skip to main content
research-article

Fleshing out the generalized Lambert W function

Published:25 August 2016Publication History
Skip Abstract Section

Abstract

Herein, we use Hardy's notion of the "false derivative" to obtain exact multiple roots in closed form of the transcendental-algebraic equations representing the generalized Lambert W function. In this fashion, we flesh out the generalized Lambert W function by complementing previous developments to produce a more complete and integrated body of work. Finally, we demonstrate the usefulness of this special function with some applications.

References

  1. R. Corless, G. Gonnet, D.E. G. Hare, and D. Jeffrey. Lambert's W function in maple. MapleTech, 9, Spring 1993. ed. T.C. Scott.Google ScholarGoogle Scholar
  2. R. Corless, G. Gonnet, D. E. G. Hare, D. Jeffrey, and D. Knuth. On the Lambert W function. Advances in Computational Mathematics, 5:329--359, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  3. P. S. Farrugia, R. B. Mann, and T. C. Scott. N-body gravity and the Schrödinger equation. Class. Quantum Grav., 24:4647--4659, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. B. Mann and T. Ohta. Exact solution for the metric and the motion of two bodies in (1+1)-dimensional gravity. Phys. Rev. D., 55:4723--4747, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  5. T. C. Scott, R. B. Mann, and R. E. Martinez II. General Relativity and Quantum Mechanics: Towards a generalization of the Lambert W function. AAECC, 17(3):41--47, 2006. Google ScholarGoogle ScholarCross RefCross Ref
  6. T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan III. The calculation of exchange forces: General results and specific models. J. Chem. Phys., 99:2841--2854, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  7. T. C. Scott, G. J. Fee, and J. Grotendorst. Asymptotic series of Generalized Lambert W function. SIGSAM, 47(3):75--83, September 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Tony C. Scott, M. Aubert-Frecon, and Johannes Grotendorst. New approach for the electronic energies of the hydrogen molecular ion. Chem. Phys., 324:323--338, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  9. T. C. Scott, G. J. Fee, and J. Grotendorst. Numerics of Generalized Lambert W function. SIGSAM, 48(2):42--56, November 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. C. Scott, Xiangdong Zhang, R. B. Mann, and G. J. Fee. Canonical reduction for dilatonic gravity in 3 + 1 dimensions. Phys. Rev. D, 93:084017, Apr 2016.Google ScholarGoogle ScholarCross RefCross Ref
  11. G. H. Hardy. Orders of infinity. the University press, 1910, Cambridge, 1910.Google ScholarGoogle Scholar
  12. D. Richardson. Finding roots of equations involving functions defined by first order algebraic differential equations. T. Mora and C. Traverso editors, Effective Methods in Algebraic Geometry, pages 427--440, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  13. D. Richardson. Computing the topology of a bounded non algebraic curve in the plane. Journal of Symbolic Computation, 14:629--643, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E.M. Wright. Solution of the equation zez = a. Bull. Amer. Math. Soc., 65:89--93, 1959.Google ScholarGoogle ScholarCross RefCross Ref
  15. E.M. Wright. The linear difference-differential equation with constant coefficients. Proc. Royal Soc. Edinburgh A, 62:387--393, 1949.Google ScholarGoogle Scholar
  16. E.M. Wright. A non-linear difference-differential equation. J. fuer reine und angewandte Mathematik, 194:66--87, 1955.Google ScholarGoogle Scholar
  17. Sun Yi, PatrickW. Nelson, and A. Galip Ulsoy. Delay differential equations via the matrix Lambert W function and bifurcation analysis: Application to machine tool chatter. Mathematical Biosciences, 4(2):355--368, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ravi P. Agarwal, Leonid Berezansky, Elena Braverman, and Alexander Domoshnitsky. Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York, April 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. J.-P. Richard. Time delay systems: An overview of some recent advances and open problems. Automatica, 39:1667--1694, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Communications in Computer Algebra
    ACM Communications in Computer Algebra  Volume 50, Issue 2
    June 2016
    25 pages
    ISSN:1932-2240
    DOI:10.1145/2992274
    Issue’s Table of Contents

    Copyright © 2016 Authors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 25 August 2016

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader