Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution

Abstract

Fumarate reductase couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalysed by the related complex II of the respiratory chain (succinate dehydrogenase). Here we describe the crystal structure at 2.2 Å resolution of the three protein subunits containing fumarate reductase from the anaerobic bacterium Wolinella succinogenes. Subunit A contains the site of fumarate reduction and a covalently bound flavin adenine dinucleotide prosthetic group. Subunit B contains three iron–sulphur centres. The menaquinol-oxidizing subunit C consists of five membrane-spanning, primarily helical segments and binds two haem b molecules. On the basis of the structure, we propose a pathway of electron transfer from the dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction. The relative orientations of the soluble and membrane-embedded subunits of succinate:quinone oxidoreductases appear to be unique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative parts of the experimental electron-density maps for crystal form A calculated with the MIRAS phases after density modification and phase extension to 2.2 Å resolution. C, N, O, P and S atoms are shown in grey, blue, red, light green and green, respectively; haem iron centres are shown in orange.
Figure 2: The three-dimensional structure of fumarate reductase.
Figure 3: Structure of the subunits of W. succinogenes fumarate reductase.
Figure 4: The dicarboxylate binding site in subunit A.
Figure 5: Possible mechanism of fumarate reduction in W. succinogenes fumarate reductase involving the residues shown in Fig. 4.
Figure 6: Arrangement of the prosthetic groups in the fumarate reductase dimer and possible electron-transfer pathways, including the position of bound fumarate (Fum).

Similar content being viewed by others

References

  1. Saraste,M. Oxidative phosphorylation at the fin de siècle. Science 283, 1488–1493 (1999).

    Article  CAS  ADS  Google Scholar 

  2. Kröger,A. Fumarate as terminal acceptor of phosphorylative electron transport. Biochim. Biophys. Acta 505, 129–145 (1978).

    Article  Google Scholar 

  3. Kröger,A. et al. Bacterial fumarate respiration. Arch. Microbiol. 158, 311–314 (1992).

    Article  Google Scholar 

  4. Hägerhäll,C. Succinate:quinone oxidoreductases. Variations on a conserved theme. Biochim. Biophys. Acta 1320, 107–141 (1997).

    Article  Google Scholar 

  5. Iverson,T. M., Luna-Chavez,C., Cecchini,G. & Rees,D. C. Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284, 1961–1966 (1999).

    Article  CAS  Google Scholar 

  6. Lauterbach,F. et al. The fumarate reductase operon of Wolinella succinogenes. Sequence and expression of the frdA and frdB genes. Arch. Microbiol. 154, 386–393 (1990).

    Article  CAS  Google Scholar 

  7. Iwata,S., Ostermeier,C., Ludwig,B. & Michel,H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995).

    Article  CAS  ADS  Google Scholar 

  8. Kuriyan,J. et al. Convergent evolution of similar function in two structurally divergent enzymes. Nature 352, 172–174 (1991).

    Article  CAS  ADS  Google Scholar 

  9. Holm,L. & Sander,C. Mapping the protein universe. Science 273, 595–602 (1996).

    Article  CAS  ADS  Google Scholar 

  10. Mattevi,A. et al. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Structure 7, 745–756 (1999).

    Article  CAS  Google Scholar 

  11. Singer,T. P. & McIntire,W. S. Covalent attachment of flavin to flavoproteins: Occurrence, assay, and synthesis. Methods Enzymol. 106, 369–378 (1984).

    Article  CAS  Google Scholar 

  12. Cole,S. T., Condon,C., Lemire,B. D. & Weiner,J. H. Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim. Biophys. Acta 811, 381–403 (1985).

    Article  CAS  Google Scholar 

  13. Kenny,W. C. & Kröger,A. The covalently bound flavin of Vibrio succinogenes succinate dehydrogenase. FEBS Lett. 73, 239–243 (1977).

    Article  Google Scholar 

  14. van Hellemond,J. J. & Tielens,A. G. M. Expression and functional properties of fumarate reductase. Biochem. J. 304, 321–331 (1994).

    Article  CAS  Google Scholar 

  15. Schröder,I. et al. Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis. J. Biol. Chem. 266, 13572–13579 (1991).

    PubMed  Google Scholar 

  16. Unden,G. & Kröger,A. An essential sulfhydryl group at the substrate binding site of the fumarate reductase of Vibrio succinogenes. FEBS Lett. 117, 323–326 (1980).

    Article  CAS  Google Scholar 

  17. Tomb,J.-F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  ADS  Google Scholar 

  18. Flachmann,R. et al. Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolate synthesis genes nadA and nadB. Eur. J. Biochem. 175, 221–228 (1988).

    Article  CAS  Google Scholar 

  19. Vik,S. B. & Hatefi,Y. Possible occurrence and role of an essential histidyl residue in succinate dehydrogenase. Proc. Natl Acad. Sci. USA 78, 6749–6753 (1981).

