Skip to main content

Advertisement

Log in

Heparan sulfate in angiogenesis: a target for therapy

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    CAS  PubMed  Google Scholar 

  2. Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268

    CAS  PubMed  Google Scholar 

  3. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    CAS  PubMed  Google Scholar 

  4. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    CAS  PubMed  Google Scholar 

  5. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York, USA, pp 229–248

    Google Scholar 

  6. Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293(5535):1663–1666

    CAS  PubMed  Google Scholar 

  7. Kim CW, Goldberger OA, Gallo RL, Bernfield M (1994) Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 5(7):797–805

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34(10):511–519

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Esko JD, Linhardt RJ (2009) Proteins that bind sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 501–511

    Google Scholar 

  10. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037

    CAS  PubMed  Google Scholar 

  11. Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159

    PubMed  Google Scholar 

  12. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2(7):521–528

    CAS  PubMed  Google Scholar 

  13. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    CAS  PubMed  Google Scholar 

  14. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    CAS  PubMed  Google Scholar 

  15. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362(6423):841–844

    CAS  PubMed  Google Scholar 

  16. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400

    CAS  PubMed  Google Scholar 

  17. Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114(Pt 5):853–865

    CAS  PubMed  Google Scholar 

  18. Woolard J, Bevan HS, Harper SJ, Bates DO (2009) Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation 16(7):572–592

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Lei J, Jiang A, Pei D (1998) Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183. Biochim Biophys Acta 1443(3):400–406

    CAS  PubMed  Google Scholar 

  20. Jingjing L, Xue Y, Agarwal N, Roque RS (1999) Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 40(3):752–759

    CAS  PubMed  Google Scholar 

  21. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5(12):1806–1814

    CAS  PubMed  Google Scholar 

  22. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267(36):26031–26037

    CAS  PubMed  Google Scholar 

  23. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271(13):7788–7795

    CAS  PubMed  Google Scholar 

  24. Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ, Gardiner T, Hammes HP, Moons L, Dewerchin M, Collen D, Carmeliet P, D’Amore PA (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109(3):327–336

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5(5):495–502

    CAS  PubMed  Google Scholar 

  26. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267(9):6093–6098

    CAS  PubMed  Google Scholar 

  28. Robinson CJ, Mulloy B, Gallagher JT, Stringer SE (2006) VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem 281(3):1731–1740

    CAS  PubMed  Google Scholar 

  29. Keck RG, Berleau L, Harris R, Keyt BA (1997) Disulfide structure of the heparin binding domain in vascular endothelial growth factor: characterization of posttranslational modifications in VEGF. Arch Biochem Biophys 344(1):103–113

    CAS  PubMed  Google Scholar 

  30. Cebe-Suarez S, Grunewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K (2008) Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J 22(8):3078–3086

    CAS  PubMed  Google Scholar 

  31. Cebe Suarez S, Pieren M, Cariolato L, Arn S, Hoffmann U, Bogucki A, Manlius C, Wood J, Ballmer-Hofer K (2006) A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci 63(17):2067–2077

    CAS  PubMed  Google Scholar 

  32. Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8(11):880–887

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13(1):18–32

    CAS  PubMed  Google Scholar 

  34. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437(2):169–183

    CAS  PubMed  Google Scholar 

  35. Chiang MK, Flanagan JG (1995) Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 12(1):1–10

    CAS  PubMed  Google Scholar 

  36. Xu D, Fuster MM, Lawrence R, Esko JD (2011) Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. J Biol Chem 286(1):737–745

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Dougher AM, Wasserstrom H, Torley L, Shridaran L, Westdock P, Hileman RE, Fromm JR, Anderberg R, Lyman S, Linhardt RJ, Kaplan J, Terman BI (1997) Identification of a heparin binding peptide on the extracellular domain of the KDR VEGF receptor. Growth Factors 14(4):257–268

    CAS  PubMed  Google Scholar 

  38. Tessler S, Rockwell P, Hicklin D, Cohen T, Levi BZ, Witte L, Lemischka IR, Neufeld G (1994) Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors. J Biol Chem 269(17):12456–12461

    CAS  PubMed  Google Scholar 

  39. Ashikari-Hada S, Habuchi H, Kariya Y, Kimata K (2005) Heparin regulates vascular endothelial growth factor165-dependent mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells. Comparison of the effects of heparin and modified heparins. J Biol Chem 280(36):31508–31515

    CAS  PubMed  Google Scholar 

  40. Fuster MM, Wang L, Castagnola J, Sikora L, Reddi K, Lee PH, Radek KA, Schuksz M, Bishop JR, Gallo RL, Sriramarao P, Esko JD (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177(3):539–549

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellen L, Claesson-Welsh L (2006) Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 10(5):625–634

    CAS  PubMed  Google Scholar 

  42. Mamluk R, Gechtman Z, Kutcher ME, Gasiunas N, Gallagher J, Klagsbrun M (2002) Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. J Biol Chem 277(27):24818–24825

    CAS  PubMed  Google Scholar 

  43. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85(2):357–368

    CAS  PubMed  Google Scholar 

  44. Delcombel R, Janssen L, Vassy R, Gammons M, Haddad O, Richard B, Letourneur D, Bates D, Hendricks C, Waltenberger J, Starzec A, Sounni NE, Noel A, Deroanne C, Lambert C, Colige A (2012) New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis 16(2):353–371

    Google Scholar 

  45. Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18(1):26–45

    CAS  PubMed  Google Scholar 

  46. Dono R, Faulhaber J, Galli A, Zuniga A, Volk T, Texido G, Zeller R, Ehmke H (2002) FGF2 signaling is required for the development of neuronal circuits regulating blood pressure. Circ Res 90(1):E5–E10

    CAS  PubMed  Google Scholar 

  47. Dono R, Texido G, Dussel R, Ehmke H, Zeller R (1998) Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J 17(15):4213–4225

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Leconte I, Fox JC, Baldwin HS, Buck CA, Swain JL (1998) Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development. Dev Dyn 213(4):421–430

    CAS  PubMed  Google Scholar 

  49. Wang Y, Becker D (1997) Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 3(8):887–893

    CAS  PubMed  Google Scholar 

  50. Hori A, Sasada R, Matsutani E, Naito K, Sakura Y, Fujita T, Kozai Y (1991) Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 51(22):6180–6184

    CAS  PubMed  Google Scholar 

  51. Florkiewicz RZ, Sommer A (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci USA 86(11):3978–3981

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Chlebova K, Bryja V, Dvorak P, Kozubik A, Wilcox WR, Krejci P (2009) High molecular weight FGF2: the biology of a nuclear growth factor. Cell Mol Life Sci 66(2):225–235

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Moscatelli D (1987) High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 131(1):123–130

    CAS  PubMed  Google Scholar 

  54. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 130(2):393–400

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Nugent MA, Edelman ER (1992) Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperativity. Biochemistry (Mosc) 31(37):8876–8883

    CAS  Google Scholar 

  56. Moscatelli D (1992) Basic fibroblast growth factor (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. Implications for mechanisms of bFGF release from pericellular matrix. J Biol Chem 267(36):25803–25809

    CAS  PubMed  Google Scholar 

  57. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64(4):841–848

    CAS  PubMed  Google Scholar 

  58. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252(5013):1705–1708

    CAS  PubMed  Google Scholar 

  59. Roghani M, Mansukhani A, Dell’Era P, Bellosta P, Basilico C, Rifkin DB, Moscatelli D (1994) Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J Biol Chem 269(6):3976–3984

    CAS  PubMed  Google Scholar 

  60. Pantoliano MW, Horlick RA, Springer BA, Van Dyk DE, Tobery T, Wetmore DR, Lear JD, Nahapetian AT, Bradley JD, Sisk WP (1994) Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry (Mosc) 33(34):10229–10248

    CAS  Google Scholar 

  61. Delehedde M, Lyon M, Gallagher JT, Rudland PS, Fernig DG (2002) Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts. Biochem J 366(Pt 1):235–244

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Baird A, Schubert D, Ling N, Guillemin R (1988) Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA 85(7):2324–2328

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Thompson LD, Pantoliano MW, Springer BA (1994) Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry (Mosc) 33(13):3831–3840

    CAS  Google Scholar 

  64. Seno M, Sasada R, Kurokawa T, Igarashi K (1990) Carboxyl-terminal structure of basic fibroblast growth factor significantly contributes to its affinity for heparin. Eur J Biochem 188(2):239–245

    CAS  PubMed  Google Scholar 

  65. Habuchi H, Suzuki S, Saito T, Tamura T, Harada T, Yoshida K, Kimata K (1992) Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem J 285(Pt 3):805–813

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Turnbull JE, Fernig DG, Ke Y, Wilkinson MC, Gallagher JT (1992) Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem 267(15):10337–10341

    CAS  PubMed  Google Scholar 

  67. Maccarana M, Casu B, Lindahl U (1993) Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 268(32):23898–23905

    CAS  PubMed  Google Scholar 

  68. Rusnati M, Coltrini D, Caccia P, Dell’Era P, Zoppetti G, Oreste P, Valsasina B, Presta M (1994) Distinct role of 2-O-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1. Biochem Biophys Res Commun 203(1):450–458

    CAS  PubMed  Google Scholar 

  69. Pye DA, Vives RR, Turnbull JE, Hyde P, Gallagher JT (1998) Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem 273(36):22936–22942

    CAS  PubMed  Google Scholar 

  70. Guimond S, Maccarana M, Olwin BB, Lindahl U, Rapraeger AC (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem 268(32):23906–23914

    CAS  PubMed  Google Scholar 

  71. Ferreras C, Rushton G, Cole CL, Babur M, Telfer BA, van Kuppevelt TH, Gardiner JM, Williams KJ, Jayson GC, Avizienyte E (2012) Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor. J Biol Chem 287(43):36132–36146

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Lundin L, Larsson H, Kreuger J, Kanda S, Lindahl U, Salmivirta M, Claesson-Welsh L (2000) Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J Biol Chem 275(32):24653–24660

    CAS  PubMed  Google Scholar 

  73. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL (1993) An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 259(5103):1918–1921

    CAS  PubMed  Google Scholar 

  74. Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ (2004) Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly. Biochemistry (Mosc) 43(16):4724–4730

    CAS  Google Scholar 

  75. Gao G, Goldfarb M (1995) Heparin can activate a receptor tyrosine kinase. EMBO J 14(10):2183–2190

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407(6807):1029–1034

    CAS  PubMed  Google Scholar 

  77. Ibrahimi OA, Yeh BK, Eliseenkova AV, Zhang F, Olsen SK, Igarashi M, Aaronson SA, Linhardt RJ, Mohammadi M (2005) Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Mol Cell Biol 25(2):671–684

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mohammadi M, Olsen SK, Goetz R (2005) A protein canyon in the FGF–FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs. Curr Opin Struct Biol 15(5):506–516

    CAS  PubMed  Google Scholar 

  79. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (2000) Crystal structure of a ternary FGF–FGFR–heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6(3):743–750

    CAS  PubMed  Google Scholar 

  80. Chu CL, Goerges AL, Nugent MA (2005) Identification of common and specific growth factor binding sites in heparan sulfate proteoglycans. Biochemistry (Mosc) 44(36):12203–12213

    CAS  Google Scholar 

  81. Naimy H, Buczek-Thomas JA, Nugent MA, Leymarie N, Zaia J (2011) Highly sulfated nonreducing end-derived heparan sulfate domains bind fibroblast growth factor-2 with high affinity and are enriched in biologically active fractions. J Biol Chem 286(22):19311–19319

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Saksela O, Moscatelli D, Sommer A, Rifkin DB (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 107(2):743–751

    CAS  PubMed  Google Scholar 

  83. Prestrelski SJ, Fox GM, Arakawa T (1992) Binding of heparin to basic fibroblast growth factor induces a conformational change. Arch Biochem Biophys 293(2):314–319

    CAS  PubMed  Google Scholar 

  84. Saksela O, Rifkin DB (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 110(3):767–775

    CAS  PubMed  Google Scholar 

  85. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry (Mosc) 28(4):1737–1743

    CAS  Google Scholar 

  86. Presta M, Maier JA, Rusnati M, Ragnotti G (1989) Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol 140(1):68–74

    CAS  PubMed  Google Scholar 

  87. Hellberg C, Ostman A, Heldin CH (2010) PDGF and vessel maturation. Recent Results Cancer Res 180:103–114

    CAS  PubMed  Google Scholar 

  88. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8(16):1875–1887

    CAS  PubMed  Google Scholar 

  89. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8(16):1888–1896

    CAS  PubMed  Google Scholar 

  90. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111(9):1287–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Lu C, Shahzad MM, Moreno-Smith M, Lin YG, Jennings NB, Allen JK, Landen CN, Mangala LS, Armaiz-Pena GN, Schmandt R, Nick AM, Stone RL, Jaffe RB, Coleman RL, Sood AK (2010) Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer Biol Ther 9(3):176–182

