Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Protein & Cell
  3. Article

Epigenetic control on cell fate choice in neural stem cells

  • Review
  • Published: 02 May 2012
  • Volume 3, pages 278–290, (2012)
  • Cite this article
Download PDF
Protein & Cell
Epigenetic control on cell fate choice in neural stem cells
Download PDF
  • Xiao-Ling Hu1,
  • Yuping Wang2 &
  • Qin Shen1 
  • 1313 Accesses

  • 5 Altmetric

  • Explore all metrics

Abstract

Derived from neural stem cells (NSCs) and progenitor cells originated from the neuroectoderm, the nervous system presents an unprecedented degree of cellular diversity, interwoven to ensure correct connections for propagating information and responding to environmental cues. NSCs and progenitor cells must integrate cell-intrinsic programs and environmental cues to achieve production of appropriate types of neurons and glia at appropriate times and places during development. These developmental dynamics are reflected in changes in gene expression, which is regulated by transcription factors and at the epigenetic level. From early commitment of neural lineage to functional plasticity in terminal differentiated neurons, epigenetic regulation is involved in every step of neural development. Here we focus on the recent advance in our understanding of epigenetic regulation on orderly generation of diverse neural cell types in the mammalian nervous system, an important aspect of neural development and regenerative medicine.

Article PDF

Download to read the full article text

Similar content being viewed by others

Epigenetic Mechanisms Regulating the Transition from Embryonic Stem Cells Towards a Differentiated Neural Progeny

Chapter © 2016

Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation

Article Open access 10 February 2024

Epigenetic Regulation of Human Neural Stem Cell Differentiation

Chapter © 2018

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Epigenetics
  • Neural Progenitors
  • Neuronal Differentiation
  • Neural stem cells
  • Neurogenesis
  • Neuronal Cell Fate and Cell Lineage
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Allis, C.D., Berger, S.L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R., et al. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636.

    CAS  Google Scholar 

  • Alvarez-Venegas, R., and Avramova, Z. (2005). Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res 33, 5199–5207.

    PubMed Central  CAS  Google Scholar 

  • Ambros, V. (2003). MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676.

    CAS  Google Scholar 

  • Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.

    CAS  Google Scholar 

  • Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jørgensen, H.F., John, R.M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., et al. (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8, 532–538.

    CAS  Google Scholar 

  • Balazs, R., Vernon, J., and Hardy, J. (2011). Epigenetic mechanisms in Alzheimer’s disease: progress but much to do. Neurobiol Aging 32, 1181–1187.

    CAS  Google Scholar 

  • Bannister, A.J., and Kouzarides, T. (2005). Reversing histone methylation. Nature 436, 1103–1106.

    CAS  Google Scholar 

  • Bannister, A.J., Schneider, R., Myers, F.A., Thorne, A.W., Crane-Robinson, C., and Kouzarides, T. (2005). Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280, 17732–17736.

    CAS  Google Scholar 

  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    CAS  Google Scholar 

  • Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

    PubMed Central  CAS  Google Scholar 

  • Bernstein, B.E., Meissner, A., and Lander, E.S. (2007). The mammalian epigenome. Cell 128, 669–681.

    CAS  Google Scholar 

  • Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.

    CAS  Google Scholar 

  • Bernstein, E., and Allis, C.D. (2005). RNA meets chromatin. Genes Dev 19, 1635–1655.

    CAS  Google Scholar 

  • Bhutani, N., Brady, J.J., Damian, M., Sacco, A., Corbel, S.Y., and Blau, H.M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047.

    PubMed Central  CAS  Google Scholar 

  • Bhutani, N., Burns, D.M., and Blau, H.M. (2011). DNA demethylation dynamics. Cell 146, 866–872.

    PubMed Central  CAS  Google Scholar 

  • Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21.

    CAS  Google Scholar 

  • Bird, A. (2007). Perceptions of epigenetics. Nature 447, 396–398.

    CAS  Google Scholar 

  • Burgold, T., Spreafico, F., De Santa, F., Totaro, M.G., Prosperini, E., Natoli, G., and Testa, G. (2008). The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3, e3034.

    PubMed Central  Google Scholar 

  • Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.

    CAS  Google Scholar 

  • Cao, X., Yeo, G., Muotri, A.R., Kuwabara, T., and Gage, F.H. (2006). Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29, 77–103.

    CAS  Google Scholar 

  • Cartagena, J.A., Matsunaga, S., Seki, M., Kurihara, D., Yokoyama, M., Shinozaki, K., Fujimoto, S., Azumi, Y., Uchiyama, S., and Fukui, K. (2008). The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 315, 355–368.

    CAS  Google Scholar 

  • Cheng, L.C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12, 399–408.

    PubMed Central  CAS  Google Scholar 

  • Ciccone, D.N., Su, H., Hevi, S., Gay, F., Lei, H., Bajko, J., Xu, G., Li, E., and Chen, T. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461, 415–418.

    CAS  Google Scholar 

  • Cloos, P.A., Christensen, J., Agger, K., Maiolica, A., Rappsilber, J., Antal, T., Hansen, K.H., and Helin, K. (2006). The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311.

    CAS  Google Scholar 

  • Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103, 2422–2427.

    PubMed Central  CAS  Google Scholar 

  • Coolen, M., and Bally-Cuif, L. (2009). MicroRNAs in brain development and physiology. Curr Opin Neurobiol 19, 461–470.

    CAS  Google Scholar 

  • Cortellino, S., Xu, J., Sannai, M., Moore, R., Caretti, E., Cigliano, A., Le Coz, M., Devarajan, K., Wessels, A., Soprano, D., et al. (2011). Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79.

    PubMed Central  CAS  Google Scholar 

  • De Carvalho, D.D., You, J.S., and Jones, P.A. (2010). DNA methylation and cellular reprogramming. Trends Cell Biol 20, 609–617.

    PubMed Central  Google Scholar 

  • de la Serna, I.L., Ohkawa, Y., and Imbalzano, A.N.(2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7, 461–473.

    Google Scholar 

  • De Pietri Tonelli, D., Pulvers, J.N., Haffner, C., Murchison, E.P., Hannon, G.J., and Huttner, W.B. (2008). miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921.

    PubMed Central  Google Scholar 

  • Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes Dev 25, 1010–1022.

    PubMed Central  CAS  Google Scholar 

  • Eden, S., Hashimshony, T., Keshet, I., Cedar, H., and Thorne, A.W. (1998). DNA methylation models histone acetylation. Nature 394, 842.

    CAS  Google Scholar 

  • Edmunds, J.W., Mahadevan, L.C., and Clayton, A.L. (2008). Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27, 406–420.

    PubMed Central  CAS  Google Scholar 

  • Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Nishiyama, A., Muguruma, K., and Sasai, Y. (2008). Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532.

    CAS  Google Scholar 

  • Fan, G., Martinowich, K., Chin, M.H., He, F., Fouse, S.D., Hutnick, L., Hattori, D., Ge, W., Shen, Y., Wu, H., et al. (2005). DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345–3356.

    CAS  Google Scholar 

  • Feng, J., Chang, H., Li, E., and Fan, G. (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79, 734–746.

    CAS  Google Scholar 

  • Ferrón, S.R., Charalambous, M., Radford, E., McEwen, K., Wildner, H., Hind, E., Morante-Redolat, J.M., Laborda, J., Guillemot, F., Bauer, S.R., et al. (2011). Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475, 381–385.

    PubMed Central  Google Scholar 

  • Ficz, G., Branco, M.R., Seisenberger, S., Santos, F., Krueger, F., Hore, T.A., Marques, C.J., Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402.

    CAS  Google Scholar 

  • Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., van den Ameele, J., Espuny-Camacho, I., Herpoel, A., Passante, L., Schiffmann, S.N., et al. (2008). An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357.

    CAS  Google Scholar 

  • Gatto, S., Della Ragione, F., Cimmino, A., Strazzullo, M., Fabbri, M., Mutarelli, M., Ferraro, L., Weisz, A., D’Esposito, M., and Matarazzo, M.R. (2010). Epigenetic alteration of microRNAs in DNMT3B-mutated patients of ICF syndrome. Epigenetics 5, 427–443.

    CAS  Google Scholar 

  • Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P., and Schier, A.F. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838.

    CAS  Google Scholar 

  • Gjerset, R.A., and Martin, D.W. Jr. (1982). Presence of a DNA demethylating activity in the nucleus of murine erythroleukemic cells. J Biol Chem 257, 8581–8583.

    CAS  Google Scholar 

  • Goldberg, A.D., Allis, C.D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell 128, 635–638.

    CAS  Google Scholar 

  • Golebiewska, A., Atkinson, S.P., Lako, M., and Armstrong, L. (2009). Epigenetic landscaping during hESC differentiation to neural cells. Stem Cells 27, 1298–1308.

    CAS  Google Scholar 

  • Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74, 481–514.

    CAS  Google Scholar 

  • Goll, M.G., and Halpern, M.E. (2011). DNA methylation in zebrafish. Prog Mol Biol Transl Sci 101, 193–218.

    CAS  Google Scholar 

  • Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res 36, D154–D158.

    PubMed Central  CAS  Google Scholar 

  • Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27, 91–105.

    PubMed Central  CAS  Google Scholar 

  • Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007). Chromatin challenges during DNA replication and repair. Cell 128, 721–733.

    CAS  Google Scholar 

  • Guo, J.U., Su, Y., Zhong, C., Ming, G.L., and Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434.

    PubMed Central  CAS  Google Scholar 

  • Habibi, E., Masoudi-Nejad, A., Abdolmaleky, H.M., and Haggarty, S.J. (2011). Emerging roles of epigenetic mechanisms in Parkinson’s disease. Funct Integr Genomics 11, 523–537.

    CAS  Google Scholar 

  • Hargreaves, D.C., and Crabtree, G.R. (2011). ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21, 396–420.

    PubMed Central  CAS  Google Scholar 

  • Hashimshony, T., Zhang, J., Keshet, I., Bustin, M., and Cedar, H. (2003). The role of DNA methylation in setting up chromatin structure during development. Nat Genet 34, 187–192.

    CAS  Google Scholar 

  • He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522–531.

    CAS  Google Scholar 

  • He, X.B., Yi, S.H., Rhee, Y.H., Kim, H., Han, Y.M., Lee, S.H., Lee, H., Park, C.H., Lee, Y.S., Richardson, E., et al. (2011a). Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 29, 1861–1873.

    CAS  Google Scholar 

  • He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. (2011b). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.

    PubMed Central  CAS  Google Scholar 

  • Hevner, R.F., Daza, R.A., Rubenstein, J.L., Stunnenberg, H., Olavarria, J.F., and Englund, C. (2003). Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci 25, 139–151.

    CAS  Google Scholar 

  • Hitoshi, S., Alexson, T., Tropepe, V., Donoviel, D., Elia, A.J., Nye, J.S., Conlon, R.A., Mak, T.W., Bernstein, A., and van der Kooy, D. (2002). Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16, 846–858.

    PubMed Central  CAS  Google Scholar 

  • Hitoshi, S., Ishino, Y., Kumar, A., Jasmine, S., Tanaka, K.F., Kondo, T., Kato, S., Hosoya, T., Hotta, Y., and Ikenaka, K. (2011). Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nat Neurosci 14, 957–964.

    CAS  Google Scholar 

  • Hitoshi, S., Seaberg, R.M., Koscik, C., Alexson, T., Kusunoki, S., Kanazawa, I., Tsuji, S., and van der Kooy, D. (2004). Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18, 1806–1811.

    PubMed Central  CAS  Google Scholar 

  • Holliday, R. (2006). Epigenetics: a historical overview. Epigenetics 1, 76–80.

    Google Scholar 

  • Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., and Gage, F.H. (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101, 16659–16664.

    PubMed Central  CAS  Google Scholar 

  • Huarte, M., Lan, F., Kim, T., Vaughn, M.W., Zaratiegui, M., Martienssen, R.A., Buratowski, S., and Shi, Y. (2007). The fission yeast Jmj2 reverses histone H3 Lysine 4 trimethylation. J Biol Chem 282, 21662–21670.

    CAS  Google Scholar 

  • Iorio, M.V., Piovan, C., and Croce, C.M. (2010). Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799, 694–701.

    CAS  Google Scholar 

  • Irmady, K., Zechel, S., and Unsicker, K. (2011). Fibroblast growth factor 2 regulates astrocyte differentiation in a region-specific manner in the hindbrain. Glia 59, 708–719.

    Google Scholar 

  • Iwase, S., Lan, F., Bayliss, P., de la Torre-Ubieta, L., Huarte, M., Qi, H.H., Whetstine, J.R., Bonni, A., Roberts, T.M., and Shi, Y. (2007). The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088.

    CAS  Google Scholar 

  • Jacobson, M. (1991). Developmental neurobiology, 3rd edn. New York: Plenum Press.

    Google Scholar 

  • Jaenisch, R., and Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33, 245–254.

    CAS  Google Scholar 

  • Jamniczky, H.A., Boughner, J.C., Rolian, C., Gonzalez, P.N., Powell, C.D., Schmidt, E.J., Parsons, T.E., Bookstein, F.L., and Hallgrímsson, B. (2010). Rediscovering Waddington in the post-genomic age: Operationalising Waddington’s epigenetics reveals new ways to investigate the generation and modulation of phenotypic variation. Bioessays 32, 553–558.

    Google Scholar 

  • Jiang, H., Shukla, A., Wang, X., Chen, W.Y., Bernstein, B.E., and Roeder, R.G. (2011). Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513–525.

    PubMed Central  CAS  Google Scholar 

  • Joglekar, M.V., Joglekar, V.M., and Hardikar, A.A. (2009). Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9, 109–113.

    CAS  Google Scholar 

  • Juliandi, B., Abematsu, M., and Nakashima, K. (2010a). Chromatin remodeling in neural stem cell differentiation. Curr Opin Neurobiol 20, 408–415.

    CAS  Google Scholar 

  • Juliandi, B., Abematsu, M., and Nakashima, K. (2010b). Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 52, 493–504.

    CAS  Google Scholar 

  • Kapoor, A., Agius, F., and Zhu, J.K. (2005). Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett 579, 5889–5898.

    CAS  Google Scholar 

  • Kapsimali, M., Kloosterman, W.P., de Bruijn, E., Rosa, F., Plasterk, R.H., and Wilson, S.W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8, R173.

    PubMed Central  Google Scholar 

  • Kawaguchi, A., Miyata, T., Sawamoto, K., Takashita, N., Murayama, A., Akamatsu, W., Ogawa, M., Okabe, M., Tano, Y., Goldman, S.A., et al. (2001). Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci 17, 259–273.

    CAS  Google Scholar 

  • Kawase-Koga, Y., Low, R., Otaegi, G., Pollock, A., Deng, H., Eisenhaber, F., Maurer-Stroh, S., and Sun, T. (2010). RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J Cell Sci 123, 586–594.

    PubMed Central  CAS  Google Scholar 

  • Kennison, J.A. (1995). The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 29, 289–303.

    CAS  Google Scholar 

  • Kohyama, J., Kojima, T., Takatsuka, E., Yamashita, T., Namiki, J., Hsieh, J., Gage, F.H., Namihira, M., Okano, H., Sawamoto, K., et al. (2008). Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proc Natl Acad Sci U S A 105, 18012–18017.

    PubMed Central  CAS  Google Scholar 

  • Kornberg, R.D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871.

    CAS  Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.

    CAS  Google Scholar 

  • Ku, M., Koche, R.P., Rheinbay, E., Mendenhall, E.M., Endoh, M., Mikkelsen, T.S., Presser, A., Nusbaum, C., Xie, X., Chi, A.S., et al. (2008). Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4, e1000242.

    PubMed Central  Google Scholar 

  • Kuo, M.H., and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615–626.

    CAS  Google Scholar 

  • Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., et al. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694.

    CAS  Google Scholar 

  • Lee, M.G., Norman, J., Shilatifard, A., and Shiekhattar, R. (2007a). Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128, 877–887.

    CAS  Google Scholar 

  • Lee, M.G., Villa, R., Trojer, P., Norman, J., Yan, K.P., Reinberg, D., Di Croce, L., and Shiekhattar, R. (2007b). Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450.

    CAS  Google Scholar 

  • Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81.

    CAS  Google Scholar 

  • Lessard, J., Wu, J.I., Ranish, J.A., Wan, M., Winslow, M.M., Staahl, B.T., Wu, H., Aebersold, R., Graef, I.A., and Crabtree, G.R. (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215.

    PubMed Central  CAS  Google Scholar 

  • Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., and Bally-Cuif, L. (2008). MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11, 641–648.

    CAS  Google Scholar 

  • Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

    CAS  Google Scholar 

  • Li, J.Y., Pu, M.T., Hirasawa, R., Li, B.Z., Huang, Y.N., Zeng, R., Jing, N.H., Chen, T., Li, E., Sasaki, H., et al. (2007). Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 27, 8748–8759.

    PubMed Central  CAS  Google Scholar 

  • Li, X., Barkho, B.Z., Luo, Y., Smrt, R.D., Santistevan, N.J., Liu, C., Kuwabara, T., Gage, F.H., and Zhao, X. (2008). Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem 283, 27644–27652.

    PubMed Central  CAS  Google Scholar 

  • Liu, C., Teng, Z.Q., Santistevan, N.J., Szulwach, K.E., Guo, W., Jin, P., and Zhao, X. (2010). Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6, 433–444.

    PubMed Central  CAS  Google Scholar 

  • Lunyak, V.V., and Rosenfeld, M.G. (2005). No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121, 499–501.

    CAS  Google Scholar 

  • Lyle, R., Watanabe, D., te Vruchte, D., Lerchner, W., Smrzka, O.W., Wutz, A., Schageman, J., Hahner, L., Davies, C., and Barlow, D.P. (2000). The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25, 19–21.

    CAS  Google Scholar 

  • Ma, D.K., Jang, M.H., Guo, J.U., Kitabatake, Y., Chang, M.L., Pow-Anpongkul, N., Flavell, R.A., Lu, B., Ming, G.L., and Song, H. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077.

    PubMed Central  CAS  Google Scholar 

  • Ma, D.K., Marchetto, M.C., Guo, J.U., Ming, G.L., Gage, F.H., and Song, H. (2010). Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13, 1338–1344.

    PubMed Central  CAS  Google Scholar 

  • Martens, J.A., and Winston, F. (2003). Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13, 136–142.

    CAS  Google Scholar 

  • Mastroeni, D., Grover, A., Delvaux, E., Whiteside, C., Coleman, P.D., and Rogers, J. (2011). Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32, 1161–1180.

    PubMed Central  CAS  Google Scholar 

  • Matsumoto, S., Banine, F., Struve, J., Xing, R., Adams, C., Liu, Y., Metzger, D., Chambon, P., Rao, M.S., and Sherman, L.S. (2006). Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev Biol 289, 372–383.

    CAS  Google Scholar 

  • Mattick, J.S., and Makunin, I.V. (2005). Small regulatory RNAs in mammals. Hum Mol Genet 14, R121–R132.

    CAS  Google Scholar 

  • Mattick, J.S., and Makunin, I.V. (2006). Non-coding RNA. Hum Mol Genet 15, R17–R29.

    CAS  Google Scholar 

  • Mehler, M.F. (2008). Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol 86, 305–341.

    PubMed Central  CAS  Google Scholar 

  • Mehler, M.F., and Mattick, J.S. (2006). Non-coding RNAs in the nervous system. J Physiol 575, 333–341.

    PubMed Central  CAS  Google Scholar 

  • Mehler, M.F., and Mattick, J.S. (2007). Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87, 799–823.

    CAS  Google Scholar 

  • Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770.

    PubMed Central  CAS  Google Scholar 

  • Métivier, R., Gallais, R., Tiffoche, C., Le Péron, C., Jurkowska, R.Z., Carmouche, R.P., Ibberson, D., Barath, P., Demay, F., Reid, G., et al. (2008). Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50.

    Google Scholar 

  • Moazed, D. (2009). Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420.

    PubMed Central  CAS  Google Scholar 

  • Mohn, F., Weber, M., Rebhan, M., Roloff, T.C., Richter, J., Stadler, M.B., Bibel, M., and Schübeler, D. (2008). Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30, 755–766.

    CAS  Google Scholar 

  • Montgomery, R.L., Hsieh, J., Barbosa, A.C., Richardson, J.A., and Olson, E.N. (2009). Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 106, 7876–7881.

    PubMed Central  CAS  Google Scholar 

  • Morange, M. (2002). The relations between genetics and epigenetics: a historical point of view. Ann N Y Acad Sci 981, 50–60.

    CAS  Google Scholar 

  • Mosammaparast, N., and Shi, Y. (2010). Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79, 155–179.

