Skip to main content
Log in

Equidistribution of Eisenstein Series in the Level Aspect

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 10 October 2020

This article has been updated

Abstract

We prove an equidistribution property of the Eisenstein series for congruence subgroups as the level goes to infinity. This is an analogy of the phenomenon called quantum ergodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Change history

  • 10 October 2020

    The second author formulated quantum unique ergodicity for Eisenstein series in the prime level aspect in ���Equidistribution of Eisenstein series in the level aspect���, Commun. Math. Phys. 289(3) 1150 (2009). We point out errors and correct the proofs with partially weakened claims.

References

  1. Duke W., Friedlander J.B., Iwaniec H.: The subconvexity problem for Artin L-functions. Invent. Math. 149, 489–577 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Hoffstein J., Lockhart P.: Coefficients of Maass forms and the Siegel zero. Ann. Math. 140, 161–181 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Iwaniec, H.: Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Vol. 53, Providence, RI: Amer. Math. Soc.

  4. Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications 53, Providence, RI: Amer. Math. Soc., 2004

  5. Koyama S.: Quantum ergodicity of Eisenstein series for arithmetic 3-manifolds. Commun. Math. Phys. 215, 477–486 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Kowalski E., Michel P., Vanderkam J.: Rankin-Selberg L-functions in the level aspect. Duke Math. J. 114, 123–191 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lindenstrass E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. 163, 165–219 (2006)

    Article  MathSciNet  Google Scholar 

  8. Luo W., Sarnak P.: Quantum ergodicity of eigenfunctions on \({PSL_2(\mathbb{Z})\backslash H^2}\) . Publ. I.H.E.S. 81, 207–237 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Ramanujan S.: Some formulae in the arithmetic theory of numbers. Messenger of Math. 45, 81–84 (1916)

    Google Scholar 

  10. Rudnick Z., Sarnak P.: The behavior of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys 161, 195–213 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Meurman, T.: On the order of the Maass L-function on the critical line. In: Number theory, Vol. I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, 51, Amsterdams: North-Holland, 1990, pp. 325–354

  12. Petridis Y., Sarnak P.: Quantum ergodicity for SL(2, o)\H 3 and estimates for L functions. J. Evol. Equ. 1, 277–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sarnak P.: Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J. Funct. Anal. 184, 419–445 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ya Koyama.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, Sy. Equidistribution of Eisenstein Series in the Level Aspect. Commun. Math. Phys. 289, 1131–1150 (2009). https://doi.org/10.1007/s00220-009-0764-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0764-x

Keywords

Navigation