Skip to main content

Evolutionary Scenario of the Early History of the Animal Kingdom: Evidence from Precambrian (Ediacaran) Weng’an and Early Cambrian Maotianshan Biotas, China

  • Chapter
Earth and Life

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

Late Proterozoic (Ediacaran) Weng’an (580 mya) and Early Cambrian Maotianshan (c. 530 mya) faunas of South China, illustrated here, document diverse body plans at phylum and subphylum level and confirm that bilaterians evolved well before the “Cambrian explosion”. The Weng’an faunas (from Guizhou), the oldest record of metazoans, consist mainly of embryos with possible affinities to living sponges, cnidarians, and bilaterians, but with adult specimens (though microscopic) of the same groups. The Maotianshan Shale faunas (from Yunnan), remarkably diverse at species level (over 100 species), have great diversity of metazoan body plans, many comparable with those of living groups. Because they occur at or near the evolutionary roots of many animal groups, intermediate forms are present. Evolution of Early Cambrian metazoans was surprisingly rapid. Worm-like ancestral euarthropods elucidate the evolutionary origins of the arthropods. The diverse Maotianshan vertebrates, representing “missing” history between an amphioxus-like ancestor and craniate vertebrates, provide an improved understanding of the early evolution of the vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrianov AV, Malakhov VV (1995) Comparative-morphological analysis of the organization of cephalorhynch worms, the phylogeny and the system of the phylum Cephalorhyncha. 5. Phylogeny and system. Zool Zh 74:19–27

    Google Scholar 

  • Adrianov AV, Malakhov VV, Spiridonov SE (1998) Fine morphology of the larvae of hairworm Gordius sp (Nematomorpha). Dokl Akad Nauk 361:558–561

    Google Scholar 

  • Aldridge RJ, Hou XG, Siveter DJ, Gabbott SH (2007) The systematics and phylogentic relationships of vetulicolians. Palaeontology 50:131–168

    Article  Google Scholar 

  • Anderson DT (1975) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Ax P (1995) Das System der Metazoa I. Ein Lehrbuch der phylogenetischen Systematik. Fischer, Stuttgart

    Google Scholar 

  • Baguñà J, Riutort M (2004) The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssay 26:1046–1057

    Article  Google Scholar 

  • Bailey JV, Joye SB, Kalanetra KM, Flood BE, Corsetti FA (2007) Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445:198–201

    Article  Google Scholar 

  • Ball-Cuif L, Wassef M (1995) Determination events in the nervous system of the vertebrate embryo. Curr Opin Genet Dev 5:450–458

    Article  Google Scholar 

  • Barfod GH, Albarede F, Knoll AH, Xiao S, Telouk P, Frei R, Baker J (2002) New Lu-Hf and Pb-Pb constraints on the earliest animal fossils. Earth Plan Sci Lett 201:203–212

    Article  Google Scholar 

  • Barrington EJW, Sage M (1972) The endostyle and thyroid gland. In: Hardistym MW, Potter IC (eds) The biology of lampreys, vol 2. Academic, London, pp 105–134

    Google Scholar 

  • Bengtson S, Budd G (2004) Comment on “Small bilaterian fossils from 40 to 55 million years before the Cambrian”. Science 306:1291a

    Article  Google Scholar 

  • Bengtson S, Hou XG (2001) The integument of Cambrian chancelloriids. Acta Palaeontol Pol 46:1–22

    Google Scholar 

  • Bengtson S, Matthews SC, Missarzhevsky VV (1986) The Cambrian netlike fossil Microdictyon. In: Hoffman A, Nitecki MH (eds) Problematic Fossil Taxa vol 5. Oxford, NY and Clarendon, Oxford, pp. 97–115

    Google Scholar 

  • Bengtson S, Missarzhevsky V (1981) Coeloscleritophora—a major group of enigmatic Cambrian metazoans. US Geol Surv Open-file Rep 81–743:19–21

    Google Scholar 

  • Bergström J, Hou XG (1998) Chengjiang arthropods and their bearing on early arthropod evolution. In: Edgecombe GD (ed) Arthropod fossils and phylogeny. Columbia University, New York, pp. , 151–184

    Google Scholar 

  • Bergström J, Hou XG (2003) Cambrian arthropods: a lesson in convergent evolution. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the XVIII International Congress of Zoology Pensoft, Sofia, Moscow, pp. 89–96, xvi + 738 pp

    Google Scholar 

  • Boxshell GA (2004) The evolution of arthropod limbs. Biol Rev 79:253–300

    Article  Google Scholar 

  • Boyan GS, Williams JLD, Posser S, Bräunig P (2002) Morphological and molecular data argue for the labrum being non-apical, articulated, and the appendage of the intercalary segment in the locust. Arthrop Struct Dev 31:65–76

    Article  Google Scholar 

  • Boyer BC, Henry JQ, Martindale MQ (1996a) Dual origins of mesoderm in a basal member of the spiralian clade: cell lineage studies in the polyclad turbellarian Hoploplana inquilina. Dev Biol 179:329–338

    Article  Google Scholar 

  • Boyer BC, Henry JQ, Martindale MQ (1996b) Modified spiral cleavage: the duet cleavage pattern and early blastomere fates in the acoel turbellarian Neochildiafusca. Biol Bull 191:285–286

    Google Scholar 

  • Briggs DEG (1992) Phylogenetic significance of the Burgess Shale crustacean Canadaspis. Acta Zool (Stockholm) 73:293–300

    Article  Google Scholar 

  • Briggs DEG (1994) Giant predators from the Cambrian of China. Science 264:1283–1284

    Article  Google Scholar 

  • Briggs DED, Erwin DH, Collier FJ (1994) The fossils of the Burgess Shale. Smithsonian Inst Press, 238p

    Google Scholar 

  • Briggs DEG, Lieberman BS, Halgedahl SL, Jarrard RD (2005) A new metazoan from the Middle Cambrian of Utah and the nature of the Vetulicolia. Palaeontology 48:681–686

    Article  Google Scholar 

  • Brusca RC, Brusca GJ (2002) Invertebrates, 2nd edn. Sinauer Associates, Massachusetts

    Google Scholar 

  • Butler AB (2000) Chordate evolution and the origin of craniates: an old brain in a new head. Anat Rec 261:111–125

    Article  Google Scholar 

  • Butler AB (2006) The serial transformation hypothesis of vertebrate origins: comment on “the new head hypothesis revised”. J Exper Zool (Mol Dev Evol) 306B:419–424

    Article  Google Scholar 

  • Butt FH (1960) Head development in the arthropods. Biol Rev (Cambridge Phil Soc) 35:43–91

    Google Scholar 

  • Caron JB (2006) Banffia constricta, a putative vetulicolid from the Middle Cambrian Burgess Shale. Trans R Soc Edinburgh Earth Sci 96:95–111

    Google Scholar 

  • Caron JB, Conway Morris S, Shu DG (2010) Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. Plos One 5(3):e9586

    Article  Google Scholar 

  • Casanova B, Jong L, Moreau X (2002) Carapace and mandibles ontogeny in the Dendrobranchiata (Decapoda), Euphausiacea, and Mysidacea (Crustacea): a phylogenetic interest. Can J Zool 80:296–306

    Article  Google Scholar 

  • Chen JY (2004) The Dawn of animal world. Jiangsu Publishing House of Science and Technology, Nanjing, 366p

    Google Scholar 

  • Chen JY (2008) Early crest animals and the insight they provide into the origin of craniates. Genesis 6:623–639

    Article  Google Scholar 

  • Chen JY (2009) The sudden appearance of diverse animal body plans during the Cambrian explosion. Int J Dev Biol 53:733–751

    Article  Google Scholar 

  • Chen JY, Erdtmann BD (1991) Lower Cambrian fossil Lagerstätte from Chengjiang, Yunnan, China: insights for reconstructing early metazoan life. In: Simonetta AM, Conway Morris S (eds) The early evolution of metazoa and the significance of problematic taxa. Cambridge, pp. 57–75

    Google Scholar 

  • Chen JY, Huang DY (2002) A possible Lower Cambrian chaetognath (arrow worm). Science 298:197

    Article  Google Scholar 

  • Chen AL, Huang DY (2006) Gill rays found on the Early Cambrian primitive vertebrate Yunnanozoon. Acta Palaeontol Sin 45(3):345–350

    Google Scholar 

  • Chen JY, Li CW (2000) Distant ancestor of mankind unearthed: 520 million year-old fish-like fossils reveal early history of vertebrates. Science Progress 83:123–133

    Google Scholar 

  • Chen JY, Teichert C (1983a) Cambrian cephalopods. Geology 11:648–650

    Google Scholar 

  • Chen JY, Teichert C (1983b) Cambrian cephalopoda of China. Palaeontographica, Abt A, Bd 181

    Google Scholar 

  • Chen JY, Zhou GQ (1997) Biology of the Chengjiang Fauna. Bull Nat Mus Nat Sci 10:11–106

    Google Scholar 

  • Chen JY, Hou XG, Lu HZ (1989a) Early Cambtian netted scale-bearing worm-like sea animal. Acta Palaeont Sinica 28:1–26

    Google Scholar 

  • Chen JY, Hou XG, Lu HZ (1989b) Lower Cambrian leptomitids (Demospongea), Chengjiang, Yunnan. Acta Palaeontol Sin 28:17–31

    Google Scholar 

  • Chen JY, Hou XG, Li GX (1990) New Lower Cambrian demosponges, Quadrolaminiella gen. nov. from Chengjiang, Yunnan. Acta Palaeontol Sin 29:402–413

    Google Scholar 

  • Chen JY, Ramsköld L, Zhou GQ (1994) Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science 264:1304–1308

    Article  Google Scholar 

  • Chen JY, Dzick J, Edgecombe GD, Ramsköld L, Zhou GQ (1995a) The earliest chordate from Early Cambrian, Yunnan, China. Nature 377:720–722

    Article  Google Scholar 

  • Chen JY, Edgecombe GD, Ramsköld L, Zhou GQ (1995b) Head segmentation in Early Cambrian Fuxianhuia: implications for arthropod evolution. Science 268:1339–1343

    Article  Google Scholar 

  • Chen JY, Zhou GQ, Ramsköld L (1995c) A new Early Cambrian onychophoran-like animal, Paucipodia gen. nov., from the Chengjiang fauna, China. Trans R Soc Edinburgh Earth Sci 85:275–282

    Google Scholar 

  • Chen JY, Zhu MY, Zhou GQ (1995d) The early Cambrian medusiform metazoan Eldonia from Chengjiang Lagerstätte. Acta Palaeontol Pol 40:213–244

    Google Scholar 

  • Chen JY, Zhou GQ, Zhu MY, Yeh KY (1996) The Chengjiang Biota—a Unique Window of the Cambrian explosion. National Museum of Natural Science, Taichung, Taiwan, 222p

    Google Scholar 

  • Chen JY, Edgecombe GD, Ramsköld L (1997) Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang fauna, China. Rec Australian Mus 47:1–24

    Article  Google Scholar 

  • Chen JY, Huang DY, Li CW (1999) An Early Cambrian craniate-like chordate. Nature 402:518–522

    Article  Google Scholar 

  • Chen JY, Oliveri P, Li CW, Zhou GQ, Gao F, Hagadom JW, Peterson KJ, Davidson EH (2000) Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. Proc Natl Acad Sci USA 97:4457–4462

    Article  Google Scholar 

  • Chen JY, Vannier J, Huang DY (2001) The origin of crustaceans: new evidence from the Early Cambrian of China. Proc R Soc Lond B 268:1–7

    Article  Google Scholar 

  • Chen JY, Oliveri P, Gao F, Dornbos SQ, Li CW, Bottjer DJ, Davidson EH (2002a) Precambrian animal life: probable developmental and adult cnidarian forms from southwest China. Develop Biol 248:182–196

    Article  Google Scholar 

  • Chen LZ, Luo HL, Hu SX, Yin GY, Jiang ZW, Wu ZL, Li F, Chen AL (2002b) Early Cambrian Chengjiang Fauna in Eastern Yunnan, China. Yunnan Science and Technology Press, Kunming, 199p, 28 pls [Chinese, with English summary]

    Google Scholar 

  • Chen AL, Feng HZ, Zhu MY, Ma DS, Li M (2003a) A new vetulicolian from the Early Cambrian Chengjiang fauna in Yunnan of China. Acta Geol Sinica 77:281–287

    Article  Google Scholar 

  • Chen JY, Huang DY, Peng QQ, Chi HM, Wang XQ, Feng M (2003b) The first tunicate from Early Cambrian of south China. Proc Nat Acad Sci 100(14):8314–8318

    Article  Google Scholar 

  • Chen DF, Dong WQ, Zhu FQ, Chen XP (2004a) Pb-Pb ages of Neoproterozooic Doushantuo phosphorites in South China; constraints on early metazoan evolution and glaciation events. Precambrian Res 132:123–132

    Article  Google Scholar 

  • Chen JY, Bottjer DJ, Oliveri P, Dornbos SQ, Gao F, Ruffins S, Chi H-M, Li C-W, Davidson EH (2004b) Small bilaterian fossils from 40 to 55 Million Years before the Cambrian. Science 305:218–222

    Article  Google Scholar 

  • Chen JY, Oliveri P, Davidson E, Bottjer DJ (2004c) Response to comment on “Small bilaterian fossils from 40 to 55 million years before the Cambrian”. Science 306:1291b

    Article  Google Scholar 

  • Chen JY, Braun A, Waloszek D, Peng QQ, Maas A (2004d) Lower Cambrian yolk-pyramiod embryos from southern Shaanxi, China. Progr Nat Sci 14(2):167–172

    Article  Google Scholar 

  • Chen JY, Waloszek D, Maas A (2004e) A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20

    Google Scholar 

  • Chen JY, Huang DY, Bottjer DJ (2005) Vetustovermis and its possible affinities. Proc R Soc B 272:2003–2007

    Article  Google Scholar 

  • Chen JY, Bottjer DJ, Davidson EH, Dornbos SQ, Gao X, Yang YH, Li CW, Li G, Wang XQ, Xian DC, Wu HJ, Hwu YK, Tafforeau P (2006) Phosphatized polar lobe-forming embryos from the Precambrian of Southwest China. Science 312:1644–1646

    Article  Google Scholar 

  • Chen JY, Huang DY, Chuang SH (2007a) Reinterpretation of the Lower Cambrian brachiopod Heliomedusa orienta Sun and Hou 1987, as a discinid. J Paleont 81:38–47

    Article  Google Scholar 

  • Chen JY, Schopf JW, Bottjer DJ, Zhang CY, Kudryavtsev AB, Tripathi AB, Wang XQ, Yang YH, Gao X, Yang Y (2007b) Raman spectra of a Lower Cambrian ctenophore embryo from SW Shaanxi, China. Proc Nat Acad Sci USA 106:6289–6292

    Article  Google Scholar 

  • Chen JY, Waloszek D, Maas A, Braun A, Huang DY, Wang XQ, Martin Stein M (2007c) Early Cambrian Yangtze Plate Maotianshan-shale macrofauna biodiversity and the evolution of predation. Palaios 254:250–272

    Google Scholar 

  • Chen JY, Bottjer DJ, Davidson EH, Li G, Gao F, Cameron AR, Hadfield MG, Xian DC, Tafforeauf P, Jia QJ, Sugiyamag H, Tang R (2009a) Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: phylogenetic diversity and evolutionary implications. Precambrian Res 173:191–200

    Article  Google Scholar 

  • Chen JY, Bottjer DJ, Li G, Hadfield MG, Gao F, Cameron AR, Zhang CY, Xian DC, Tafforeauf P, Liao X, Yin ZJ (2009b) Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng’an, Guizhou, China. Proc Natl Acad Sci USA 106:19056–19060

    Article  Google Scholar 

  • Clark HL (1912) Fossil holothurian. Science 35:274–278

    Article  Google Scholar 

  • Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y (2005) U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308:95–98

    Article  Google Scholar 

  • Conway Morris S (1976) A new Cambrian lophophorate from the Burgess Shale of British Columbia. Palaeontology 19:199–222

    Google Scholar 

  • Conway Morris S (1977a) Fossil priapulid worms. Spec Pap Palaeont 20:95p

    Google Scholar 

  • Conway Morris S (1977b) A new entoproct-like organism from the Burgess Shale of British Columbia. Palaeontology 20:833–845

    Google Scholar 

  • Conway Morris S (1977c) A new metazoan from the Burgess Shale of British Columbia. Palaeontology 20:623–640

    Google Scholar 

  • Conway Morris S (1977d) A redescription of the Middle Cambrian worm Amiskwia sagittiformis Walcott from the Burgess Shale of British Columbia. Paläont Zeit 51:271–287

    Google Scholar 

  • Conway Morris S (1993) Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36:593–635

    Google Scholar 

  • Conway Morris S (1997) The cuticular structure of the 495-Mye-old type species of the fossil worm Palaeoscolex piscatorum (?Priapulida). Zool J Linn Soc 119:69–82

    Article  Google Scholar 

  • Conway Morris S (1998) Crucible of creation: the Burgess Shale and the rise of animals. Oxford University Press, Oxford

    Google Scholar 

  • Conway Morris S (2000) The Cambrian “explosion”: slow-fuse or megatonnage? Proc Natl Acad Sci USA 97:4426–4429

    Article  Google Scholar 

  • Conway Morris S, Collins DH (1996) Middle Cambrian ctenophores from the Stephen Formation, British Columbia. Phil Trans R Soc Lond B 351:279–308

    Article  Google Scholar 

  • Conway Morris S, Robison RA (1988) More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. Univ Kansas Paleont Contrib Pap 122:1–48

    Google Scholar 

  • Costa M, Sweeton D, Wieschaus E (1993) Gastrulation in Drosophila: cellular mechanisms of morphogenetic movements. In: Bate M, Hartenstein V (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratories, Long Island, NY, pp 425–465

    Google Scholar 

  • Cutler EB (1994) The Sipuncula—their systematics, biology, and evolution. Cornell University, Ithaca, NY

    Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Davidson B, Levine M (2003) Evolutionary origins of the vertebrate heart: Specification of the cardiac lineage in Ciona intestinalis. Proc Natl Acad Sci USA 100:11469–11473

    Article  Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic, San Diego, CA

    Google Scholar 

  • Dawson JW (1889) New species of fossil sponges from the Siluro-Cambrian at Little Metis on the lower St. Lawrence. Trans R Soc Canada 7(Sect 4):31–55

    Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  Google Scholar 

  • Dong PD, Chu J, Panganiban G (2001) Proximodistal domain specification and interactions in developing Drosophila appendages. Development 128:2365–2372

    Google Scholar 

  • Donoghue PCJ, Bengtson S, Dong XP, Gostling N, Huldtgren T, Cuningham JA, Yin C, Yue Z, Peng F, Stampanoni J (2006) Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442:680–683

    Article  Google Scholar 

  • Dornbos SQ, Chen JY (2008) Community palaeoecology of the Early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaios 258:200–212

    Google Scholar 

  • Dornbos SQ, Bottjer DJ, Chen JY (2004) Evidence for seafloor microbial mats and associated metazoan lifestyles in Lower Cambrian phosphorites of Southwest China. Lethaia 37:127–137

    Article  Google Scholar 

  • Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391

    Article  Google Scholar 

  • Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly JS, Brunet JF (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci USA 103:8727–8732

    Article  Google Scholar 

  • Dunlop JA (1999) Pasando revista a la evolución de los quelicerados. In: Melic A, De Haro JJ, Mendez M, Ribera I (eds) Evolución y filogenia de Arthropoda. Bol Soc Entomol Aragonesa 26:255–272

    Google Scholar 

  • Dunnel-Erb S, Bailly Y, Laurent P (1993) Pattern of gill innervation in two teleosts, the perch and the trout. Can J Zool 71:18–25

    Article  Google Scholar 

  • Durham JW (1974) Systematic position of Eldonia ludwigi Walcott. J Paleontol 48:750–755

    Google Scholar 

  • Dzik J (1989) Is fossil evidence consistent with traditional views of the early metazoan phylogeny? In: Simonetta AM, Conway Morris S (eds) The early evolution of metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge, pp 47–56

    Google Scholar 

  • Dzik J, Zhao YL, Zhu MY (1997) Mode of life of the Middle Cambrian eldonioid lophophorate Rotadiscus. Palaeontology 40:385–396

    Google Scholar 

  • Eastham LES (1930) The embryology of Pieris rapae—organogeny. Phil Trans R Soc Lond Biol Sci 219:2–50

    Google Scholar 

  • Ehlers E (1869) Ueber fossile Würmer aus dem lithographischen Schiefer in Bayern. Palaeontographia 17:145–175

    Google Scholar 

  • Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032

    Google Scholar 

  • Fedonkin MA, Waggoner BM (1997) The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388:8–871

    Article  Google Scholar 

  • Finkelstein R, Perrimon N (1991) The molecular genetics of head development in Drosophila melanogaster. Development 112:899–912

    Google Scholar 

  • Foester MW (1979) A reappraisal of Tullimonstrum. In: Nitecki MH (ed) Mazon creek fossils. Academia, New York, pp 269–302

    Google Scholar 

  • Fortey RA, Briggs DEG, Wills MA (1997) The Cambrian “explosion” recalibrated. BioEssays 19:429–434

    Article  Google Scholar 

  • Freeman G, Lundelius JW (1992) Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J Evol Biol 5:205–247

    Article  Google Scholar 

  • Gans C (1993) Evolutionary origin of the vertebrate skull. In: Hanken J, Hall BK (eds) The Skull, vol 2. University of Chicago, Chicago, pp 1–35

    Google Scholar 

  • Garcia-Bellido DC, Vannier J, Collins D (2009) Soft-part preservation in two species of the arthropod Isoxys from the Middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontol Pol 54:699–712

    Article  Google Scholar 

  • Gee H (1992) Something completely different. Nature 358:456–457

    Article  Google Scholar 

  • Gee H (2001) On being vetulicolian. Nature 414:407–409

    Article  Google Scholar 

  • Gibson R (1972) Nemerteans. London, Hutchinson

    Google Scholar 

  • Glaessner MF (1959) Precambrian Coelenterata from Australia, Africa and England. Nature 183:1472–1473

    Article  Google Scholar 

  • Glaessner MF (1979) Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa 3:21–31

    Article  Google Scholar 

  • Glaessner MF (1984) The Dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge, 244p

    Google Scholar 

  • Glardon S, Holland LZ, Gehring WJ, Holland ND (1998) Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125:2701–2710

    Google Scholar 

  • Gould SJ (1989) Wonderful life: the Burgess Shale and the nature of history. Norton, New York

    Google Scholar 

  • Hall BK (1998) Evolutionary developmental biology. Chapman and Hall, London, New York

    Book  Google Scholar 

  • Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildiafusca. Dev Biol 220:285–295

    Article  Google Scholar 

  • Hinz I, Kraft P, Mergl M, Muller KJ (1990) The problematic Hadimopanella, Kaimenella, Milaculum and Utahphospha identified as sclerites of Palaeoscolecida. Lethaia 23:217–221

    Article  Google Scholar 

  • Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H (2003) An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130:2365–2373

    Article  Google Scholar 

  • Ho CC (1942) Phosphate deposits of Tungshan, Chengjiang, Yunnan. Bull Geol Surv China 35:97–106

    Google Scholar 

  • Hoffman KH, Condon DJ, Bowring SA, Crowley JL (2004) U-Pb zircon date from the Neoproterozooic Ghaub Formation, Namibi: constraints on Marinoan glaciation. Geology 32:817–820

    Article  Google Scholar 

  • Holland LZ (2007) A chordate with a difference. Nature 447:1153–1155

    Article  Google Scholar 

  • Holland LZ, Holland ND (1998) Developmental gene expression in amphioxus: new insights into the evolutionary origin of vertebrate brain regions, neural crest, and rostrocaudal segmentation. Am Zool 38:647–658

    Google Scholar 

  • Holland LZ, Holland ND (2001) Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate. J Anat 199(1, 2):85–98

    Article  Google Scholar 

  • Holland ND, Chen JY (2001) Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. Bioessays 23:142–151

    Article  Google Scholar 

  • Holland PWH, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homebox gene: Sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661

    Google Scholar 

  • Holland ND, Panganiban G, Henyey EL, Holland LZ (1996) Sequence and developmental expression of AmphiDII, an amphioxus Distalless gene transcribed in the ectoderm, epidermis and nervous system. Development 122:2911–2920

    Google Scholar 

  • Holmer LE, Popov LE, Konova SP, Rong JY (1997) Early Cambrian Lingulellotreta (Lingulata, Brachiopoda) from south Kazakhstan (Malyi Karatau Range) and south China (eastern Yunnan). J Paleont 71:577–584

    Google Scholar 

  • Holmgren N (1946) On two embryos of Myxine glutinosa. Acta Zool Stockholm 27:1–90

    Article  Google Scholar 

  • Hou XG (1987) Three new large arthropods from Lower Cambrian, Chengjiang, eastern Yunnan. Acta Paleontol Sin 26:272–285

    Google Scholar 

  • Hou XG, Bergström J (1991) The arthropods of the Lower Cambrian Chengjiang fauna, with relationships and evolutionary significance. In: Simonetta AM, Conway Morris S (eds) The early evolution of metazoa and the significance of problematic taxa. Cambridge University, Cambridge, pp. 179–187

    Google Scholar 

  • Hou XG, Bergström J (1994) Palaeoscolecid worms may be nematomorphs rather than annelids. Lethaia 27:11–17

    Article  Google Scholar 

  • Hou XG, Bergström J (1995) Cambrian lobopodians—ancestors of extant onychophorans? Zool J Linn Soc 114:3–19

    Article  Google Scholar 

  • Hou XG, Bergström J (1997) Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils Strata 45:1–116

    Google Scholar 

  • Hou XG, Chen JY (1989) Early Cambrian arthropod-annelid intermediate sea animal, Luolishania gen. nov. from Chengjiang, Yunnan. Acta Palaeont Sinica 28:207–213

    Google Scholar 

  • Hou XG, Sun WG (1988) Discovery of Chengjiang fauna at Meishucun, Jinning, Yunnan. Acta Palaeontol Sin 27:1–12

    Google Scholar 

  • Hou XG, Chen JY, Lu HZ (1989) Early Cambrian new arthropods from Chengjiang, Yunnan. Acta Palaeontol Sin 28:42–57

    Google Scholar 

  • Hou XG, Ramsköld L, Bergström J (1991) Composition and preservation of the Chengjiang fauna: a Lower Cambrian soft-bodied biota. Zool Scripta 20:395–411

    Article  Google Scholar 

  • Hou XG, Bergstöm J, Wang HF, Feng XH, Chen AL (1999) The Chengjiang Fauna: exceptionally well preserved animals from 530 million years ago. Yunnan Science and Technology Press, 170p

    Google Scholar 

  • Hou XG, Aldridge RJ, Bergström J, Siveter DJ, Siveter DJ, Feng XH (2004) The Cambrian Fossils of Chengjiang, China: the flowering of early animal life. Blackwell, Malden, MA, and Oxford

    Google Scholar 

  • Howell FB (1962) Worms. In: Moore RC (ed) Treatise on invertebrate paleontology, Pt W, Miscellanea. New York, Geological Society of America, New York, and University of Kansas, Lawrence, pp 144–177

    Google Scholar 

  • Huang DY (2005) Early Cambrian worms from SW China, morphology, systematics, lifestyles and evolutionary significance. PhD thesis, University of Lyon, 247p

    Google Scholar 

  • Huang DY (2006) The early body plan, origin and evolutionary radiation of Priapulida. In: Rong JY, Fang ZJ, Zhou ZH, Zhan RB, Wang XD, Yuan XL (eds) Originations, radiations and biodiversity changes—evidence from the Chinese fossil record. Science Press, Beijing, pp 125–137, 845–846

    Google Scholar 

  • Huang DY, Chen JY, Vannier J, Saiz Salinas JI (2004a) Early Cambrian sipunculan worms from southwest China. Proc R Soc Lond B 271:1671–1676

    Article  Google Scholar 

  • Huang DY, Vannier J, Chen JY (2004b) Anatomy and lifestyles of Early Cambrian priapulid worms exemplified by Corynetis and Anningvermis from the Maotianshan Shale (SW China). Lethaia 37:21–33

    Article  Google Scholar 

  • Huang DY, Vannier J, Chen JY (2004c) Recent Priapulidae and their Early Cambrian ancestors: comparisons and evolutionary significance. Geobios 37:217–228

    Article  Google Scholar 

  • Hughes GM (1984) General anatomy of the gills. In: Hoar WS, Randall DJ (eds) Fish physiology X, Gills, Pt A, anatomy, gas transfer, and acid-base regulation. Academic, New York, 72p

    Google Scholar 

  • Hyman LH (1951) The invertebrates, vol 2. McGraw-Hill, New York

    Google Scholar 

  • Ivantsov AY, Wrona R (2004) Articulated palaeoscolecid sclerite arrays from the Lower Cambrian of eastern Siberia. Acta Geol Pol 54:1–22

    Google Scholar 

  • Janussen D, Steiner M, Zhu MY (2002) New well-preserved scleritomes of Chancelloridae from the Early Cambrian Yuanshan Formation (Chengjiang, China) and the Middle Cambrian Wheeler Shale (Utah, USA) and paleobiological implications. J Paleont 76:596–606

    Article  Google Scholar 

  • Janvier P (1978) Les nageoires paires des ostéostracés et la position systématique des céphalaspidomorphes. Ann Paléont (Vertébrés) 64(2):113–142

    Google Scholar 

  • Janvier P (2004) Early specializations in the branchial apparatus of jawless vertebrates: a consideration of gill number and size. In: Arratia G, Wilson MVH, Cloutier R (eds) Recent advances in the origin and early radiation of vertebrates. Verlag Dr. Friedrich Pfeil, München, pp 25–52

    Google Scholar 

  • Jefferies RPS (1986) The ancestry of the vertebrates. British Museum, London (Nat Hist)

    Google Scholar 

  • Jeffery WR, Strickler AG, Yamamota Y (2007) Migratory neural crest-like cells from body pigmentation in a urochordate embryo. Nature 431:696–699

    Article  Google Scholar 

  • Jin YG, Wang HY (1992) Revision of the Lower Cambrian Brachiopod Heliomedusa Sun and Hou 1987. Lethiaia 25:35–49

    Article  Google Scholar 

  • Jin YG, Hou XG, Wang HY (1993) Lower Cambrian pediculate lingulids from Yunnan, China. J Paleont 67:788–798

    Google Scholar 

  • Johnels A (1948) On the development and morphology of the skeleton of the head of Petromyzon. Acta Zool Stockholm 29:139–278

    Article  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20

    Article  Google Scholar 

  • Kimmel CB, Miller CT, Kruze G., Ullmann B, Bremiller EA, Larison KD, Snyder HC (1998) The shaping of pharyngeal cartilages during early development of the zebrafish. Dev Biol 203:245–263

    Article  Google Scholar 

  • Knight RD, Panopoulou GD, Holland PWH, Shimeld M (2000) Amphioxus Krox gene: insights into vertebrate hindbrain evolution. Dev Genes Evol 210(1):517–521

    Article  Google Scholar 

  • Krešlová J, Holland LZ, Schubert M, Burgtorf C, Beneš V, Kozmik Z (2002) Functional equivalency of amphioxus and vertebrate Pax258 transcription factors suggests that the activation of mid-hindbrain specific genes in vertebrates occurs via the recruitment of Pax regulatory elements. Gene 282:143–150

    Article  Google Scholar 

  • Lacalli TC (1996) Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions. Phil Trans R Soc Lond B 351:243–263

    Article  Google Scholar 

  • Lacalli TC (2002) Vetulicolians—are they deuterostomes? Chordates? Bioessays 24:208–211

    Article  Google Scholar 

  • Lacalli TC (2004) Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain Behav Evol 64:148–162

    Article  Google Scholar 

  • Lacalli TC (2005) Protochordate body plan and the evolutionary role of larvae. Can J Zool 83:216–224

    Article  Google Scholar 

  • Lacalli TC, Holland LZ (1998) The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain. Phil Trans R Soc Lond B 53:1943–1969

    Article  Google Scholar 

  • Lacalli TC, Holland ND, West JE (1994) Landmarks in the anterior central nervous system of amphioxus larvae. Phil Trans R Soc B 344:165–185

    Article  Google Scholar 

  • Laurent P (1984) Gill internal morphology. In: Hoar WS, Randall DJ (eds) Fish physiology X. Gills, Pt A, anatomy, gas transfer, and acid-base regulation. Academic, New York, pp 73–183

    Chapter  Google Scholar 

  • Lemburg C (1999) Hypothesen zur Phylogenie der priapulida underen Bedeutung fur der Nemathelminthes. Cuvillier Verlag, Göttingen, 393p

    Google Scholar 

  • Leys SP, Ereskovsky AV (2006) Embryogenesis and larval differentiation in sponges. Can J Zool 84:262–287

    Article  Google Scholar 

  • Li CW, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882

    Article  Google Scholar 

  • Liu JN, Shu DG, Han J, Zhang ZF (2004) A rare lobopod with well-preserved eyes from Chengjiang Lagerstätte and its implications for origin of arthropods. Chinese Sci Bull 49:1063–1071

    Google Scholar 

  • Liu JN, Shu DG, Han J, Zhang ZF (2008) Comparative study of Cambrian lobopods Miraluolishania and Luolishania. Chinese Sci Bull 53:87–93

    Article  Google Scholar 

  • Love D, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongia during the Cryogenian period. Nature 457:718–721

    Article  Google Scholar 

  • Lowe CJ, Terasaki M, Wu M, Freeman RM, Runft L, Kwan K, Haup S, Aronowicz J, Lauder E, Gruber C, Smith M, Kirschner M, Gerhart J (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4:1603–1619

    Article  Google Scholar 

  • Luo HL, Hu SX, Cheng LZ, Zhang SS, Tao YH (1999) Early Cambrian Chengjiang Fauna from Kunming Region, China. Yunnan Science and Technology Press, Kunming, 129p, 32pls

    Google Scholar 

  • Maas A, Waloszek D (2001) Cambrian derivatives of the early arthropod stem lineage, pentostomids, tardigrades and lobopodians—an “Orsten” perspective. Zool Anzeiger 240:451–459

    Article  Google Scholar 

  • Maas A, Huang DY, Chen JY, Waloszek D, Braun A (2007a) Maotianshan Shale nemathelminths—morphology, biology, and the phylogeny of Nemathelminthes. Palaios 22:288–306

    Google Scholar 

  • Maas A, Huang DY, Chen JY, Waloszek D, Braun A (2007b) Maotianshan Shale nemathelminths-new information about their morphology and biology, and phylogeny of Nemathelminthes. Palaeogeogr, Palaeoclimatol, Palaeoecol 254:285–303

    Article  Google Scholar 

  • Maas A, Waloszek D, Chen JY, Braun A, Wang XQ, Huang DY (2004) Phylogeny and life habits of early arthropods—predation in the early Cambrian sea. Progr Natl Sci 14:158–166

    Article  Google Scholar 

  • Malakhov VV, Adrianov AV (1995) Cephalorhyncha—a new phylum of the animal kingdom. KMK Scientific Press, Moskva, 199p

    Google Scholar 

  • Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invert Biol 123:1–22

    Article  Google Scholar 

  • Mallatt J (1996) Ventilation and the origin of jawed vertebrates: a new mouth. Zool J Linn Soc 117:329–404

    Article  Google Scholar 

  • Mallatt J, Chen JY (2003) Fossil sister group of craniates: predicted and found. J Morph 258:1–31

    Article  Google Scholar 

  • Maloof AC, Rose CV, Beach R, Samuels BM, Calmet CC, Erwin DH, Poirier GR, Yao N, Simons FJ (2010) Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat Geosci 3:653–659

    Article  Google Scholar 

  • McCormack CC (1932) Fossil Holothuroidea. J Paleont 6:111–148

    Google Scholar 

  • Mehl D (1996) Organization and microstructure of the chancelloriid skeleton: implications for the biomineralization of the Chancelloridae. Bull Inst Océan Monaco no sp 14:377–385

    Google Scholar 

  • Mergener H (1971) Cnidaria. In: Reverberi G (ed) Experimental embryology of marine and fresh-water invertebrates. North-Holland, Amsterdam, pp 1–84

    Google Scholar 

  • Meulemans D, Bronner-Fraser M (2007) Insights from amphioxus into the evolution of vertebrate cartilage. Plos One 8:e787 (electronic)

    Article  Google Scholar 

  • Minelli A (2001) A three-phase model of arthropod segmentation. Dev Genes Evol 211:509–521

    Article  Google Scholar 

  • Missarzhevsky VV, Mambetov AM (1981) Stratigraphy and fauna of the Precambrian–Cambrian boundary beds of Malyj Karatau. Trudy Geol Inst AN SSSR 326:1–90

    Google Scholar 

  • Moret F, Guilland JC, Coudouel S, Rochette L, Vernier P (2004) Distribution of tyrosine hydroxylase, dopamine and serotonin in the central nervous system of amphioxus: implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol 468:135–150

    Article  Google Scholar 

  • Muir L, Botting P (2002) A Lower Carboniferous sipunculan from the Granton Shrimp Bed, Edinburgh. 46th Palaeontol Assoc Ann Mtng: 62 (poster). Department of Earth Sciences, University of Cambridge

    Google Scholar 

  • Nedin C (1999) Anomalocaris predation on nonmineralized and mineralized trilobites. Geology 27:987–990

    Article  Google Scholar 

  • Nielsen C (2001) Animal evolution. Oxford University Press, Oxford

    Google Scholar 

  • Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:2–28

    Article  Google Scholar 

  • Pardos F, Benito J (1988) Blood vessels and related structure in the gill bars of Glossobalanus minutus (Enteropneusta). Acta Zool (Stockh) 69:87–94

    Article  Google Scholar 

  • Parker AR (1998) Color in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proc R Soc Lond B 265:967–972

    Article  Google Scholar 

  • Paul CRC, Smith AB (1984) The early radiation and phylogeny of echinoderms. Biol Rev 59:443–481

    Article  Google Scholar 

  • Peng J, Zhao YL, Lin JP (2006) Dinomischus from the Middle Cambrian Kaili Biota, Guizhou, China. Acta Geol Sinica 80:498–501

    Google Scholar 

  • Peterson KJ, Butterfield NJ (2005) Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA 102:9547–9552

    Article  Google Scholar 

  • Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Phil Trans R Soc B 363:1435–1443

    Article  Google Scholar 

  • Popadic A, Panganiban G, Rusch D, Shear WA, Kaufman TC (1998) Molecular evidence for the appendicular origin of the labrum and other structures. Dev Genes Evol 208:142–150

    Article  Google Scholar 

  • Purnell MA (2001) Scenarios, selection, and the ecology of early vertebrates. In: Ahlberg PE (ed) Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor and Francis, London, pp 187–208

    Google Scholar 

  • Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago, Chicago

    Google Scholar 

  • Ramsköld L (1992) Homologies in Cambrian Onychophora. Lethaia 25:443–460

    Article  Google Scholar 

  • Ramsköld L, Chen JY (1998) Cambrian lobopodians: morphology and phylogeny. In: Edgecombe G (ed) Arthropod fossils and phylogeny. Columbia, pp 107–150

    Google Scholar 

  • Ramsköld L, Chen JY, Edgecombe GD, Zhou GQ (1997) Cindarella and the arachnate clade Xandarellida (Arthropoda, Early Cambrian) from China. Trans R Soc Edinburgh, Earth Sci 88:19–38

    Article  Google Scholar 

  • Randell RD, Lieberman BS, Hasiotis ST, Pope M (2005) New chancelloriids from the Early Cambrian Sekwi Formation with a comment on chancelloriid affinities. J Paleont 79:987–996

    Article  Google Scholar 

  • Rempel JG (1975) The evolution of the insect head: the endless dispute. Quaest Entomol 11:7–25

    Google Scholar 

  • Rigby JK (1986) Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana 2:1–105

    Google Scholar 

  • Romer AS (1962) The vertebrate body, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Romer AS (1972) The vertebrate as dual animal—somatic and visceral. Evol Biol 6:121–156

    Article  Google Scholar 

  • Rong JY (1974) Cambrian brachiopods. In: Nanjing Inst Geol Palaeontol Acad Sinica (ed) Handbook of stratigraphy and palaeontology in Southwest China. Science Press, Beijing, pp 113–114

    Google Scholar 

  • Rouse GW, Pleijel F (2001) Polychaetes. Oxford University Press, Oxford, 354pp

    Google Scholar 

  • Runnegar B (1982) A molecular-clock date for the origin of the animal phyla. Lethaia 15:199–205

    Article  Google Scholar 

  • Runnegar B, Pojeta J, Morris NJ, Taylor JD, Taylor ME, McClung G (1975) Biology of the Hyolitha. Lethaia 8:181–191

    Article  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology, 7th edn. Brooks/Cole-Thomson Learning, Belmont, CA

    Google Scholar 

  • Saiz Salinas JI (1993) Sipuncula. In: Ramos MA (ed) Fauna Iberica, vol 4. Museo Nacional de Sciencias Naturales, Madrid, pp 1–200

    Google Scholar 

  • Schmidt-Ott U, Technau G (1992) Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116:111–125

    Google Scholar 

  • Schmidt-Rhaesa A (1996) Zur Morphologie, Biologie und Phylogengie der Nematomorpha, pp 1–276

    Google Scholar 

  • Schmidt-Rhaesa A (1997) Nematomorpha. Gustav Fischer, Stuttgart, 128p

    Google Scholar 

  • Schmitz A, Gemmel M, Perry S (2000) Morphometric partitioning of respiratory surfaces in amphioxus (Branchiostoma lanceolatum pallas). J Exp Biol 203:3381–3390

    Google Scholar 

  • Scholtz G (2001) Evolution of developmental patterns in arthropods—the analysis of gene expression and its bearing on morphology and phylogenetics. Zoology 103:99–111

    Google Scholar 

  • Schubert M, Escriva H, Xavier-Netro J, Laudet V (2006) Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol 21:269–277

    Article  Google Scholar 

  • Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239

    Article  Google Scholar 

  • Seilacher A, Grazhdankin D, Legouta A (2003) Ediacaran biota: the dawn of animal life in the shadow of great protists. Paleont Res 7:43–54

    Article  Google Scholar 

  • Shimeld SM, Holland PWH (2000) Vertebrate innovations. Proc Natl Acad Sci USA 97:4449–4452

    Article  Google Scholar 

  • Shimeld SM, Holland ND (2005) Amphioxus molecular biology: insight into vertebrate evolution and developmental mechanisms. Can J Zool 83:100

    Article  Google Scholar 

  • Shimeld SM, Purkiss AG, Dirks RPH, Rateman OA, Slingsby C, Lunsen NH (2005) Uborchordate bg-crystalin and the evolutionary origin of the vertebrate eye lens. Curr Biol 15:1684–1689

    Article  Google Scholar 

  • Shu DG, Zhang XL, Chen L (1996) Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380:428–430

    Article  Google Scholar 

  • Shu DG, Conway Morris S, Zhang XL, Chen L, Li Y, Han J (1999a) A pipscid-like fossil from the Lower Cambrian of southern China. Nature 400:746–749

    Article  Google Scholar 

  • Shu DG, Luo HL, Conway Morris S, Zhang XL, Hu SX, Chen L, Han J, Zhu M, Li Y, Chen LZ (1999b) Lower Cambrian vertebrates from south China. Nature 402:42–46

    Article  Google Scholar 

  • Shu DG, Chen L, Han J, Zhang XL (2001a) An early Cambrian tunicate from China. Nature 411:472–473

    Article  Google Scholar 

  • Shu DG, Conway Morris S, Han J, Chen L, Zhang XL, Zhang ZF (2001b) Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature 414:419–424

    Article  Google Scholar 

  • Shu DG, Conway Morris S, Han J, Zhang ZF, Yasui K, Janvier P, Chen L, Zhang XL, Liu JN, Li Y, Liu HQ (2003a) Head and backbone of the Early Cambrian vertebrate Haikouichthus. Nature 421:526–529

    Article  Google Scholar 

  • Shu DG, Conway Morris S, Zhang ZF, Liu JN, Han J, Chen L, Zhang XL, Yasui K, Li Y (2003b) A new species of Yunnanozoon with implications for deuterostome evolution. Science 299:1380–1384

    Article  Google Scholar 

  • Shu DG, Conway Morris S, Han J, Li Y, Zhang XL, Hua H, Zhang ZF, Liu JN, Guo J-F, Yao Y et al (2006) Lower Cambrian vendobionts from China and early diploblast evolution. Science 312:731–734

    Article  Google Scholar 

  • Simões-Costa MS, Vasconcelos M, Sampaio AC, Cravo R., Linhares VL, Hochgreb T, Yan CYI, Davidson B, Xavier-Neto J (2005) The evolutionary origin of cardiac chambers. Dev Biol 277:1–15

    Article  Google Scholar 

  • Siveter DJ, Williams M, Waloszek D (2001) A phosphatocopid crustacean with appendages from the Lower Cambrian. Science 293:479–481

    Article  Google Scholar 

  • Smith MR, Caron JB (2010) Primitive soft-bodied cephalopods from the Cambrian. Nature 465:469–472

    Article  Google Scholar 

  • Smith MP, Sanson IJ, Cochrane KD (2001) The Cambrian origin of vertebrates. In: Ahlberg PE (ed) Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor and Francis, London, pp 76–84

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Steiner M, Zhu MY, Li GX, Qian Y, Erdtmann BD (2004) New early Cambrian bilaterian embryos and larvae from China. Geology 32:833–836

    Article  Google Scholar 

  • Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowiss Abh 9:293–329

    Google Scholar 

  • Sterrer W (1986) Marine Fauna and Flora of Bermuda: a systematic guide to the identification of marine organisms. Wiley, New York

    Google Scholar 

  • Sun WG, Hou XG (1987) Early Cambrian medusae from Chengjiang, Yunnan, China. Acta Palaeontol Sin 26:257–271

    Google Scholar 

  • Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ (2001) Invertebrate evolution (Communications arising): Acaenoplax—polychaete or mollusc? Nature 410:461–463

    Article  Google Scholar 

  • Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ, Orr PJ (2002) The arthropod Offaculus kingi (Chelicerata) from the Silurian of Herefordshire, England: computer based morphological reconstructions and phylogenetic affinities. Proc R Soc Lond B 269:1195–1203

    Article  Google Scholar 

  • Takahashi T, Holland PWH (2004) Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development. Development 131:3285–3294

    Article  Google Scholar 

  • Van der Land J (1968) A new aschelminth, probably related to the Priapulida. Zool Meded 42(22):237–250

    Google Scholar 

  • Vannier J, Chen JY (2005) Early Cambrian food chain; new evidence from fossil aggregates in the Maotianshan Shale biota, SW China. Palaios 20:3–26

    Article  Google Scholar 

  • Vincent A, Blankenship JT, Wieschaus E (1997) Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila. Development 124:3747–3754

    Google Scholar 

  • Walcott CD (1911a) Cambrian Geology and Paleontology. Middle Cambrian holothurians and medusae. Smithsonian Misc Coll 57(3):41–68

    Google Scholar 

  • Walcott CD (1911b) Cambrian geology and paleontology: middle Cambrian annelids. Smithsonian Misc Coll 57(5):109–142

    Google Scholar 

  • Walcott CD (1920) Cambrian geology and paleontology IV (6). Middle Cambrian Spongiae. Smithsonian Misc Coll 67(6):261–364

    Google Scholar 

  • Waloszek D (1993) The upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils Strata 32:1–202

    Google Scholar 

  • Waloszek D (1999) On the Cambrian diversity of Crustacea. In: Schram FR, Von Vaupel Klein JC (eds) Crustaceans and the biodiversity crisis. Proceedings of the Fourth International Crustacean Congress (Amsterdam, The Netherlands, July 20–24, 1998), vol 1. Brill, Leiden, pp 3–27

    Google Scholar 

  • Waloszek D, Müller KJ (1990) Upper Cambrian stem-lineage crustaceans and their bearing upon the monophyletic origin of Crustacea and the position of Agnostus. Lethaia 23:409–427

    Article  Google Scholar 

  • Waloszek D, Chen JY, Maas A, Wang XQ (2005) Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Syst Dev 34:189–205

    Article  Google Scholar 

  • Waloszek D, Maas A, Chen JY, Stein M (2007) Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaios 254:273–287

    Google Scholar 

  • Wang XQ, Chen JY (2004) Possible developmental mechanisms underlying the origin of the crown lineages of arthropods. Chinese Sci Bull 49(1):49–53

    Article  Google Scholar 

  • Weller S (1925) A new type of Silurian worm. J Geol 33:540–544

    Article  Google Scholar 

  • Westneat MW, Hale ME, McHenry MJ, Long JH (1998) Mechanics of the fast-start: muscle function and the role of intramuscular pressure in the escape behavior of Amia calva and Polypterus palmas. J Exper Bio 201:3041–3055

    Google Scholar 

  • Whittard WF (1953) Palaeoscolex piscatorum gen. et sp. nov., a worm from the Tremadocian of Shropshire. Quart J Geol Soc Lond 109:125–133

    Article  Google Scholar 

  • Whittington HB (1985) The Burgess Shale. Yale University, New Haven

    Google Scholar 

  • Wicht H, Lacalli TC (2005) The nervous system of amphioxus: structure, development, and evolutionary significance. Can J Zool 83:122–150

    Article  Google Scholar 

  • Williams NA, Holland PWH (1998) Molecular evolution of the brain. Brain Behav Evol 52:177–185

    Article  Google Scholar 

  • Xiao SH, Knoll AH (2000) Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China. J Paleont 74:767–788

    Article  Google Scholar 

  • Xiao SH, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558

    Article  Google Scholar 

  • Xiao SH, Yuan XL, Knoll AH (2000a) Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci USA 97:13684–13689

    Article  Google Scholar 

  • Xiao SH, Yuan XL, Knoll AH (2000b) Eumetazoan fossils in terminal Proterozic phosphorites, South China. Lethaia 32:219–240

    Article  Google Scholar 

  • Xiao SH, Hagadorn JW, Zhou C, Yuan X (2007a) Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? Geology 35:115–118

    Article  Google Scholar 

  • Xiao SH, Zhou CM, Yuan XL (2007b) Undressing and redressing Ediacaran embryos. Nature 446:198–201

    Article  Google Scholar 

  • Xue TS, Tang TF, Yu CL (1992) Discovery of oldest skeleton fossils from Upper Sinian Doushantuo Formation in Weng’an Guizhou, and its significance. Acta Palaeontol Sin 31:530–539

    Google Scholar 

  • Yonge CM (1960) General characters of mollusca. In: Moore RC (ed) Treatise on invertebrate paleontology: part I, Mollusca, vol. 1. Geological Society of America and Kansas University, Lawrence, KS, pp 13–136

    Google Scholar 

  • Young JZ (1981) The life of vertebrates, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Zacharias D, Williams JLD, Meier T, Reichert H (1993) Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in the grasshopper embryo. Development 118:941–955

    Google Scholar 

  • Zhang Y (1989) Multicellular thallophytes with differentiated tissues from Late Proterozoic phosphate rocks of South China. Lethaia 22:113–132

    Article  Google Scholar 

  • Zhang WT, Hou XG (1985) Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia. Acta Palaeontol Sin 24:591–595

    Google Scholar 

  • Zhang Y, Yuan XL (1992) New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China. Lethaia 25:1–18

    Article  Google Scholar 

  • Zhang XG, Aldridge RJ (2007) Development and diversification of trunk plates of the Lower Cambrian lobopodians. Palaeontology 50:401–415

    Article  Google Scholar 

  • Zhang XG, Hou XG, Emig CC (2003) Evidence of lophophore diversity in Early Cambrian Brachiopoda. Proc R Soc Lond B (Suppl) 270:65–68

    Article  Google Scholar 

  • Zhang XG, Siveter D, Waloszek D, Maas A (2007) An epipodite-bearing unusual crown-group crustacean from Lower Cambrian. Nature 448:595–598

    Article  Google Scholar 

  • Zhang ZF, Han J, Zhang XL, Liu JN, Guo JF, Shu DG (2006) Note on the gut preserved in the Lower Cambrian Lingulellotreta (Lingulata, Brachiopoda) from southern China. Acta Zool 88:65–70

    Article  Google Scholar 

  • Zhang ZF, Han J, Zhang XL, Liu JN, Shu DG (2004) Soft tissue preservation in the Lower Cambrian linguloid brachiopod from South China. Acta Palaeontol Pol 49:259–266

    Google Scholar 

  • Zhao YL, Zhu MY (1994) Medusiform fossils of Kaili fanna from Taijiang, Guizhou. Acta Palaeontol Sin 33:272–280

    Google Scholar 

  • Zhu MY, Zhao YL, Chen JY (2002) Revision of the Cambrian discoidal animals Stellostomites eumorphus and Pararotadiscus guizhouensis from South China. Geobios 35:165–185

    Article  Google Scholar 

  • Zhu MY, Zhang JM, Yang AH (2007) Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol 254:7–61

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (grants 2007CB815800 and 2006CB806400) and the National Science Foundation of China (grant 41023008). I thank John Talent, editor of this volume, for helpful comments and polishing the English of the manuscript; he and several assessors, including SQ Dornbos, Ruth Mawson, Peter Cockle, Janine Miller, and Karen Novotny, also contributed importantly to editing of the manuscript. Technical assistance was given by HZ Wu and XZ Li. This paper presents a wide coverage of research advanced by stimulating collaboration and discussion with many colleagues and former students, especially E Davidson, D Bottjer, MG Hadfield, L Gang, F Gang, and P Tafforeau on the Weng’an biota; J Mallat, D Waloszek, A Maas, MY Zhu, DY Huang, SQ Dornbos, J Vannier, N Holland, and SH Chuang on the Maotianshan Shale biota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Yuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, JY. (2012). Evolutionary Scenario of the Early History of the Animal Kingdom: Evidence from Precambrian (Ediacaran) Weng’an and Early Cambrian Maotianshan Biotas, China. In: Talent, J.A. (eds) Earth and Life. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3428-1_10

Download citation

Publish with us

Policies and ethics