    Article  CAS  ADS  Google Scholar 

  20. Tsukihara,T. et al. Structure of the [2Fe-2S] ferredoxin I from Aphantothece sacrum at 2.2 Ångstroms resolution. J. Mol. Biol. 216, 399–410 (1990).

    Article  CAS  Google Scholar 

  21. Körtner et al. Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol. Microbiol. 4, 855–860 (1990).

    Article  Google Scholar 

  22. Hägerhäll,C. & Hederstedt,L. A structural model for the membrane-integral domain of succinate:quinone oxidoreductases. FEBS Lett. 389, 25–31 (1996).

    Article  Google Scholar 

  23. Simon,J. et al. Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. Eur. J. Biochem. 251, 418–426 (1998).

    Article  CAS  Google Scholar 

  24. Xia,D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66 (1997).

    Article  CAS  Google Scholar 

  25. Unden,G., Albracht,S. P. J. & Kröger,A. Redox potentials and kinetic properties of fumarate reductase complex from Vibrio succinogenes. Biochim. Biophys. Acta 767, 460–469 (1984).

    Article  CAS  Google Scholar 

  26. Salerno,J. C. Electron transfer in succinate:ubiquinone reductase and quinol:fumarate reductase. Biochem. Soc. Trans. 19, 599–605 (1991).

    Article  CAS  Google Scholar 

  27. Lancaster,C. R. D. Quinone-binding sites in membrane proteins: what can we learn from the Rhodopseudomonas viridis reaction centre? Biochem. Soc. Trans. 27, 591–596 (1999).

    Article  CAS  Google Scholar 

  28. Hederstedt,L. Bioenergetics—Respiration without O2. Science 284, 1941–1942 (1999).

    Article  CAS  Google Scholar 

  29. Bronder,M., Mell,H., Stupperich,E. & Kröger,A. Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch. Microbiol. 131, 213–223 (1982).

    Article  Google Scholar 

  30. Unden,G., Hackenberg,H. & Kröger,A. Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. Biochim. Biophys. Acta 591, 275–288 (1980).

    Article  CAS  Google Scholar 

  31. Tsiotis,G. in A Practical Guide to Membrane Protein Purification (eds von Jagow, G. & Schägger, H.) 149–159 (Academic, San Diego, 1994).

    Book  Google Scholar 

  32. McPherson,A. Crystallization of Biological Macromolecules 304–305 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1999).

    Google Scholar 

  33. Otwinowski,Z. & Minor,W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Collaborative Computation Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  35. De La Fortelle,E. & Bricogne,G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  36. Otwinowski,Z. in Proc. CCP4 Study Weekend, 25-26 Jan 1991, Isomorphous Replacement and Anomalous Scattering (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 80–86 (SERC Daresbury Laboratory, Warrington, UK, 1991).

    Google Scholar 

  37. Cowtan,K. dm: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 30, 34–38 (1994).

    Google Scholar 

  38. Jones,T. A., Zou,J. Y., Cowan,S. W. & Kjeldgaard,M. Improved methods for building protein models in electron density maps and the location of errors within these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  39. Brünger,A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  40. Brünger,A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  ADS  Google Scholar 

  41. Kleywegt,G. J. & Brünger,A. T. Checking your imagination: Applications of the free R value. Structure 4, 897–904 (1996).

    Article  CAS  Google Scholar 

  42. Luzzati,P. V. Traitement statistique des erreurs dans la détermination des structures cristallines. Acta Crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  43. Read,R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  44. Engh,R. H. & Huber,R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  45. Lancaster,C. R. D. & Michel, H. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Structure 5, 1339–1359 (1997).

    Article  CAS  Google Scholar 

  46. Kraulis,P. J. MolScript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Esnouf,R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graphics Mod. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  48. Esnouf,R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  49. Kabsch,W. & Sander,C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  50. Merritt,E. A. & Bacon,D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mattevi and co-workers for providing the coordinates of the E. coli L-aspartate oxidase before release for the Protein Data Bank; S. Gemeinhardt, O. Schürmann (both Institut für Mikrobiologie), C. Weiss, B. Marx, C. Münke, C. Wardenberg and D. Vinzenz (all at MPI Biophysik) for technical assistance; A. Thompson (EMBL Grenoble), G. Leonard and E. Mitchell (both ESRF) for support during data acquisition and preliminary data processing at ESRF Grenoble beamline BM14; and L.-O. Essen for providing purified tetrakis-(acetoxymercuri)-methane (TAMM). This work was supported by the Deutsche Forschungsgemeinschaft (SFB 472, grants to A.K. and H.M.) and the Max-Planck-Gesellschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Roy D. Lancaster or Hartmut Michel.

Supplementary information

Supplementary Information

Supplementary Information (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lancaster, C., Kröger, A., Auer, M. et al. Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution. Nature 402, 377–385 (1999). https://doi.org/10.1038/46483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46483

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing