Skip to main content
Log in

The sunburn cell revisited: an update on mechanistic aspects

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The sunburn cell (SBC), with its pyknotic nucleus and eosinophilic cytoplasm, is characteristic of mammalian epidermis after exposure to UVC and UVB radiation or UVA radiation in the presence of psoralens. SBC may be regarded as an example of apoptosis: controlled individual cell death. Since the discovery of apoptosis over thirty years ago, there has been a considerable increase in the knowledge of mechanisms involved in this process. DNA damage has been shown to be a major determinant of SBC production both in a p53-dependent and -independent manner. Extranuclear events such as activation of membrane bound death receptors also contribute to SBC formation. The development of new technologies and techniques has resulted in a better understanding of the mechanisms and machinery involved in apoptosis, triggered by various stimuli and in different cell types. Of particular importance has been the elucidation of regulatory molecules such as caspases, inhibitor of apoptosis proteins (IAP) and the role of mitochondria as key to the process of apoptosis and consequent production of SBC. This review attempts to give an update on those mechanisms involved and the occurrence and relevance of SBC in mammalian skin are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Young, The sunburn cell, Photodermatology, 1987, 4, 127–134.

    CAS  PubMed  Google Scholar 

  2. F. Daniels, D. Brophy and W. Lobitz, Histochemical responses of human skin following ultraviolet irradiation, J. Invest. Dermatol., 1961, 37, 351–357.

    Article  CAS  PubMed  Google Scholar 

  3. A. Woodcock and I. A. Magnus, The sunburn cell in mouse skin: preliminary quantitative studies on its production, Br. J. Dermatol., 1976, 95, 459–468.

    Article  CAS  PubMed  Google Scholar 

  4. W. Lever and G. Schaumburg-Lever, Histopathology of the skin, J. B. Lippincott Company, Philadelphia, 1975.

    Google Scholar 

  5. M. Garmyn, J. D. Ribaya-Mercado, R. M. Russel, J. Bhawan and B. A. Gilchrest, Effect of beta-carotene supplementation on the human sunburn reaction, Exp. Dermatol., 1995, 4, 104–111.

    Article  CAS  PubMed  Google Scholar 

  6. B. A. Gilchrest, N. A. Soter, J. S. Stoff and M. C. Mihm, Jr, The human sunburn reaction: histologic and biochemical studies, J. Am. Acad. Dermatol., 1981, 5, 411–422.

    Article  CAS  PubMed  Google Scholar 

  7. L. Kanerva, Electron microscopic observations of dyskeratosis, apoptosis, colloid bodies and fibrillar degeneration after skin irritation with dithranol, J. Cutaneous Pathol., 1990, 17, 37–44.

    Article  CAS  Google Scholar 

  8. K. Danno, T. Horio and S. Imamura, Infrared radiation suppresses ultraviolet B-induced sunburn-cell formation, Arch. Dermatol. Res., 1992, 284, 92–94.

    Article  CAS  PubMed  Google Scholar 

  9. K. Hanada, R. W. Gange and M. J. Connor, Effect of glutathione depletion on sunburn cell formation in the hairless mouse, J. Invest. Dermatol., 1991, 96, 838–840.

    Article  CAS  PubMed  Google Scholar 

  10. K. Hanada, D. Sawamura, K. Tamai, T. Baba, I. Hashimoto, T. Muramatsu, N. Miura and A. Naganuma, Novel function of metallothionein in photoprotection: metallothionein-null mouse exhibits reduced tolerance against ultraviolet B injury in the skin, J. Invest. Dermatol., 1998, 111, 582–585.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Miyachi, T. Horio and S. Imamura, Sunburn cell formation is prevented by scavenging oxygen intermediates, Clin. Exp. Dermatol., 1983, 8, 305–310.

    Article  CAS  PubMed  Google Scholar 

  12. A. R. Young and I. A. Magnus, An action spectrum for 8-MOP induced sunburn cells in mammalian epidermis, Br. J. Dermatol., 1981, 104, 541–548.

    Article  CAS  PubMed  Google Scholar 

  13. K. Iwasaki, M. Izawa and M. Mihara, UV-induced apoptosis in rat skin, J. Dermatol. Sci., 1996, 12, 31–35.

    Article  CAS  PubMed  Google Scholar 

  14. K. Danno and T. Horio, Formation of UV-induced apoptosis relates to the cell cycle, Br. J. Dermatol., 1982, 107, 423–428.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Aragane, D. Kulms, D. Metze, G. Wilkes, B. Pöppelmann, T. A. Luger and T. Schwarz, Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L, J. Cell Biol., 1998, 140, 171–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Baba, H. Nakano, K. Tamai, D. Sawamura, K. Hanada, I. Hashimoto and Y. Arima, Inhibitory effect of beta-thujaplicin on ultraviolet B-induced apoptosis in mouse keratinocytes, J. Invest. Dermatol., 1998, 110, 24–28.

    Article  CAS  PubMed  Google Scholar 

  17. J. F. Kerr, Shrinkage necrosis: a distinct mode of cellular death, J. Pathol., 1971, 105, 13–20.

    Article  CAS  PubMed  Google Scholar 

  18. B. E. Johnson, G. Mandell and F. Daniels, Jr, Melanin and cellular reactions to ultraviolet radiation, Nature (London), New Biol., 1972, 235, 147–149.

    Article  CAS  Google Scholar 

  19. M. Kumakiri, K. Hashimoto and I. Willis, Biologic changes due to long-wave ultraviolet irradiation on human skin: ultrastructural study, J. Invest. Dermatol., 1977, 69, 392–400.

    Article  CAS  PubMed  Google Scholar 

  20. I. Willis and L. Cylus, UVA erythema in skin: is it a sunburn?, J. Invest. Dermatol., 1977, 68, 128–129.

    Article  CAS  PubMed  Google Scholar 

  21. R. Rosario, G. J. Mark, J. A. Parrish and M. C. Mihm, Jr, Histological changes produced in skin by equally erythemogenic doses of UV-A, UV-B, UV-C and UV-A with psoralens, Br. J. Dermatol., 1979, 101, 299–308.

    Article  CAS  PubMed  Google Scholar 

  22. R. Lavker and K. Kaidbey, The spectral dependence for UVA-induced cumulative damage in human skin, J. Invest. Dermatol., 1997, 108, 17–21.

    Article  CAS  PubMed  Google Scholar 

  23. Y. P. Lu, Y. R. Lou, P. Yen, D. Mitchell, M. T. Huang and A. H. Conney, Time course for early adaptive responses to ultraviolet B light in the epidermis of SKH-1 mice, Cancer Res., 1999, 59, 4591–4602.

    CAS  PubMed  Google Scholar 

  24. J. I. Youn, R. W. Gange, D. Maytum and J. A. Parrish, Effect of hypoxia on sunburn cell formation and inflammation induced by ultraviolet radiation, Photodermatology, 1988, 5, 252–256.

    CAS  PubMed  Google Scholar 

  25. Y. Yasui and T. Hirone, Action spectrum for bergamot-oil phototoxicity measured by sunburn cell counting, J. Dermatol., 1994, 21, 319–322.

    Article  CAS  PubMed  Google Scholar 

  26. M. Weil, M. D. Jacobson, H. S. Coles, T. J. Davies, R. L. Gardner, K. D. Raff and M. C. Raff, Constitutive expression of the machinery for programmed cell death, J. Cell Biol., 1996, 133, 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  27. M. Weil, M. C. Raff and V. M. Braga, Caspase activation in the terminal differentiation of human epidermal keratinocytes, Curr. Biol., 1999, 9, 361–364.

    Article  CAS  PubMed  Google Scholar 

  28. H. Steller, J. M. Abrams, M. E. Grether and K. White, Programmed cell death in Drosophila, Philos. Trans. R. Soc. London, Ser. B, 1994, 345, 247–250.

    Article  CAS  PubMed  Google Scholar 

  29. K. White, M. E. Grether, J. M. Abrams, L. Young, K. Farrell and H. Steller, Genetic control of programmed cell death in Drosophila [see comments], Science, 1994, 264, 677–683.

    Article  CAS  PubMed  Google Scholar 

  30. M. Irmler, K. Hofmann, D. Vaux and J. Tschopp, Direct physical interaction between the Caenorhabditis elegans ‘death proteins’ CED-3 and CED-4, FEBS Lett., 1997, 406, 189–190.

    Article  CAS  PubMed  Google Scholar 

  31. H. R. Horvitz, S. Shaham and M. O. Hengartner, The genetics of programmed cell death in the nematode Caenorhabditis elegans, Cold Spring Harbor Symp. Quant. Biol., 1994, 59, 377–385.

    Article  CAS  PubMed  Google Scholar 

  32. A. Sugimoto, P. D. Friesen and J. H. Rothman, Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans, EMBO J., 1994, 13, 2023–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Ziegler, D. J. Leffell, S. Kunala, H. W. Sharma, M. Gailani, J. A. Simon, A. J. Halperin, H. P. Baden, P. E. Shapiro and A. E. Bale, Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 4216–4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G. Murphy, A. R. Young, H. C. Wulf, D. Kulms and T. Schwarz, The molecular determinants of sunburn cell formation, Exp. Dermatol., 2001, 1, 155–160.

    Article  Google Scholar 

  35. S. W. Muchmore, M. Sattler, H. Liang, R. P. Meadows, J. E. Harlan, H. S. Yoon, D. Nettesheim, B. S. Chang, C. B. Thompson, S. L. Wong, S. L. Ng and S. W. Fesik, X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature, 1996, 381, 335–341.

    Article  CAS  PubMed  Google Scholar 

  36. J. D. de, F. A. Prins, D. Y. Mason, J. C. Reed, O. G. van and P. M. Kluin, Subcellular localization of the bcl-2 protein in malignant and normal lymphoid cells, Cancer Res., 1994, 54, 256–260.

    Google Scholar 

  37. D. Hockenbery, G. Nunez, C. Milliman, R. D. Schreiber and S. J. Korsmeyer, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature, 1990, 348, 334–336.

    Article  CAS  PubMed  Google Scholar 

  38. S. Krajewski, S. Tanaka, S. Takayama, M. J. Schibler, W. Fenton and J. C. Reed, Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes, Cancer Res., 1993, 53, 4701–4714.

    CAS  PubMed  Google Scholar 

  39. M. Nguyen, D. G. Millar, V. W. Yong, S. J. Korsmeyer and G. C. Shore, Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence, J. Biol. Chem., 1993, 268, 25265–25268.

    Article  CAS  PubMed  Google Scholar 

  40. I. S. Goping, A. Gross, J. N. Lavoie, M. Nguyen, R. Jemmerson, K. Roth, S. J. Korsmeyer and G. C. Shore, Regulated targeting of BAX to mitochondria, J. Cell Biol., 1998, 143, 207–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Gross, J. Jockel, M. C. Wei and S. J. Korsmeyer, Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis, EMBO J., 1998, 17, 3878–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. I. Martinou, M. Missotten, P. A. Fernandez, R. Sadoul and J. C. Martinou, Bax and Bak proteins require caspase activity to trigger apoptosis in sympathetic neurons, Neuroreport, 1998, 9, 15–19.

    Article  CAS  PubMed  Google Scholar 

  43. J. Yang, X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D. P. Jones and X. Wang, Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked [see comments], Science, 1997, 275, 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  44. D. M. Finucane, E. Bossy-Wetzel, N. J. Waterhouse, T. G. Cotter and D. R. Green, Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL, J. Biol. Chem., 1999, 274, 2225–2233.

    Article  CAS  PubMed  Google Scholar 

  45. C. Prives and P. A. Hall, The p53 pathway, J. Pathol., 1999, 187, 112–126.

    Article  CAS  PubMed  Google Scholar 

  46. A. J. Levine, p53, the cellular gatekeeper for growth and division, Cell, 1997, 88, 323–331.

    Article  CAS  PubMed  Google Scholar 

  47. M. L. Agarwal, W. R. Taylor, M. V. Chernov, O. B. Chernova and G. R. Stark, The p53 network, J. Biol. Chem., 1998, 273, 1–4.

    Article  CAS  PubMed  Google Scholar 

  48. W. S. El-Deiry, S. E. Kern, J. A. Pietenpol, K. W. Kinzler and B. Vogelstein, Definition of a consensus binding site for p53, Nature Genetics, 1992, 1, 45–49.

    Article  CAS  PubMed  Google Scholar 

  49. N. M. Wikonkal and D. E. Brash, Ultraviolet radiation induced signiature mutations in photocarcinogenesis, J. Invest. Dermatol. Symp. Proc., 1999, 4, 6–10.

    Article  CAS  Google Scholar 

  50. A. Ziegler, A. S. Jonason, D. J. Leffell, J. A. Simon, H. W. Sharma, J. Kimmelman, L. Remington, T. Jacks and D. E. Brash, Sunburn and p53 in the onset of skin cancer [see comments], Nature, 1994, 372, 773–776.

    Article  CAS  PubMed  Google Scholar 

  51. K. Danno and T. Horio, Sunburn cell: factors involved in its formation, Photochem. Photobiol., 1987, 45, 683–690.

    Article  CAS  PubMed  Google Scholar 

  52. D. E. Brash, A. Ziegler, A. S. Jonason, J. A. Simon, S. Kunala and D. J. Leffell, Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion, J. Invest. Dermatol. Symp. Proc., 1996, 1, 136–142.

    CAS  Google Scholar 

  53. H. Ananthaswamy, C. Conti, A. Ouhtit, A. Gorny and P. Khaskina, p53 mutations in UV-induced skin tumors from XPC-deficient mice, Photochem. Photobiol., 1999.

    Google Scholar 

  54. F. Washio, M. Ueda, A. Ito and M. Ichihashi, Higher susceptibility to apoptosis following ultraviolet B irradiation of xeroderma pigmentosum fibroblasts is accompanied by upregulation of p53 and downregulation of Bcl-2, Br. J. Dermatol., 1999, 140, 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  55. G. Li and V. C. Ho, p53-dependent DNA repair and apoptosis respond differently to high- and low-dose ultraviolet radiation, Br. J. Dermatol., 1998, 139, 3–10.

    Article  CAS  PubMed  Google Scholar 

  56. J. W. Harper, G. R. Adami, N. Wei, K. Keyomarsi and S. J. Elledge, The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases, Cell, 1993, 75, 805–816.

    Article  CAS  PubMed  Google Scholar 

  57. E. R. McDonald, G. S. Wu, T. Waldman and W. S. El-Deiry, Repair Defect in p21 WAF1/CIP1 -/- human cancer cells, Cancer Res., 1996, 56, 2250–2255.

    CAS  PubMed  Google Scholar 

  58. G. Li, D. L. Mitchell, V. C. Ho, J. C. Reed and V. A. Tron, Decreased DNA repair but normal apoptosis in ultraviolet-irradiated skin of p53-transgenic mice, Am. J. Pathol., 1996, 148, 1113–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. P. Wehrli, I. Viard, R. Bullani, J. Tschopp and L. E. French, Death receptors in cutaneous biology and disease, J. Invest. Dermatol., 2000, 115, 141–148.

    Article  CAS  PubMed  Google Scholar 

  60. L. A. Tartaglia, T. M. Ayres, G. H. Wong and D. V. Goeddel, A novel domain within the 55 kd TNF receptor signals cell death, Cell, 1993, 74, 845–853.

    Article  CAS  PubMed  Google Scholar 

  61. M. E. Peter and P. H. Krammer, Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis, Curr. Opin. Immunol., 1998, 10, 545–551.

    Article  CAS  PubMed  Google Scholar 

  62. K. Sayama, S. Yonehara, Y. Watanabe and Y. Miki, Expression of Fas antigen on keratinocytes in vivo and induction of apoptosis in cultured keratinocytes, J. Invest. Dermatol., 1994, 103, 330–334.

    Article  CAS  PubMed  Google Scholar 

  63. H. Matsue, H. Kobayashi, T. Hosokawa, T. Akitaya and A. Ohkawara, Keratinocytes constitutively express the Fas antigen that mediates apoptosis in IFN gamma-treated cultured keratinocytes, Arch. Dermatol. Res., 1995, 287, 315–320.

    Article  CAS  PubMed  Google Scholar 

  64. A. Kaptein, M. Jansen, G. Dilaver, J. Kitson, L. Dash, E. Wang, M. J. Owen, J. L. Bodmer, J. Tschopp and S. N. Farrow, Studies on the interaction between TWEAK and the death receptor WSL-1/TRAMP (DR3), FEBS Lett., 2000, 485, 135–141.

    Article  CAS  PubMed  Google Scholar 

  65. M. S. Shin, H. S. Kim, S. H. Lee, W. S. Park, S. Y. Kim, J. Y. Park, J. H. Lee, S. K. Lee, S. N. Lee, S. S. Jung, J. Y. Han, H. Kim, J. Y. Lee and N. J. Yoo, Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers, Cancer Res., 2001, 61, 4942–4946.

    CAS  PubMed  Google Scholar 

  66. M. S. Sheikh, T. F. Burns, Y. Huang, G. S. Wu, S. Amundson, K. S. Brooks, A. J. Fornace, Jr and W. S. el Deiry, p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha, Cancer Res., 1998, 58, 1593–1598.

    CAS  PubMed  Google Scholar 

  67. M. A. Degli-Esposti, W. C. Dougall, P. J. Smolak, J. Y. Waugh, C. A. Smith and R. G. Goodwin, The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain, Immunity, 1997, 7, 813–820.

    Article  CAS  PubMed  Google Scholar 

  68. F. Bachmann, S. A. Buechner, M. Wernli, S. Strebel and P. Erb, Ultraviolet light downregulates CD95 ligand and TRAIL receptor expression facilitating actinic keratosis and squamous cell carcinoma formation, J. Invest. Dermatol., 2001, 117, 59–66.

    Article  CAS  PubMed  Google Scholar 

  69. B. R. Wong, R. Josien, S. Y. Lee, B. Sauter, H. L. Li, R. M. Steinman and Y. Choi, TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor, J. Exp. Med., 1997, 186, 2075–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. C. Rosette and M. Karin, Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors, Science, 1996, 274, 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  71. D. Kulms, B. Poppelmann, D. Yarosh, T. A. Luger, J. Krutmann and T. Schwarz, Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 7974–7979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. E. S. Alnemri, Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases, J. Cell. Biochem., 1997, 64, 33–42.

    Article  CAS  PubMed  Google Scholar 

  73. G. Nunez, M. A. Benedict, Y. Hu and N. Inohara, Caspases: the proteases of the apoptotic pathway, Oncogene, 1998, 17, 3237–3245.

    Article  PubMed  Google Scholar 

  74. A. Ashkenazi and V. M. Dixit, Death receptors: signaling and modulation, Science, 1998, 281, 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  75. M. MacFarlane, M. Ahmad, S. M. Srinivasula, A. Fernandes, G. M. Cohen and E. S. Alnemri, Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL, J. Biol. Chem., 1997, 272, 25417–25420.

    Article  CAS  PubMed  Google Scholar 

  76. G. Kothny-Wilkes, D. Kulms, T. A. Luger, M. Kubin and T. Schwarz, Interleukin-1 protects transformed keratinocytes from tumor necrosis factor-related apoptosis-inducing ligand- and CD95-induced apoptosis but not from ultraviolet radiation-induced apoptosis, J. Biol. Chem., 1999, 274, 28916–28921.

    Article  CAS  PubMed  Google Scholar 

  77. A. Schwarz, K. Mahnke, T. A. Luger and T. Schwarz, Pentoxifylline reduces the formation of sunburn cells, Exp. Dermatol., 1997, 6, 1–5.

    Article  CAS  PubMed  Google Scholar 

  78. L. Eckhart, W. Declercq, J. Ban, M. Rendl, B. Lengauer, C. Mayer, S. Lippens, P. Vandenabeele and E. Tschachler, Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation, J. Invest. Dermatol., 2000, 115, 1148–1151.

    Article  CAS  PubMed  Google Scholar 

  79. K. Miwa, M. Asano, R. Horai, Y. Iwakura, S. Nagata and T. Suda, Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand, Nature Medicine, 1998, 4, 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  80. W. Chen, H. G. Wang, S. M. Srinivasula, E. S. Alnemri and N. R. Cooper, B cell apoptosis triggered by antigen receptor ligation proceeds via a novel caspase-dependent pathway, J. Immunol., 1999, 163, 2483–2491.

    CAS  PubMed  Google Scholar 

  81. K. Samejima, S. Tone, T. J. Kottke, M. Enari, H. Sakahira, C. A. Cooke, Durrieu, L. M. Martins, S. Nagata, S. H. Kaufmann and W. C. Earnshaw, Transition from caspase-dependent to caspase-independent mechanisms at the onset of apoptotic execution, J. Cell Biol., 1998, 143, 225–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. D. D. Mosser, A. W. Caron, L. Bourget, C. Denis-Larose and B. Massie, Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis, Mol. Cell. Biol., 1997, 17, 5317–5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. N. M. Robertson, J. Zangrilli, T. Fernandes-Alnemri, P. D. Friesen, G. Litwack and E. S. Alnemri, Baculovirus P35 inhibits the glucocorticoid-mediated pathway of cell death, Cancer Res., 1997, 57, 43–47.

    CAS  PubMed  Google Scholar 

  84. A. Vantieghem, Z. Assefa, P. Vandenabeele, W. Declercq, S. Courtois, J. R. Vandenheede, W. Merlevede, W. P. de and P. Agostinis, Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis. Involvement of cytochrome c and procaspase-3 activation in the mechanism of apoptosis, FEBS Lett., 1998, 440, 19–24.

    Article  CAS  PubMed  Google Scholar 

  85. S. Kamada, M. Washida, J. Hasegawa, H. Kusano, Y. Funahashi and Y. Tsujimoto, Involvement of caspase-4(-like) protease in Fas-mediated apoptotic pathway, Oncogene, 1997, 15, 285–290.

    Article  CAS  PubMed  Google Scholar 

  86. A. Krippner-Heidenreich, R. V. Talanian, R. Sekul, R. Kraft, H. Thole, H. Ottleben and B. Luscher, Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1, Biochem. J., 2001, 358, 705–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. T. E. Allsopp, J. McLuckie, L. E. Kerr, M. Macleod, J. Sharkey and J. S. Kelly, Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis, Cell Death Differ., 2000, 7, 984–993.

    Article  CAS  PubMed  Google Scholar 

  88. M. Germain, E. B. Affar, D. D’Amours, V. M. Dixit, G. S. Salvesen and G. G. Poirier, Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7, J. Biol. Chem., 1999, 274, 28379–28384.

    Article  CAS  PubMed  Google Scholar 

  89. M. Ahmad, S. M. Srinivasula, R. Hegde, R. Mukattash, T. Fernandes-Alnemri and E. S. Alnemri, Identification and characterization of murine caspase-14, a new member of the caspase family, Cancer Res., 1998, 58, 5201–5205.

    CAS  PubMed  Google Scholar 

  90. H. Li, H. Zhu, C. J. Xu and J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell, 1998, 94, 491–501.

    Article  CAS  PubMed  Google Scholar 

  91. X. Luo, I. Budihardjo, H. Zou, C. Slaughter and X. Wang, Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell, 1998, 94, 481–490.

    Article  CAS  PubMed  Google Scholar 

  92. H. Zou, Y. Li, X. Liu and X. Wang, An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J. Biol. Chem., 1999, 274, 11549–11556.

    Article  CAS  PubMed  Google Scholar 

  93. S. B. Bratton, G. Walker, S. M. Srinivasula, X. M. Sun, M. Butterworth, E. S. Alnemri and G. M. Cohen, Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes, EMBO J., 2001, 20, 998–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. T. Fernandes-Alnemri, R. C. Armstrong, J. Krebs, S. M. Srinivasula, L. Wang, F. Bullrich, L. C. Fritz, J. A. Trapani, K. J. Tomaselli, G. Litwack and E. S. Alnemri, In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 7464–7469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. J. Lee, J. Hur, P. Lee, J. Y. Kim, N. Cho, S. Y. Kim, H. Kim, M. S. Lee and K. Suk, Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11, J. Biol. Chem., 2001, 276, 32956–32965.

    Article  CAS  PubMed  Google Scholar 

  96. S. J. Kang, S. Wang, H. Hara, E. P. Peterson, S. Namura, S. Amin-Hanjani, Z. Huang, A. Srinivasan, K. J. Tomaselli, N. A. Thornberry, M. A. Moskowitz and J. Yuan, Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions, J. Cell Biol., 2000, 149, 613–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. S. Wang, M. Miura, Y. K. Jung, H. Zhu, E. Li and J. Yuan, Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE, Cell, 1998, 92, 501–509.

    Article  CAS  PubMed  Google Scholar 

  98. T. Nakagawa and J. Yuan, Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis, J. Cell Biol., 2000, 150, 887–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. T. Nakagawa, H. Zhu, N. Morishima, E. Li, J. Xu, B. A. Yankner and J. Yuan, Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta, Nature, 2000, 403, 98–103.

    Article  CAS  PubMed  Google Scholar 

  100. T. Yoneda, K. Imaizumi, K. Oono, D. Yui, F. Gomi, T. Katayama and M. Tohyama, Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress, J. Biol. Chem., 2001, 276, 13935–13940.

    Article  CAS  PubMed  Google Scholar 

  101. V. Bitko and S. Barik, An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus, J. Cell. Biochem., 2001, 80, 441–454.

    Article  CAS  PubMed  Google Scholar 

  102. E. W. Humke, J. Ni and V. M. Dixit, ERICE, a novel FLICE-activatable caspase, J. Biol. Chem., 1998, 273, 15702–15707.

    Article  CAS  PubMed  Google Scholar 

  103. M. K. Kuechle, H. M. Predd, P. Fleckman, B. A. Dale and R. B. Presland, Caspase-14, a keratinocyte specific caspase: mRNA splice variants and expression pattern in embryonic and adult mouse, Cell Death Differ., 2001, 8, 868–870.

    Article  CAS  PubMed  Google Scholar 

  104. S. Lippens, M. Kockx, M. Knaapen, L. Mortier, R. Polakowska, A. Verheyen, M. Garmyn, A. Zwijsen, P. Formstecher, D. Huylebroeck, P. Vandenabeele and W. Declercq, Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing, Cell Death Differ., 2000, 7, 1218–1224.

    Article  CAS  PubMed  Google Scholar 

  105. L. Eckhart, W. Declercq, J. Ban, M. Rendl, B. Lengauer, C. Mayer, S. Lippens, P. Vandenabeele and E. Tschachler, Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation, J. Invest. Dermatol., 2000, 115, 1148–1151.

    Article  CAS  PubMed  Google Scholar 

  106. L. Eckhart, J. Ban, H. Fischer and E. Tschachler, Caspase-14: analysis of gene structure and mRNA expression during keratinocyte differentiation, Biochem. Biophys. Res. Commun., 2000, 277, 655–659.

    Article  CAS  PubMed  Google Scholar 

  107. S. Hu, S. J. Snipas, C. Vincenz, G. Salvesen and V. M. Dixit, Caspase-14 is a novel developmentally regulated protease, J. Biol. Chem., 1998, 273, 29648–29653.

    Article  CAS  PubMed  Google Scholar 

  108. C. M. Van de, G. Van Loo, S. Pype, W. Van Criekinge, d. b. Van, I. F. Molemans, W. Fiers, W. Declercq and P. Vandenabeele, Identification of a new caspase homologue: caspase-14, Cell Death Differ., 1998, 5, 838–846.

    Article  CAS  Google Scholar 

  109. J. F. Krebs, R. C. Armstrong, A. Srinivasan, T. Aja, A. M. Wong, A. Aboy, R. Sayers, B. Pham, T. Vu, K. Hoang, D. S. Karanewsky, C. Leist, A. Schmitz, J. C. Wu, K. J. Tomaselli and L. C. Fritz, Activation of membrane-associated procaspase-3 is regulated by Bcl-2, J. Cell Biol., 1999, 144, 915–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. M. Mancini, D. W. Nicholson, S. Roy, N. A. Thornberry, E. P. Peterson, L. A Casciola-Rosen and A. Rosen, The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling, J. Cell Biol., 1998, 140, 1485–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. N. E. Crook, R. J. Clem and L. K. Miller, An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif, J. Virol., 1993, 67, 2168–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Q. L. Deveraux, H. R. Stennicke, G. S. Salvesen and J. C. Reed, Endogenous inhibitors of caspases, J. Clin. Immunol., 1999, 19, 388–398.

    Article  CAS  PubMed  Google Scholar 

  113. M. Rothe, M. G. Pan, W. J. Henzel, T. M. Ayres and D. V. Goeddel, The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins, Cell, 1995, 83, 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  114. C. S. Duckett, V. E. Nava, R. W. Gedrich, R. J. Clem, J. L. Van Dongen, M. C. Gilfillan, H. Shiels, J. M. Hardwick and C. B. Thompson, A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors, EMBO J., 1996, 15, 2685–2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. P. Liston, N. Roy, K. Tamai, C. Lefebvre, S. Baird, G. Cherton-Horvat, R. Farahani, M. McLean, J. E. Ikeda, A. MacKenzie and R. G. Korneluk, Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes, Nature, 1996, 379, 349–353.

    Article  CAS  PubMed  Google Scholar 

  116. G. Ambrosini, C. Adida and D. C. Altieri, A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma, Nature Medicine, 1997, 3, 917–921.

    Article  CAS  PubMed  Google Scholar 

  117. N. Roy, Q. L. Deveraux, R. Takahashi, G. S. Salvesen and J. C. Reed, The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases, EMBO J., 1997, 16, 6914–6925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. I. Tamm, Y. Wang, E. Sausville, D. A. Scudiero, N. Vigna, T. Oltersdorf and J. C. Reed, IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs, Cancer Res., 1998, 58, 5315–5320.

    CAS  PubMed  Google Scholar 

  119. H. R. Stennicke and G. S. Salvesen, Biochemical characteristics of caspases-3, -6, -7, and -8, J. Biol. Chem., 1997, 272, 25719–25723.

    Article  CAS  PubMed  Google Scholar 

  120. G. Ambrosini, C. Adida, G. Sirugo and D. C. Altieri, Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting, J. Biol. Chem., 1998, 273, 11177–11182.

    Article  CAS  PubMed  Google Scholar 

  121. M. L. Lo, S. Staibano, G. Pannone, M. D. Mignogna, A. Mariggio, G. Salvatore, P. Chieffi, D. Tramontano, G. De Rosa and D. C. Altieri, Expression of the apoptosis inhibitor survivin in aggressive squamous cell carcinoma, Exp. Mol. Pathol., 2001, 70, 249–254.

    Article  CAS  Google Scholar 

  122. D. Grossman, P. J. Kim, J. S. Schechner and D. C. Altieri, Inhibition of melanoma tumor growth in vivo by survivin targeting, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 635–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. C. Du, M. Fang, Y. Li, L. Li and X. Wang, Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell, 2000, 102, 33–42.

    Article  CAS  PubMed  Google Scholar 

  124. A. M. Verhagen, P. G. Ekert, M. Pakusch, J. Silke, L. M. Connolly, G. E. Reid, R. L. Moritz, R. J. Simpson and D. L. Vaux, Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins, Cell, 2000, 102, 43–53.

    Article  CAS  PubMed  Google Scholar 

  125. V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton and P. M. Henson, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol., 1992, 148, 2207–2216.

    CAS  PubMed  Google Scholar 

  126. W. Maruyama, S. Irie and T. A. Sato, Morphological changes in the nucleus and actin cytoskeleton in the process of Fas-induced apoptosis in Jurkat T cells, Histochem. J., 2000, 32, 495–503.

    Article  CAS  PubMed  Google Scholar 

  127. E. Bonanno, M. Ruzittu, E. C. Carla, M. R. Montinari, P. Pagliara and L. Dini, Cell shape and organelle modification in apoptotic U937 cells, Eur. J. Histochem., 2000, 44, 237–246.

    CAS  PubMed  Google Scholar 

  128. G. Bonelli, M. C. Sacchi, G. Barbiero, F. Duranti, G. Goglio, D. C. Verdun, J. S. Amenta, M. Piacentini, C. Tacchetti and F. M. Baccino, Apoptosis of L929 cells by etoposide: a quantitative and kinetic approach, Exp. Cell Res., 1996, 228, 292–305.

    Article  CAS  PubMed  Google Scholar 

  129. Y. Zhao, M. Wu, Y. Shen and Z. Zhai, Analysis of nuclear apoptotic process in a cell-free system, Cell. Mol. Life Sci., 2001, 58, 298–306.

    Article  CAS  PubMed  Google Scholar 

  130. G. M. Cohen, X. M. Sun, R. T. Snowden, D. Dinsdale and D. N. Skilleter, Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation, Biochem. J., 1992, 286, 331–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Y. Liu, J. M. Cousin, J. Hughes, D. J. Van, J. R. Seckl, C. Haslett, I. Dransfield, J. Savill and A. G. Rossi, Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes, J. Immunol., 1999, 162, 3639–3646.

    CAS  PubMed  Google Scholar 

  132. M. D. Navazo, L. Daviet, J. Savill, Y. Ren, L. L. Leung, J. L. McGregor, Identification of a domain (155-183) on CD36 implicated in the phagocytosis of apoptotic neutrophils, J. Biol. Chem., 1996, 271, 15381–15385.

    Article  CAS  PubMed  Google Scholar 

  133. P. Nicotera, M. Leist, E. Fava, L. Berliocchi and C. Volbracht, Energy requirement for caspase activation and neuronal cell death, Brain Pathol., 2000, 10, 276–282.

    Article  CAS  PubMed  Google Scholar 

  134. F. Gillardon, I. Moll, M. Meyer and T. M. Michaelidis, Alterations in cell death and cell cycle progression in the UV-irradiated epidermis of bcl-2-deficient mice, Cell Death Differ., 1999, 6, 55–60.

    Article  CAS  PubMed  Google Scholar 

  135. T. L. Deckwerth, E. M. Johnson, Jr, Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor, J. Cell Biol., 1993, 123, 1207–1222.

    Article  CAS  PubMed  Google Scholar 

  136. G. Kroemer, N. Zamzami and S. A. Susin, Mitochondrial control of apoptosis, Immunol. Today, 1997, 18, 44–51.

    Article  CAS  PubMed  Google Scholar 

  137. P. X. Petit, S. A. Susin, N. Zamzami, B. Mignotte and G. Kroemer, Mitochondria and programmed cell death: back to the future, FEBS Lett., 1996, 396, 7–13.

    Article  CAS  PubMed  Google Scholar 

  138. P. Bernardi and V. Petronilli, The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal, J. Bioenerg. Biomembr., 1996, 28, 131–138.

    Article  CAS  PubMed  Google Scholar 

  139. N. Zamzami, S. A. Susin, P. Marchetti, T. Hirsch, I. Gomez-Monterrey, M. Castedo and G. Kroemer, Mitochondrial control of nuclear apoptosis [see comments], J. Exp. Med., 1996, 183, 1533–1544.

    Article  CAS  PubMed  Google Scholar 

  140. M. Zoratti and I. Szabo, The mitochondrial permeability transition, Biochim. Biophys. Acta, 1995, 1241, 139–176.

    Article  PubMed  Google Scholar 

  141. S. A. Susin, N. Zamzami and G. Kroemer, Mitochondria as regulators of apoptosis: doubt no more, Biochim. Biophys. Acta, 1998, 1366, 151–165.

    Article  CAS  PubMed  Google Scholar 

  142. F. Ichas, L. S. Jouaville and J. P. Mazat, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell, 1997, 89, 1145–1153.

    Article  CAS  PubMed  Google Scholar 

  143. X. Liu, C. N. Kim, J. Yang, R. Jemmerson and X. Wang, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome, c, Cell, 1996, 86, 147–157.

    Article  CAS  PubMed  Google Scholar 

  144. E. Bossy-Wetzel, D. D. Newmeyer and D. R. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, EMBO J., 1998, 17, 37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. C. Purring-Koch, G. McLendon, Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 11928–11931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. A. Saleh, S. M. Srinivasula, S. Acharya, R. Fishel and E. S. Alnemri, Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation, J. Biol. Chem., 1999, 274, 17941–17945.

    Article  CAS  PubMed  Google Scholar 

  147. H. Wiseman and B. Halliwell, Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer, Biochem. J., 1996, 313, 17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. M. Higuchi, T. Honda, R. J. Proske and E. T. Yeh, Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases, Oncogene, 1998, 17, 2753–2760.

    Article  CAS  PubMed  Google Scholar 

  149. K. Danno, T. Horio, M. Takigawa and S. Imamura, Role of oxygen intermediates in UV-induced epidermal cell injury, J. Invest. Dermatol., 1984, 83, 166–168.

    Article  CAS  PubMed  Google Scholar 

  150. K. Hanada, D. Sawamura, K. Tamai, I. Hashimoto and S. Kobayashi, Photoprotective effect of esterified glutathione against ultraviolet B-induced sunburn cell formation in the hairless mice, J. Invest. Dermatol., 1997, 108, 727–730.

    Article  CAS  PubMed  Google Scholar 

  151. K. Werninghaus, M. Meydani, J. Bhawan, R. Margolis, J. B. Blumberg and B. A. Gilchrest, Evaluation of the photoprotective effect of oral vitamin E supplementation, Arch. Dermatol., 1994, 130, 1257–1261.

    Article  CAS  PubMed  Google Scholar 

  152. D. L. Bissett, R. Chatterjee and D. P. Hannon, Photoprotective effect of superoxide-scavenging antioxidants against ultraviolet radiation-induced chronic skin damage in the hairless mouse, Photodermatol. Photoimmunol. Photomed., 1990, 7, 56–62.

    CAS  PubMed  Google Scholar 

  153. D. Darr, S. Combs, S. Dunston, T. Manning and S. Pinnell, Topical vitamin C protects porcine skin from ultraviolet radiation-induced damage, Br. J. Dermatol., 1992, 127, 247–253.

    Article  CAS  PubMed  Google Scholar 

  154. D. Darr, S. Dunston, H. Faust and S. Pinnell, Effectiveness of antioxidants (vitamin C and E) with and without sunscreens as topical photoprotectants, Acta Derm. Venereol., 1996, 76, 264–268.

    CAS  PubMed  Google Scholar 

  155. L. Benassi, D. Ottani, F. Fantini, A. Marconi, C. Chiodino, A. Giannetti and C. Pincelli, 1,25-dihydroxyvitamin D3, transforming growth factor beta1, calcium, and ultraviolet B radiation induce apoptosis in cultured human keratinocytes, J. Invest. Dermatol., 1997, 109, 276–282.

    Article  CAS  PubMed  Google Scholar 

  156. D. A. Norris, Differential control of cell death in the skin [editorial], Arch. Dermatol., 1995, 131, 945–948.

    Article  CAS  PubMed  Google Scholar 

  157. M. Cario-Andre, C. Pain, Y. Gall, J. Ginestar, O. Nikaido and A. Taieb, Studies on epidermis reconstructed with and without melanocytes: melanocytes prevent sunburn cell formation but not appearance of DNA damaged cells in fair-skinned caucasians, J. Invest. Dermatol., 2000, 115, 193–199.

    Article  CAS  PubMed  Google Scholar 

  158. S. Zhai, M. Yaar, S. M. Doyle and B. A. Gilchrest, Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating BCL-2 levels, Exp. Cell Res., 1996, 224, 335–343.

    Article  CAS  PubMed  Google Scholar 

  159. K. Isoherranen, I. Sauroja, C. Jansen and K. Punnonen, UV irradiation induces downregulation of bcl-2 expression in vitro and in vivo, Arch. Dermatol. Res., 1999, 291, 212–216.

    Article  CAS  PubMed  Google Scholar 

  160. V. A. Tron, G. Li, V. Ho and M. J. Trotter, Ultraviolet radiation-induced p53 responses in the epidermis are differentiation-dependent, J. Cutaneous Med. Surg., 1999, 3, 280–283.

    Article  CAS  Google Scholar 

  161. A. M. Montgomery, R. A. Reisfeld and D. A. Cheresh, Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 8856–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. J. E. J. Meredith, B. Fazeli and M. A. Schwartz, The extracellular matrix as a cell survival factor, Mol. Biol. Cell, 1993, 4, 953–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. A. J. Zhu, I. Haase and F. M. Watt, Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 6728–6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. R. Gniadecki, M. Hansen and H. C. Wulf, Two pathways for induction of apoptosis by ultraviolet radiation in cultured human keratinocytes, J. Invest. Dermatol., 1997, 109, 163–169.

    Article  CAS  PubMed  Google Scholar 

  165. A. Fourtanier, Mexoryl SX protects against solar-simulated UVR-induced photocarcinogenesis in mice, Photochem. Photobiol., 1996, 64, 688–693.

    Article  CAS  PubMed  Google Scholar 

  166. J. A. Harrison, S. L. Walker, S. R. Plastow, M. D. Batt, J. L. Hawk and A. R. Young, Sunscreens with low sun protection factor inhibit ultraviolet B and A photoaging in the skin of the hairless albino mouse, Photodermatol. Photoimmunol. Photomed., 1991, 8, 12–20.

    CAS  PubMed  Google Scholar 

  167. C. Nishigori, D. B. Yarosh, C. Donawho and M. L. Kripke, The immune system in ultraviolet carcinogenesis, J. Invest. Dermatol. Symp. Proc., 1996.

    Google Scholar 

  168. M. L. Kripke, P. A. Cox, L. G. Alas and D. B. Yarosh, Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice, Proc. Natl. Acad. Sci. U. S. A., 1992, 89, 7516–7520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. P. Wolf, D. B. Yarosh and M. L. Kripke, Effects of sunscreens and a DNA excision repair enzyme on ultraviolet radiation-induced inflammation, immune suppression, and cyclobutane pyrimidine dimer formation in mice, J. Invest. Dermatol., 1993, 101, 523–527.

    Article  CAS  PubMed  Google Scholar 

  170. A. R. Young, J. M. Sheehan, C. A. Chadwick and C. S. Potten, Protection by ultraviolet A and B sunscreens against in situ dipyrimidine photolesions in human epidermis is comparable to protection against sunburn, J. Invest. Dermatol., 2000, 115, 37–41.

    Article  CAS  PubMed  Google Scholar 

  171. G. L. Grove and K. H. Kaidbey, Sunscreens prevent sunburn cell formation in human skin, J. Invest. Dermatol., 1980, 75, 363–364.

    Article  CAS  PubMed  Google Scholar 

  172. J. P. Cesarini, A. Chardon, O. Binet, C. Hourseau and J. F. Grollier, High-protection sunscreen formulation prevents UVB-induced sunburn cell formation, Photodermatology, 1989, 6, 20–23.

    CAS  PubMed  Google Scholar 

  173. M. Garmyn, N. Sohrabvand and R. Roelandts, Modification of sunburn cell production in 8-MOP sensitized mouse epidermis: a method of assessing UVA sunscreen efficacy, J. Invest. Dermatol., 1989, 92, 642–645.

    Article  CAS  PubMed  Google Scholar 

  174. K. H. Kaidbey, K. H. Grove and A. M. Kligman, The influence of longwave ultraviolet radiation on sunburn cell production by UVB, J. Invest. Dermatol., 1979, 73, 743–745.

    Article  CAS  PubMed  Google Scholar 

  175. C. A. Elmets, A. Vargas and C. Oresajo, Photoprotective effects of sunscreens in cosmetics on sunburn and Langerhans cell photodamage, Photodermatol. Photoimmunol. Photomed., 1992, 9, 113–120.

    CAS  PubMed  Google Scholar 

  176. P. Wolf, P. Cox, D. B. Yarosh and M. L. Kripke, Sunscreens and T4N5 liposomes differ in their ability to protect against ultraviolet-induced sunburn cell formation, alterations of dendritic epidermal cells, and local suppression of contact hypersensitivity, J. Invest. Dermatol., 1995, 104, 287–292.

    Article  CAS  PubMed  Google Scholar 

  177. D. E. Godar, Light and Death: Photons and Apoptosis, J. Invest. Dermatol., 1999, 4, 17–23.

    Article  CAS  Google Scholar 

  178. D. E. Godar, UVA1 radiation triggers two different final apoptotic pathways, J. Invest. Dermatol., 1999, 112, 3–12.

    Article  CAS  PubMed  Google Scholar 

  179. G. Kroemer, N. Zamzami and S. A. Susin, Mitochondrial control of apoptosis, Immunol. Today, 1997, 18, 44–51.

    Article  CAS  PubMed  Google Scholar 

  180. C. Scaffidi, S. Fulda, A. Srinivasan, C. Friesen, F. Li, K. J. Tomaselli, K. M. Debatin, P. H. Krammer and M. E. Peter, Two CD95 (APO-1/Fas) signaling pathways, EMBO J., 1998, 17, 1675–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. M. Bennett, K. Macdonald, S. W. Chan, J. P. Luzio, R. Simari and P. Weissberg, Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis [see comments], Science, 1998, 282, 290–293.

    Article  CAS  PubMed  Google Scholar 

  182. S. A. Susin, E. Daugas, L. Ravagnan, K. Samejima, N. Zamzami, M. Loeffler, P. Costantini, K. F. Ferri, T. Irinopoulou, M. C. Prevost, G. Brothers, T. W. Mak, J. Penninger, W. C. Earnshaw and G. Kroemer, Two distinct pathways leading to nuclear apoptosis, J. Exp. Med., 2000, 192, 571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. M. Li, V. O. Ona, C. Guegan, M. Chen, V. Jackson-Lewis, L. J. Andrews, A. J. Olszewski, P. E. Stieg, J. P. Lee, S. Przedborski and R. M. Friedlander, Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model [see comments], Science, 2000, 288, 335–339.

    Article  CAS  PubMed  Google Scholar 

  184. Y. Tsujimoto, J. Cossman, E. Jaffe and C. M. Croce, Involvement of the bcl-2 gene in human follicular lymphoma, Science, 1985, 228, 1440–1443.

    Article  CAS  PubMed  Google Scholar 

  185. H. G. Zhang, Y. Wang, J. F. Xie, X. Liang, D. Liu, P. Yang, H. C. Hsu, R. B. Ray and J. D. Mountz, Regulation of tumor necrosis factor alpha-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt, Arthritis Rheum., 2001, 44, 1555–1567.

    Article  CAS  PubMed  Google Scholar 

  186. H. Walczak, R. E. Miller, K. Ariail, B. Gliniak, T. S. Griffith, M. Kubin, W. Chin, J. Jones, A. Woodward, T. Le, C. Smith, P. Smolak, R. G. Goodwin, C. T. Rauch, J. C. Schuh and D. H. Lynch, Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo [see comments], Nature Medicine, 1999, 5, 157–163.

    Article  CAS  PubMed  Google Scholar 

  187. D. W. Nicholson, From bench to clinic with apoptosis-based therapeutic agents, Nature, 2000, 407, 810–816.

    Article  CAS  PubMed  Google Scholar 

  188. A. Ouhtit, A. Gorny, H. K. Muller, L. L. Hill, L. Owen-Schaub and H. N. Ananthaswamy, Loss of Fas-ligand expression in mouse keratinocytes during UV carcinogenesis, Am. J. Pathol., 2000, 157, 1975–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. A. S. Jonason, S. Kunala, G. J. Price, R. J. Restifo, H. M. Spinelli, J. A. Persing, D. J. Leffell, R. E. Tarone and D. E. Brash, Frequent clones of p53-mutated keratinocytes in normal human skin [see comments], Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 14025–14029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. R. J. Berg, K. H. van Kranen, H. G. Rebel, A. de Vries, W. A. van Vloten, C. F. Van Kreijl, J. C. van der Leun, F. R. de Gruijl, Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 274–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Sheehan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheehan, J.M., Young, A.R. The sunburn cell revisited: an update on mechanistic aspects. Photochem Photobiol Sci 1, 365–377 (2002). https://doi.org/10.1039/b108291d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b108291d

Navigation