    CAS  Google Scholar 

  • Nakamura, Y., Sakakibara, S., Miyata, T., Ogawa, M., Shimazaki, T., Weiss, S., Kageyama, R., and Okano, H. (2000). The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20, 283–293.

    CAS  Google Scholar 

  • Namihira, M., Kohyama, J., Abematsu, M., and Nakashima, K. (2008). Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci 363, 2099–2109.

    PubMed Central  CAS  Google Scholar 

  • Nekrasov, M., Wild, B., and Müller, J. (2005). Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6, 348–353.

    PubMed Central  CAS  Google Scholar 

  • Nguyen, S., Meletis, K., Fu, D., Jhaveri, S., and Jaenisch, R. (2007). Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn 236, 1663–1676.

    CAS  Google Scholar 

  • Niehrs, C. (2009). Active DNA demethylation and DNA repair. Differentiation 77, 1–11.

    CAS  Google Scholar 

  • Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

    CAS  Google Scholar 

  • Ooi, S.K., and Bestor, T.H. (2008a). The colorful history of active DNA demethylation. Cell 133, 1145–1148.

    CAS  Google Scholar 

  • Ooi, S.K., and Bestor, T.H. (2008b). Cytosine methylation: remaining faithful. Curr Biol 18, R174–R176.

    CAS  Google Scholar 

  • Pastor, W.A., Pape, U.J., Huang, Y., Henderson, H.R., Lister, R., Ko, M., McLoughlin, E.M., Brudno, Y., Mahapatra, S., Kapranov, P., et al. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397.

    PubMed Central  CAS  Google Scholar 

  • Pazin, M.J., and Kadonaga, J.T. (1997). What’s up and down with histone deacetylation and transcription? Cell 89, 325–328.

    CAS  Google Scholar 

  • Qian, X., Goderie, S.K., Shen, Q., Stern, J.H., and Temple, S. (1998). Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152.

    CAS  Google Scholar 

  • Qian, X., Shen, Q., Goderie, S.K., He, W., Capela, A., Davis, A.A., and Temple, S. (2000). Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80.

    CAS  Google Scholar 

  • Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A., and Cairns, B.R. (2008). DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201–1212.

    PubMed Central  CAS  Google Scholar 

  • Randazzo, F.M., Khavari, P., Crabtree, G., Tamkun, J., and Rossant, J. (1994). brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev Biol 161, 229–242.

    Google Scholar 

  • Ravin, R., Hoeppner, D.J., Munno, D.M., Carmel, L., Sullivan, J., Levitt, D.L., Miller, J.L., Athaide, C., Panchision, D.M., and McKay, R.D. (2008). Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670–680.

    CAS  Google Scholar 

  • Reynolds, B.A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    CAS  Google Scholar 

  • Ringrose, L., and Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38, 413–443.

    CAS  Google Scholar 

  • Robertson, K.D., Ait-Si-Ali, S., Yokochi, T., Wade, P.A., Jones, P.L., and Wolffe, A.P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25, 338–342.

    CAS  Google Scholar 

  • Robertson, K.D., and Wolffe, A.P. (2000). DNA methylation in health and disease. Nat Rev Genet 1, 11–19.

    CAS  Google Scholar 

  • Roth, S.Y., and Allis, C.D. (1996). Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87, 5–8.

    CAS  Google Scholar 

  • Rougeulle, C., Chaumeil, J., Sarma, K., Allis, C.D., Reinberg, D., Avner, P., and Heard, E. (2004). Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 24, 5475–5484.

    PubMed Central  CAS  Google Scholar 

  • Sato, S., Yagi, S., Arai, Y., Hirabayashi, K., Hattori, N., Iwatani, M., Okita, K., Ohgane, J., Tanaka, S., Wakayama, T., et al. (2010). Genome-wide DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) residing in mouse pluripotent stem cells. Genes Cells 15, 607–618.

    CAS  Google Scholar 

  • Schmitz, S.U., Albert, M., Malatesta, M., Morey, L., Johansen, J.V., Bak, M., Tommerup, N., Abarrategui, I., and Helin, K. (2011). Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J 30, 4586–4600.

    PubMed Central  CAS  Google Scholar 

  • Setoguchi, H., Namihira, M., Kohyama, J., Asano, H., Sanosaka, T., and Nakashima, K. (2006). Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res 84, 969–979.

    CAS  Google Scholar 

  • Shen, Q., and Temple, S. (2009). Fine control: microRNA regulation of adult neurogenesis. Nat Neurosci 12, 369–370.

    CAS  Google Scholar 

  • Shen, Q., Wang, Y., Dimos, J.T., Fasano, C.A., Phoenix, T.N., Lemischka, I.R., Ivanova, N.B., Stifani, S., Morrisey, E.E., and Temple, S. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9, 743–751.

    CAS  Google Scholar 

  • Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.

    CAS  Google Scholar 

  • Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., and Aizawa, S. (2008). MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28, 10415–10421.

    CAS  Google Scholar 

  • Smith, C.L., and Peterson, C.L. (2005). A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol Cell Biol 25, 5880–5892.

    PubMed Central  CAS  Google Scholar 

  • Smith, J.L., and Schoenwolf, G.C. (1997). Neurulation: coming to closure. Trends Neurosci 20, 510–517.

    CAS  Google Scholar 

  • So, A.Y., Jung, J.W., Lee, S., Kim, H.S., and Kang, K.S. (2011). DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6, e19503.

    PubMed Central  CAS  Google Scholar 

  • Song, C.X., Szulwach, K.E., Fu, Y., Dai, Q., Yi, C., Li, X., Li, Y., Chen, C.H., Zhang, W., Jian, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29, 68–72.

    PubMed Central  CAS  Google Scholar 

  • Song, M.R., and Ghosh, A. (2004). FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 7, 229–235.

    Google Scholar 

  • Sterner, D.E., and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435–459.

    PubMed Central  CAS  Google Scholar 

  • Storz, G. (2002). An expanding universe of noncoding RNAs. Science 296, 1260–1263.

    CAS  Google Scholar 

  • Sun, G., Fu, C., Shen, C., and Shi, Y. (2011). Histone deacetylases in neural stem cells and induced pluripotent stem cells. J Biomed Biotechnol 2011, 835968.

  • Sun, G., Yu, R.T., Evans, R.M., and Shi, Y. (2007). Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 104, 15282–15287.

    PubMed Central  CAS  Google Scholar 

  • Surani, M.A., Hayashi, K., and Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762.

    CAS  Google Scholar 

  • Suzuki, M.M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9, 465–476.

    CAS  Google Scholar 

  • Temple, S. (2001). The development of neural stem cells. Nature 414, 112–117.

    CAS  Google Scholar 

  • Testa, G. (2011). The time of timing: how Polycomb proteins regulate neurogenesis. Bioessays 33, 519–528.

    CAS  Google Scholar 

  • Tropepe, V., Sibilia, M., Ciruna, B.G., Rossant, J., Wagner, E.F., and van der Kooy, D. (1999). Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208, 166–188.

    CAS  Google Scholar 

  • Tsujimura, K., Abematsu, M., Kohyama, J., Namihira, M., and Nakashima, K. (2009). Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp Neurol 219, 104–111.

    CAS  Google Scholar 

  • Viré, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.M., et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874.

    Google Scholar 

  • Wade, P.A., Pruss, D., and Wolffe, A.P. (1997). Histone acetylation: chromatin in action. Trends Biochem Sci 22, 128–132.

    CAS  Google Scholar 

  • Walsh, C.P., and Bestor, T.H. (1999). Cytosine methylation and mammalian development. Genes Dev 13, 26–34.

    PubMed Central  CAS  Google Scholar 

  • Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., and Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878.

    CAS  Google Scholar 

  • Weiss, A., and Cedar, H. (1997). The role of DNA demethylation during development. Genes Cells 2, 481–486.

    CAS  Google Scholar 

  • Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481.

    CAS  Google Scholar 

  • Wilks, A., Seldran, M., and Jost, J.P. (1984). An estrogen-dependent demethylation at the 5′ end of the chicken vitellogenin gene is independent of DNA synthesis. Nucleic Acids Res 12, 1163–1177.

    PubMed Central  CAS  Google Scholar 

  • Wood, H.B., and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86, 197–201.

    CAS  Google Scholar 

  • Wu, H., Coskun, V., Tao, J., Xie, W., Ge, W., Yoshikawa, K., Li, E., Zhang, Y., and Sun, Y.E. (2010a). Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448.

    PubMed Central  CAS  Google Scholar 

  • Wu, H., D’Alessio, A.C., Ito, S., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. (2011a). Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25, 679–684.

    PubMed Central  CAS  Google Scholar 

  • Wu, H., D’Alessio, A.C., Ito, S., Xia, K., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. (2011b). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393.

    PubMed Central  CAS  Google Scholar 

  • Wu, H., and Sun, Y.E. (2009). Reversing DNA methylation: new insights from neuronal activity-induced Gadd45b in adult neurogenesis. Sci Signal 2, pe17.

    Google Scholar 

  • Wu, H., Tao, J., Chen, P.J., Shahab, A., Ge, W., Hart, R.P., Ruan, X., Ruan, Y., and Sun, Y.E. (2010b). Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 107, 18161–18166.

    PubMed Central  CAS  Google Scholar 

  • Wu, J., and Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7, R85.

    PubMed Central  Google Scholar 

  • Wu, J.I., Lessard, J., Olave, I.A., Qiu, Z., Ghosh, A., Graef, I.A., and Crabtree, G.R. (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108.

    CAS  Google Scholar 

  • Xu, Y., Wu, F., Tan, L., Kong, L., Xiong, L., Deng, J., Barbera, A.J., Zheng, L., Zhang, H., Huang, S., et al. (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42, 451–464.

    PubMed Central  CAS  Google Scholar 

  • Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495.

    CAS  Google Scholar 

  • Ye, F., Chen, Y., Hoang, T., Montgomery, R.L., Zhao, X.H., Bu, H., Hu, T., Taketo, M.M., van Es, J.H., Clevers, H., et al. (2009). HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12, 829–838.

    PubMed Central  CAS  Google Scholar 

  • Yoder, J.A., Walsh, C.P., and Bestor, T.H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13, 335–340.

    CAS  Google Scholar 

  • Yoo, A.S., Staahl, B.T., Chen, L., and Crabtree, G.R. (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646.

    PubMed Central  CAS  Google Scholar 

  • Yoo, A.S., Sun, A.X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., Lee-Messer, C., Dolmetsch, R.E., Tsien, R.W., and Crabtree, G.R. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231.

    PubMed Central  CAS  Google Scholar 

  • Yu, I.T., Park, J.Y., Kim, S.H., Lee, J.S., Kim, Y.S., and Son, H. (2009). Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 56, 473–480.

    CAS  Google Scholar 

  • Zhan, X., Shi, X., Zhang, Z., Chen, Y., and Wu, J.I. (2011). Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development. Proc Natl Acad Sci U S A 108, 12758–12763.

    PubMed Central  Google Scholar 

  • Zhang, Y., and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15, 2343–2360.

    CAS  Google Scholar 

  • Zhao, C., Sun, G., Li, S., and Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16, 365–371.

    PubMed Central  CAS  Google Scholar 

  • Zhao, X., Ueba, T., Christie, B.R., Barkho, B., McConnell, M.J., Nakashima, K., Lein, E.S., Eadie, B.D., Willhoite, A.R., Muotri, A.R., et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A 100, 6777–6782.

    PubMed Central  CAS  Google Scholar 

  • Zhao, Z., Yu, Y., Meyer, D., Wu, C., and Shen, W.H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7, 1256–1260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China

    Xiao-Ling Hu & Qin Shen

  2. Department of Pharmacy, Tianjin Children’s Hospital, Tianjin, 300074, China

    Yuping Wang

Authors
  1. Xiao-Ling Hu
    View author publications

    Search author on:PubMed Google Scholar

  2. Yuping Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Qin Shen
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Qin Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, XL., Wang, Y. & Shen, Q. Epigenetic control on cell fate choice in neural stem cells. Protein Cell 3, 278–290 (2012). https://doi.org/10.1007/s13238-012-2916-6

Download citation

  • Received: 01 March 2012

  • Accepted: 31 March 2012

  • Published: 02 May 2012

  • Issue Date: April 2012

  • DOI: https://doi.org/10.1007/s13238-012-2916-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • neural stem cells (NSCs)
  • epigenetic regulation
  • neurogenesis
  • gliogenesis
  • radial glial cell
  • cerebral cortex
  • subventricular zone (SVZ)
  • DNA methylation
  • histone modification
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

216.73.216.18

Not affiliated

Springer Nature

© 2025 Springer Nature