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18(2):338–340

    CAS  PubMed  Google Scholar 

  93. Kuhnert F, Tam BY, Sennino B, Gray JT, Yuan J, Jocson A, Nayak NR, Mulligan RC, McDonald DM, Kuo CJ (2008) Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci USA 105(29):10185–10190

    CAS  PubMed Central  PubMed  Google Scholar 

  94. McCarty MF, Somcio RJ, Stoeltzing O, Wey J, Fan F, Liu W, Bucana C, Ellis LM (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117(8):2114–2122

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Kelly JL, Sanchez A, Brown GS, Chesterman CN, Sleigh MJ (1993) Accumulation of PDGF B and cell-binding forms of PDGF A in the extracellular matrix. J Cell Biol 121(5):1153–1163

    CAS  PubMed  Google Scholar 

  96. Ostman A, Andersson M, Betsholtz C, Westermark B, Heldin CH (1991) Identification of a cell retention signal in the B-chain of platelet-derived growth factor and in the long splice version of the A-chain. Cell Regul 2(7):503–512

    CAS  PubMed Central  PubMed  Google Scholar 

  97. LaRochelle WJ, May-Siroff M, Robbins KC, Aaronson SA (1991) A novel mechanism regulating growth factor association with the cell surface: identification of a PDGF retention domain. Genes Dev 5(7):1191–1199

    CAS  PubMed  Google Scholar 

  98. Raines EW, Ross R (1992) Compartmentalization of PDGF on extracellular binding sites dependent on exon-6-encoded sequences. J Cell Biol 116(2):533–543

    CAS  PubMed  Google Scholar 

  99. Soyombo AA, DiCorleto PE (1994) Stable expression of human platelet-derived growth factor B chain by bovine aortic endothelial cells. Matrix association and selective proteolytic cleavage by thrombin. J Biol Chem 269(26):17734–17740

    CAS  PubMed  Google Scholar 

  100. Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17(15):1835–1840

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M, Landegren U, Kjellen L, Bondjers G, Li JP, Lindahl U, Spillmann D, Betsholtz C, Gerhardt H (2007) Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21(3):316–331

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Lustig F, Hoebeke J, Ostergren-Lunden G, Velge-Roussel F, Bondjers G, Olsson U, Ruetschi U, Fager G (1996) Alternative splicing determines the binding of platelet-derived growth factor (PDGF-AA) to glycosaminoglycans. Biochemistry (Mosc) 35(37):12077–12085

    CAS  Google Scholar 

  103. Feyzi E, Lustig F, Fager G, Spillmann D, Lindahl U, Salmivirta M (1997) Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem 272(9):5518–5524

    CAS  PubMed  Google Scholar 

  104. Stenzel D, Nye E, Nisancioglu M, Adams RH, Yamaguchi Y, Gerhardt H (2009) Peripheral mural cell recruitment requires cell-autonomous heparan sulfate. Blood 114(4):915–924

    CAS  PubMed  Google Scholar 

  105. Grassot J, Gouy M, Perriere G, Mouchiroud G (2006) Origin and molecular evolution of receptor tyrosine kinases with immunoglobulin-like domains. Mol Biol Evol 23(6):1232–1241

    CAS  PubMed  Google Scholar 

  106. Dhar K, Dhar G, Majumder M, Haque I, Mehta S, Van Veldhuizen PJ, Banerjee SK, Banerjee S (2010) Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1. Mol Cancer 9:209

    PubMed Central  PubMed  Google Scholar 

  107. Hirschi KK, Rohovsky SA, D’sAmore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141(3):805–814

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121(6):1845–1854

    CAS  PubMed  Google Scholar 

  109. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97(6):2626–2631

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331

    CAS  PubMed  Google Scholar 

  112. Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P, Mummery CL, Karlsson S (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20(7):1663–1673

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179(1):297–302

    CAS  PubMed  Google Scholar 

  114. Ananth S, Knebelmann B, Gruning W, Dhanabal M, Walz G, Stillman IE, Sukhatme VP (1999) Transforming growth factor beta1 is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma. Cancer Res 59(9):2210–2216

    CAS  PubMed  Google Scholar 

  115. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR (2002) Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 62(21):6021–6025

    CAS  PubMed  Google Scholar 

  116. Orlova VV, Liu Z, Goumans MJ, ten Dijke P (2011) Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways. Histol Histopathol 26(9):1219–1230

    CAS  PubMed  Google Scholar 

  117. McCaffrey TA, Falcone DJ, Brayton CF, Agarwal LA, Welt FG, Weksler BB (1989) Transforming growth factor-beta activity is potentiated by heparin via dissociation of the transforming growth factor-beta/alpha 2-macroglobulin inactive complex. J Cell Biol 109(1):441–448

    CAS  PubMed  Google Scholar 

  118. McCaffrey TA, Falcone DJ, Du B (1992) Transforming growth factor-beta 1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. J Cell Physiol 152(2):430–440

    CAS  PubMed  Google Scholar 

  119. Lyon M, Rushton G, Gallagher JT (1997) The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific. J Biol Chem 272(29):18000–18006

    CAS  PubMed  Google Scholar 

  120. McCaffrey TA, Falcone DJ, Vicente D, Du B, Consigli S, Borth W (1994) Protection of transforming growth factor-beta 1 activity by heparin and fucoidan. J Cell Physiol 159(1):51–59

    CAS  PubMed  Google Scholar 

  121. Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Iwase M, Yoshikai Y, Yanada M, Yamamoto K, Matsushita T, Nishimura M, Kusugami K, Saito H, Muramatsu T (2001) Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J Biol Chem 276(50):47483–47488

    CAS  PubMed  Google Scholar 

  122. Chen L, Klass C, Woods A (2004) Syndecan-2 regulates transforming growth factor-beta signaling. J Biol Chem 279(16):15715–15718

    CAS  PubMed  Google Scholar 

  123. Segarini PR, Seyedin SM (1988) The high molecular weight receptor to transforming growth factor-beta contains glycosaminoglycan chains. J Biol Chem 263(17):8366–8370

    CAS  PubMed  Google Scholar 

  124. Cheifetz S, Andres JL, Massague J (1988) The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J Biol Chem 263(32):16984–16991

    CAS  PubMed  Google Scholar 

  125. Cheifetz S, Massague J (1989) Transforming growth factor-beta (TGF-beta) receptor proteoglycan. Cell surface expression and ligand binding in the absence of glycosaminoglycan chains. J Biol Chem 264(20):12025–12028

    CAS  PubMed  Google Scholar 

  126. Andres JL, Ronnstrand L, Cheifetz S, Massague J (1991) Purification of the transforming growth factor-beta (TGF-beta) binding proteoglycan betaglycan. J Biol Chem 266(34):23282–23287

    CAS  PubMed  Google Scholar 

  127. ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev 8(11):857–869

    Google Scholar 

  128. Iwao K, Inatani M, Matsumoto Y, Ogata-Iwao M, Takihara Y, Irie F, Yamaguchi Y, Okinami S, Tanihara H (2009) Heparan sulfate deficiency leads to Peters anomaly in mice by disturbing neural crest TGF-beta2 signaling. J Clin Invest 119(7):1997–2008

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X, Lin X (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131(7):1563–1575

    CAS  PubMed  Google Scholar 

  130. Chen Q, Sivakumar P, Barley C, Peters DM, Gomes RR, Farach-Carson MC, Dallas SL (2007) Potential role for heparan sulfate proteoglycans in regulation of transforming growth factor-beta (TGF-beta) by modulating assembly of latent TGF-beta-binding protein-1. J Biol Chem 282(36):26418–26430

    CAS  PubMed  Google Scholar 

  131. Parsi MK, Adams JR, Whitelock J, Gibson MA (2010) LTBP-2 has multiple heparin/heparan sulfate binding sites. Matrix Biol 29(5):393–401

    CAS  PubMed  Google Scholar 

  132. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373(6516):699–702

    CAS  PubMed  Google Scholar 

  133. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373(6516):702–705

    CAS  PubMed  Google Scholar 

  134. Sengupta S, Gherardi E, Sellers LA, Wood JM, Sasisekharan R, Fan TP (2003) Hepatocyte growth factor/scatter factor can induce angiogenesis independently of vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 23(1):69–75

    CAS  PubMed  Google Scholar 

  135. Lin YM, Huang YL, Fong YC, Tsai CH, Chou MC, Tang CH (2012) Hepatocyte growth factor increases vascular endothelial growth factor-A production in human synovial fibroblasts through c-Met receptor pathway. PLoS ONE 7(11):e50924

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Zhang YW, Su Y, Volpert OV, Vande Woude GF (2003) Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 100(22):12718–12723

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E, Mildner M, Weninger W, Nakamura T, Tschachler E, Binder BR (1999) Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Invest 79(4):427–438

    CAS  PubMed  Google Scholar 

  138. Ding S, Merkulova-Rainon T, Han ZC, Tobelem G (2003) HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood 101(12):4816–4822

    CAS  PubMed  Google Scholar 

  139. Kunkel P, Muller S, Schirmacher P, Stavrou D, Fillbrandt R, Westphal M, Lamszus K (2001) Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro-oncology 3(2):82–88

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK et al (1991) Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 10(10):2867–2878

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT (1994) Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 269(15):11216–11223

    CAS  PubMed  Google Scholar 

  142. Ashikari S, Habuchi H, Kimata K (1995) Characterization of heparan sulfate oligosaccharides that bind to hepatocyte growth factor. J Biol Chem 270(49):29586–29593

    CAS  PubMed  Google Scholar 

  143. Nakamura T, Nawa K, Ichihara A, Kaise N, Nishino T (1987) Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett 224(2):311–316

    CAS  PubMed  Google Scholar 

  144. Rosen EM, Goldberg ID, Kacinski BM, Buckholz T, Vinter DW (1989) Smooth muscle releases an epithelial cell scatter factor which binds to heparin. In Vitro Cell Dev Biol 25(2):163–173

    CAS  PubMed  Google Scholar 

  145. Mizuno K, Inoue H, Hagiya M, Shimizu S, Nose T, Shimohigashi Y, Nakamura T (1994) Hairpin loop and second kringle domain are essential sites for heparin binding and biological activity of hepatocyte growth factor. J Biol Chem 269(2):1131–1136

    CAS  PubMed  Google Scholar 

  146. Aoyama H, Naka D, Yoshiyama Y, Ishii T, Kondo J, Mitsuka M, Hayase T (1997) Isolation and conformational analysis of fragment peptide corresponding to the heparin-binding site of hepatocyte growth factor. Biochemistry (Mosc) 36(33):10286–10291

    CAS  Google Scholar 

  147. Zhou H, Mazzulla MJ, Kaufman JD, Stahl SJ, Wingfield PT, Rubin JS, Bottaro DP, Byrd RA (1998) The solution structure of the N-terminal domain of hepatocyte growth factor reveals a potential heparin-binding site. Structure 6(1):109–116

    CAS  PubMed  Google Scholar 

  148. Catlow KR, Deakin JA, Wei Z, Delehedde M, Fernig DG, Gherardi E, Gallagher JT, Pavao MS, Lyon M (2008) Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulfate density. J Biol Chem 283(9):5235–5248

    CAS  PubMed  Google Scholar 

  149. Deakin JA, Blaum BS, Gallagher JT, Uhrin D, Lyon M (2009) The binding properties of minimal oligosaccharides reveal a common heparan sulfate/dermatan sulfate-binding site in hepatocyte growth factor/scatter factor that can accommodate a wide variety of sulfation patterns. J Biol Chem 284(10):6311–6321

    CAS  PubMed  Google Scholar 

  150. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L, David G, Hartmann G, Gherardi E, Pals ST (1999) Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 274(10):6499–6506

    PubMed  Google Scholar 

  151. Lyon M, Deakin JA, Gallagher JT (2002) The mode of action of heparan and dermatan sulfates in the regulation of hepatocyte growth factor/scatter factor. J Biol Chem 277(2):1040–1046

    CAS  PubMed  Google Scholar 

  152. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99(4):1405–1410

    CAS  PubMed  Google Scholar 

  153. Rubin JS, Day RM, Breckenridge D, Atabey N, Taylor WG, Stahl SJ, Wingfield PT, Kaufman JD, Schwall R, Bottaro DP (2001) Dissociation of heparan sulfate and receptor binding domains of hepatocyte growth factor reveals that heparan sulfate-c-met interaction facilitates signaling. J Biol Chem 276(35):32977–32983

    CAS  PubMed  Google Scholar 

  154. Hartmann G, Prospero T, Brinkmann V, Ozcelik C, Winter G, Hepple J, Batley S, Bladt F, Sachs M, Birchmeier C, Birchmeier W, Gherardi E (1998) Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. Curr Biol 8(3):125–134

    CAS  PubMed  Google Scholar 

  155. Feitsma K, Hausser H, Robenek H, Kresse H, Vischer P (2000) Interaction of thrombospondin-1 and heparan sulfate from endothelial cells. Structural requirements of heparan sulfate. J Biol Chem 275(13):9396–9402

    CAS  PubMed  Google Scholar 

  156. Stringer SE, Gallagher JT (1997) Specific binding of the chemokine platelet factor 4 to heparan sulfate. J Biol Chem 272(33):20508–20514

    CAS  PubMed  Google Scholar 

  157. Chadderton NS, Stringer SE (2003) Interaction of platelet factor 4 with fibroblast growth factor 2 is stabilised by heparan sulphate. Int J Biochem Cell Biol 35(7):1052–1055

    CAS  PubMed  Google Scholar 

  158. Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP (1999) Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 3(2):147–158

    CAS  PubMed  Google Scholar 

  159. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122(2):497–511

    CAS  PubMed  Google Scholar 

  160. Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2(5):a006627

    PubMed Central  PubMed  Google Scholar 

  161. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    PubMed  Google Scholar 

  162. Ferrara N, Clapp C, Weiner R (1991) The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129(2):896–900

    CAS  PubMed  Google Scholar 

  163. Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP, Kalluri R (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60(9):2520–2526

    CAS  PubMed  Google Scholar 

  164. Sasaki T, Larsson H, Tisi D, Claesson-Welsh L, Hohenester E, Timpl R (2000) Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J Mol Biol 301(5):1179–1190

    CAS  PubMed  Google Scholar 

  165. Homandberg GA, Williams JE, Grant D, Schumacher B, Eisenstein R (1985) Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol 120(3):327–332

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 278(6):4238–4249

    CAS  PubMed  Google Scholar 

  167. Sasaki T, Larsson H, Kreuger J, Salmivirta M, Claesson-Welsh L, Lindahl U, Hohenester E, Timpl R (1999) Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO J 18(22):6240–6248

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Sudhakar A, Nyberg P, Keshamouni VG, Mannam AP, Li J, Sugimoto H, Cosgrove D, Kalluri R (2005) Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha1beta1 integrin. J Clin Invest 115(10):2801–2810

    CAS  PubMed Central  PubMed  Google Scholar 

  169. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    PubMed  Google Scholar 

  170. Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404–407

    CAS  PubMed  Google Scholar 

  171. Ricard-Blum S, Feraud O, Lortat-Jacob H, Rencurosi A, Fukai N, Dkhissi F, Vittet D, Imberty A, Olsen BR, van der Rest M (2004) Characterization of endostatin binding to heparin and heparan sulfate by surface plasmon resonance and molecular modeling: role of divalent cations. J Biol Chem 279(4):2927–2936

    CAS  PubMed  Google Scholar 

  172. Hohenester E, Sasaki T, Olsen BR, Timpl R (1998) Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution. EMBO J 17(6):1656–1664

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Kreuger J, Matsumoto T, Vanwildemeersch M, Sasaki T, Timpl R, Claesson-Welsh L, Spillmann D, Lindahl U (2002) Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO J 21(23):6303–6311

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Karumanchi SA, Jha V, Ramchandran R, Karihaloo A, Tsiokas L, Chan B, Dhanabal M, Hanai JI, Venkataraman G, Shriver Z, Keiser N, Kalluri R, Zeng H, Mukhopadhyay D, Chen RL, Lander AD, Hagihara K, Yamaguchi Y, Sasisekharan R, Cantley L, Sukhatme VP (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 7(4):811–822

    CAS  PubMed  Google Scholar 

  175. Blackhall FH, Merry CL, Lyon M, Jayson GC, Folkman J, Javaherian K, Gallagher JT (2003) Binding of endostatin to endothelial heparan sulphate shows a differential requirement for specific sulphates. Biochem J 375(Pt 1):131–139

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Miosge N, Simniok T, Sprysch P, Herken R (2003) The collagen type XVIII endostatin domain is co-localized with perlecan in basement membranes in vivo. J Histochem Cytochem 51(3):285–296

    CAS  PubMed  Google Scholar 

  177. Reis RC, Schuppan D, Barreto AC, Bauer M, Bork JP, Hassler G, Coelho-Sampaio T (2005) Endostatin competes with bFGF for binding to heparin-like glycosaminoglycans. Biochem Biophys Res Commun 333(3):976–983

    CAS  PubMed  Google Scholar 

  178. Faye C, Chautard E, Olsen BR, Ricard-Blum S (2009) The first draft of the endostatin interaction network. J Biol Chem 284(33):22041–22047

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Faye C, Moreau C, Chautard E, Jetne R, Fukai N, Ruggiero F, Humphries MJ, Olsen BR, Ricard-Blum S (2009) Molecular interplay between endostatin, integrins, and heparan sulfate. J Biol Chem 284(33):22029–22040

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Faye C, Inforzato A, Bignon M, Hartmann DJ, Muller L, Ballut L, Olsen BR, Day AJ, Ricard-Blum S (2010) Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells. Biochem J 427(3):467–475

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Shi H, Huang Y, Zhou H, Song X, Yuan S, Fu Y, Luo Y (2007) Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110(8):2899–2906

    CAS  PubMed  Google Scholar 

  182. Chang Z, Choon A, Friedl A (1999) Endostatin binds to blood vessels in situ independent of heparan sulfate and does not compete for fibroblast growth factor-2 binding. Am J Pathol 155(1):71–76

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Rychkova N, Stahl S, Gaetzner S, Felbor U (2005) Non-heparan sulfate-binding interactions of endostatin/collagen XVIII in murine development. Dev Dyn 232(2):399–407

    CAS  PubMed  Google Scholar 

  184. Fuchs S, Dohle E, Kirkpatrick CJ (2012) Sonic Hedgehog-mediated synergistic effects guiding angiogenesis and osteogenesis. Vitam Horm 88:491–506

    CAS  PubMed  Google Scholar 

  185. Zhang F, McLellan JS, Ayala AM, Leahy DJ, Linhardt RJ (2007) Kinetic and structural studies on interactions between heparin or heparan sulfate and proteins of the hedgehog signaling pathway. Biochemistry (Mosc) 46(13):3933–3941

    CAS  Google Scholar 

  186. Datta MW, Hernandez AM, Schlicht MJ, Kahler AJ, DeGueme AM, Dhir R, Shah RB, Farach-Carson C, Barrett A, Datta S (2006) Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol Cancer 5:9

    PubMed Central  PubMed  Google Scholar 

  187. Palma V, Carrasco H, Reinchisi G, Olivares G, Faunes F, Larrain J (2011) SHh activity and localization is regulated by perlecan. Biol Res 44(1):63–67

    CAS  PubMed  Google Scholar 

  188. Witt RM, Hecht ML, Pazyra-Murphy MF, Cohen SM, Noti C, van Kuppevelt TH, Fuller M, Chan JA, Hopwood JJ, Seeberger PH, Segal RA (2013) Heparan sulfate proteoglycans containing a glypican 5 core and 2-O-sulfo-iduronic acid function as Sonic Hedgehog co-receptors to promote proliferation. J Biol Chem 288(36):26275–26288

    Google Scholar 

  189. Li F, Shi W, Capurro M, Filmus J (2011) Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J Cell Biol 192(4):691–704

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Wilson NH, Stoeckli ET (2013) Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner. Neuron 79(3):478–491

    CAS  PubMed  Google Scholar 

  191. Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14(5):700–711

    CAS  PubMed  Google Scholar 

  192. Rubin JB, Choi Y, Segal RA (2002) Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development 129(9):2223–2232

    CAS  PubMed  Google Scholar 

  193. Chan JA, Balasubramanian S, Witt RM, Nazemi KJ, Choi Y, Pazyra-Murphy MF, Walsh CO, Thompson M, Segal RA (2009) Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses. Nat Neurosci 12(4):409–417

    CAS  PubMed Central  PubMed  Google Scholar 

  194. The I, Bellaiche Y, Perrimon N (1999) Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol Cell 4(4):633–639

    CAS  PubMed  Google Scholar 

  195. Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208

    CAS  PubMed  Google Scholar 

  196. Benedito R, Hellstrom M (2013) Notch as a hub for signaling in angiogenesis. Exp Cell Res 319(9):1281–1288

    CAS  PubMed  Google Scholar 

  197. Kamimura K, Rhodes JM, Ueda R, McNeely M, Shukla D, Kimata K, Spear PG, Shworak NW, Nakato H (2004) Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase. J Cell Biol 166(7):1069–1079

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Song K, Li Q, Peng YB, Li J, Ding K, Chen LJ, Shao CH, Zhang LJ, Li P (2011) Silencing of hHS6ST2 inhibits progression of pancreatic cancer through inhibition of Notch signalling. Biochem J 436(2):271–282

    CAS  PubMed  Google Scholar 

  199. Zhao N, Liu H, Lilly B (2012) Reciprocal regulation of syndecan-2 and Notch signaling in vascular smooth muscle cells. J Biol Chem 287(20):16111–16120

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96(6):795–806

    CAS  PubMed  Google Scholar 

  201. Bedell VM, Yeo SY, Park KW, Chung J, Seth P, Shivalingappa V, Zhao J, Obara T, Sukhatme VP, Drummond IA, Li DY, Ramchandran R (2005) Roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci USA 102(18):6373–6378

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14(4):448–453

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by Slit–Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4(1):19–29

    PubMed  Google Scholar 

  204. Liang Y, Annan RS, Carr SA, Popp S, Mevissen M, Margolis RK, Margolis RU (1999) Mammalian homologues of the Drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J Biol Chem 274(25):17885–17892

    CAS  PubMed  Google Scholar 

  205. Shipp EL, Hsieh-Wilson LC (2007) Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem Biol 14(2):195–208

    CAS  PubMed  Google Scholar 

  206. Hu H (2001) Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat Neurosci 4(7):695–701

    CAS  PubMed  Google Scholar 

  207. Hussain SA, Piper M, Fukuhara N, Strochlic L, Cho G, Howitt JA, Ahmed Y, Powell AK, Turnbull JE, Holt CE, Hohenester E (2006) A molecular mechanism for the heparan sulfate dependence of slit–robo signaling. J Biol Chem 281(51):39693–39698

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Fukuhara N, Howitt JA, Hussain SA, Hohenester E (2008) Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J Biol Chem 283(23):16226–16234

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Bulow HE, Hobert O (2004) Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41(5):723–736

    PubMed  Google Scholar 

  210. Steigemann P, Molitor A, Fellert S, Jackle H, Vorbruggen G (2004) Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. Curr Biol 14(3):225–230

    CAS  PubMed  Google Scholar 

  211. Johnson KG, Ghose A, Epstein E, Lincecum J, O’Connor MB, Van Vactor D (2004) Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance. Curr Biol 14(6):499–504

    CAS  PubMed  Google Scholar 

  212. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79(4):547–552

    CAS  PubMed  Google Scholar 

  213. Choi HJ, Park H, Lee HW, Kwon YG (2012) The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis. IUBMB Life 64(9):724–731

    CAS  PubMed  Google Scholar 

  214. Reis M, Liebner S (2013) Wnt signaling in the vasculature. Exp Cell Res 319(9):1317–1323

    CAS  PubMed  Google Scholar 

  215. Reichsman F, Smith L, Cumberledge S (1996) Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J Cell Biol 135(3):819–827

    CAS  PubMed  Google Scholar 

  216. Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS (1997) Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124(13):2623–2632

    CAS  PubMed  Google Scholar 

  217. Haerry TE, Heslip TR, Marsh JL, O’Connor MB (1997) Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124(16):3055–3064

    CAS  PubMed  Google Scholar 

  218. Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W, Fox B, Humphrey M, Olson S, Futch T, Kaluza V, Siegfried E, Stam L, Selleck SB (1999) The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400(6741):276–280

    CAS  PubMed  Google Scholar 

  219. Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128(1):87–94

    CAS  PubMed  Google Scholar 

  220. Lin X, Perrimon N (1999) Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400(6741):281–284

    CAS  PubMed  Google Scholar 

  221. Alexander CM, Reichsman F, Hinkes MT, Lincecum J, Becker KA, Cumberledge S, Bernfield M (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25(3):329–332

    CAS  PubMed  Google Scholar 

  222. Munoz R, Moreno M, Oliva C, Orbenes C, Larrain J (2006) Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. Nat Cell Biol 8(5):492–500

    CAS  PubMed  Google Scholar 

  223. Cadwalader EL, Condic ML, Yost HJ (2012) 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly. Development 139(7):1296–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162(2):341–351

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G (2000) Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 467(1):7–11

    CAS  PubMed  Google Scholar 

  226. Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L, Forsberg E (2000) Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 275(34):25926–25930

    CAS  PubMed  Google Scholar 

  227. Grobe K, Inatani M, Pallerla SR, Castagnola J, Yamaguchi Y, Esko JD (2005) Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development 132(16):3777–3786

    CAS  PubMed  Google Scholar 

  228. Adhikari N, Basi DL, Townsend D, Rusch M, Mariash A, Mullegama S, Watson A, Larson J, Tan S, Lerman B, Esko JD, Selleck SB, Hall JL (2010) Heparan sulfate Ndst1 regulates vascular smooth muscle cell proliferation, vessel size and vascular remodeling. J Mol Cell Cardiol 49(2):287–293

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Chen E, Stringer SE, Rusch MA, Selleck SB, Ekker SC (2005) A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol 284(2):364–376

    CAS  PubMed  Google Scholar 

  230. Habuchi H, Nagai N, Sugaya N, Atsumi F, Stevens RL, Kimata K (2007) Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. J Biol Chem 282(21):15578–15588

    CAS  PubMed  Google Scholar 

  231. Sugaya N, Habuchi H, Nagai N, Ashikari-Hada S, Kimata K (2008) 6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture. J Biol Chem 283(16):10366–10376

    CAS  PubMed  Google Scholar 

  232. Wang S, Ai X, Freeman SD, Pownall ME, Lu Q, Kessler DS, Emerson CP Jr (2004) QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proc Natl Acad Sci USA 101(14):4833–4838

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Narita K, Staub J, Chien J, Meyer K, Bauer M, Friedl A, Ramakrishnan S, Shridhar V (2006) HSulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res 66(12):6025–6032

    CAS  PubMed  Google Scholar 

  234. Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD, Korc M (2008) Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest 118(1):89–99

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Chen E, Hermanson S, Ekker SC (2004) Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103(5):1710–1719

    CAS  PubMed  Google Scholar 

  236. Fears CY, Gladson CL, Woods A (2006) Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 281(21):14533–14536

    CAS  PubMed  Google Scholar 

  237. Noguer O, Villena J, Lorita J, Vilaro S, Reina M (2009) Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells. Exp Cell Res 315(5):795–808

    CAS  PubMed  Google Scholar 

  238. Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107(2):R9–R14

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Corti F, Finetti F, Ziche M, Simons M (2013) The syndecan-4/protein kinase Calpha pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo. J Biol Chem 288(18):12712–12721

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Gotte M, Joussen AM, Klein C, Andre P, Wagner DD, Hinkes MT, Kirchhof B, Adamis AP, Bernfield M (2002) Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Invest Ophthalmol Vis Sci 43(4):1135–1141

    PubMed  Google Scholar 

  241. Zoeller JJ, Whitelock JM, Iozzo RV (2009) Perlecan regulates developmental angiogenesis by modulating the VEGF-VEGFR2 axis. Matrix Biol 28(5):284–291

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Zhou Z, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu B, Cao Y, Tryggvason K (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res 64(14):4699–4702

    CAS  PubMed  Google Scholar 

  243. Gustafsson E, Almonte-Becerril M, Bloch W, Costell M (2013) Perlecan maintains microvessel integrity in vivo and modulates their formation in vitro. PLoS One 8(1):e53715

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Lindahl U, Kjellen L (2013) Pathophysiology of heparan sulphate: many diseases, few drugs. J Intern Med 273(6):555–571

    Google Scholar 

  245. Lewis KD, Robinson WA, Millward MJ, Powell A, Price TJ, Thomson DB, Walpole ET, Haydon AM, Creese BR, Roberts KL, Zalcberg JR, Gonzalez R (2008) A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Invest New Drugs 26(1):89–94

    CAS  PubMed  Google Scholar 

  246. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB (1999) Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 59(14):3433–3441

    CAS  PubMed  Google Scholar 

  247. Dredge K, Hammond E, Davis K, Li CP, Liu L, Johnstone K, Handley P, Wimmer N, Gonda TJ, Gautam A, Ferro V, Bytheway I (2010) The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs 28(3):276–283

    CAS  PubMed  Google Scholar 

  248. Dredge K, Hammond E, Handley P, Gonda TJ, Smith MT, Vincent C, Brandt R, Ferro V, Bytheway I (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104(4):635–642

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Ferro V, Fewings K, Palermo MC, Li C (2001) Large-scale preparation of the oligosaccharide phosphate fraction of Pichia holstii NRRL Y-2448 phosphomannan for use in the manufacture of PI-88. Carbohydr Res 332(2):183–189

    CAS  PubMed  Google Scholar 

  250. Yu G, Gunay NS, Linhardt RJ, Toida T, Fareed J, Hoppensteadt DA, Shadid H, Ferro V, Li C, Fewings K, Palermo MC, Podger D (2002) Preparation and anticoagulant activity of the phosphosulfomannan PI-88. Eur J Med Chem 37(10):783–791

    CAS  PubMed  Google Scholar 

  251. Hazel SJ (2003) A novel early chorioallantoic membrane assay demonstrates quantitative and qualitative changes caused by antiangiogenic substances. J Lab Clin Med 141(3):217–228

    CAS  PubMed  Google Scholar 

  252. Cochran S, Li C, Fairweather JK, Kett WC, Coombe DR, Ferro V (2003) Probing the interactions of phosphosulfomannans with angiogenic growth factors by surface plasmon resonance. J Med Chem 46(21):4601–4608

    CAS  PubMed  Google Scholar 

  253. Francis DJ, Parish CR, McGarry M, Santiago FS, Lowe HC, Brown KJ, Bingley JA, Hayward IP, Cowden WB, Campbell JH, Campbell GR, Chesterman CN, Khachigian LM (2003) Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation. Circ Res 92(8):e70–e77

    CAS  PubMed  Google Scholar 

  254. Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24(25):4037–4051

    CAS  PubMed  Google Scholar 

  255. Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108(3):341–347

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Casu B, Guerrini M, Naggi A, Perez M, Torri G, Ribatti D, Carminati P, Giannini G, Penco S, Pisano C, Belleri M, Rusnati M, Presta M (2002) Short heparin sequences spaced by glycol-split uronate residues are antagonists of fibroblast growth factor 2 and angiogenesis inhibitors. Biochemistry (Mosc) 41(33):10519–10528

    CAS  Google Scholar 

  257. Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, Penco S, Pisano C, Carminati P, Tortoreto M, Zunino F, Vlodavsky I, Sanderson RD, Yang Y (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17(6):1382–1393

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Zhou H, Roy S, Cochran E, Zouaoui R, Chu CL, Duffner J, Zhao G, Smith S, Galcheva-Gargova Z, Karlgren J, Dussault N, Kwan RY, Moy E, Barnes M, Long A, Honan C, Qi YW, Shriver Z, Ganguly T, Schultes B, Venkataraman G, Kishimoto TK (2011) M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS ONE 6(6):e21106

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Schuksz M, Fuster MM, Brown JR, Crawford BE, Ditto DP, Lawrence R, Glass CA, Wang L, Tor Y, Esko JD (2008) Surfen, a small molecule antagonist of heparan sulfate. Proc Natl Acad Sci USA 105(35):13075–13080

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Lee TY, Folkman J, Javaherian K (2010) HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model. PLoS ONE 5(4):e9945

    PubMed Central  PubMed  Google Scholar 

  261. Payza AN, Korn ED (1956) Bacterial degradation of heparin. Nature 177(4498):88–89

    CAS  PubMed  Google Scholar 

  262. Sasisekharan R, Moses MA, Nugent MA, Cooney CL, Langer R (1994) Heparinase inhibits neovascularization. Proc Natl Acad Sci USA 91(4):1524–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Liu D, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci USA 99(2):568–573

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Raman K, Ninomiya M, Nguyen TK, Tsuzuki Y, Koketsu M, Kuberan B (2011) Novel glycosaminoglycan biosynthetic inhibitors affect tumor-associated angiogenesis. Biochem Biophys Res Commun 404(1):86–89

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Garud DR, Tran VM, Victor XV, Koketsu M, Kuberan B (2008) Inhibition of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis. J Biol Chem 283(43):28881–28887

    CAS  PubMed Central  PubMed  Google Scholar 

  266. Kisilevsky R, Szarek WA, Ancsin JB, Elimova E, Marone S, Bhat S, Berkin A (2004) Inhibition of amyloid A amyloidogenesis in vivo and in tissue culture by 4-deoxy analogues of peracetylated 2-acetamido-2-deoxy-alpha- and beta-d-glucose: implications for the treatment of various amyloidoses. Am J Pathol 164(6):2127–2137

    CAS  PubMed Central  PubMed  Google Scholar 

  267. van Wijk XM, Oosterhof A, van den Broek SA, Griffioen AW, ten Dam GB, Rutjes FP, van Delft FL, van Kuppevelt TH (2010) A 4-deoxy analogue of N-acetyl-D-glucosamine inhibits heparan sulphate expression and growth factor binding in vitro. Exp Cell Res 316(15):2504–2512

    PubMed  Google Scholar 

  268. van Wijk XM, Thijssen VL, Lawrence R, van den Broek SA, Dona M, Naidu N, Oosterhof A, van de Westerlo EM, Kusters LJ, Khaled Y, Jokela TA, Nowak-Sliwinska P, Kremer H, Stringer SE, Griffioen AW, van Wijk E, van Delft FL, van Kuppevelt TH (2013) Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis. ACS Chem Biol 8(10):2331–2338

    Google Scholar 

  269. Brown JR, Nishimura Y, Esko JD (2006) Synthesis and biological evaluation of gem-diamine 1-N-iminosugars related to L-iduronic acid as inhibitors of heparan sulfate 2-O-sulfotransferase. Bioorg Med Chem Lett 16(3):532–536

    CAS  PubMed  Google Scholar 

  270. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF (1994) Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89(5):2183–2189

    CAS  PubMed  Google Scholar 

  271. Harada K, Grossman W, Friedman M, Edelman ER, Prasad PV, Keighley CS, Manning WJ, Sellke FW, Simons M (1994) Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 94(2):623–630

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Uchida Y, Yanagisawa-Miwa A, Nakamura F, Yamada K, Tomaru T, Kimura K, Morita T (1995) Angiogenic therapy of acute myocardial infarction by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: an experimental study. Am Heart J 130(6):1182–1188

    CAS  PubMed  Google Scholar 

  273. Pieper JS, Hafmans T, van Wachem PB, van Luyn MJ, Brouwer LA, Veerkamp JH, van Kuppevelt TH (2002) Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J Biomed Mater Res 62(2):185–194

    CAS  PubMed  Google Scholar 

  274. Kim MS, Bhang SH, Yang HS, Rim NG, Jun I, Kim SI, Kim BS, Shin H (2010) Development of functional fibrous matrices for the controlled release of basic fibroblast growth factor to improve therapeutic angiogenesis. Tissue Eng Part A 16(10):2999–3010

    CAS  PubMed  Google Scholar 

  275. Sharma AK, Bury MI, Fuller NJ, Rozkiewicz DI, Hota PV, Kollhoff DM, Webber MJ, Tapaskar N, Meisner JW, Lariviere PJ, Destefano S, Wang D, Ameer GA, Cheng EY (2011) Growth factor release from a chemically modified elastomeric poly(1,8-octanediol-co-citrate) thin film promotes angiogenesis in vivo. J Biomed Mater Res A 100(3):561–570

    PubMed  Google Scholar 

  276. Singh S, Wu BM, Dunn JC (2011) The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials 32(8):2059–2069

    CAS  PubMed Central  PubMed  Google Scholar 

  277. Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28(6):1123–1131

    CAS  PubMed  Google Scholar 

  278. Mammadov R, Mammadov B, Guler MO, Tekinay AB (2012) Growth factor binding on heparin mimetic peptide nanofibers. Biomacromolecules 13(10):3311–3319

    CAS  PubMed  Google Scholar 

  279. Mammadov R, Mammadov B, Toksoz S, Aydin B, Yagci R, Tekinay AB, Guler MO (2011) Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules 12(10):3508–3519

    CAS  PubMed  Google Scholar 

  280. Shintani Y, Takashima S, Asano Y, Kato H, Liao Y, Yamazaki S, Tsukamoto O, Seguchi O, Yamamoto H, Fukushima T, Sugahara K, Kitakaze M, Hori M (2006) Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. EMBO J 25(13):3045–3055

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):a004952

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toin H. van Kuppevelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wijk, X.M.R., van Kuppevelt, T.H. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 17, 443–462 (2014). https://doi.org/10.1007/s10456-013-9401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9401-6

Keywords

Navigation