London: Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Additional information

Piotr Błaszczyk supported by Polish Ministry of Science and Higher Education grant N N101 287639.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Błaszczyk, P., Katz, M.G. & Sherry, D. Ten Misconceptions from the History of Analysis and Their Debunking. Found Sci 18, 43–74 (2013). https://doi.org/10.1007/s10699-012-9285-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-012-9285-8

Keywords

Navigation