Skip to main content
Log in

Mitochondrial DNA Repair Pathways

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

It has long been held that there is no DNA repair in mitochondria. Early observations suggestedthat the reason for the observed accumulation of DNA damage in mitochondrial DNA is thatDNA lesions are not removed. This is in contrast to the very efficient repair that is seen inthe nuclear DNA. Mitochondrial DNA does not code for any DNA repair proteins, but it hasbeen observed that a number of repair factors can be found in mitochondrial extracts. Mostof these participate in the base excision DNA repair pathway which is responsible for theremoval of simple lesions in DNA. Recent work has shown that there is efficient base excisionrepair in mammalian mitochondria and there are also indications of the presence of morecomplex repair processes. Thus, an active field of mitochondrial DNA repair is emerging. Anunderstanding of the DNA repair processes in mammalian mitochondria is an important currentchallenge and it is likely to lead to clarification of the etiology of the common mutations anddeletions that are found in mitochondria, and which are thought to cause various humandisorders and to play a role in the aging phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Anderson, C. T., and Friedberg, E. C. (1980). Nucleic Acids Res. 8, 875-888.

    Google Scholar 

  • Anson, R. M., Hudson, E., and Bohr, V. A. (1999) FASEB J., In Press.

  • Anson, R. M., Croteau, D. L., Stierum, R. H., Filburn, C., Parsell, R., and Bohr, V. A. (1998). Nucleic Acids Res. 26, 662-668.

    Google Scholar 

  • Aspinwall, R., Rothwell, D. G., Roldan-Arjona, T., Anselmino, C., Ward, C. J., Cheadle, J. P., Sampson, J. R., Lindahl, T., Harris, P. C., and Hickson, I. D. (1997). Proc. Natl. Acad. Sci. U.S. 94, 109-114.

    Google Scholar 

  • Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985). Cell 40, 359-699.

    Google Scholar 

  • Boiteux, S., Gajewski, E., Laval, J., and Dizdaroglu, M. (1992). Biochemistry 31, 106-110.

    Google Scholar 

  • Caradonna, S., Ladner, R., Hansbury, M., Kosciuk, M., Lynch, F., and Muller, S. (1996). Exp. Cell Res. 222, 345-359.

    Google Scholar 

  • Clayton, D. A., Doda, J. N., and Friedberg, E. C. (1974). Proc. Nat. Acad. Sci. U.S. 71, 2777-2781.

    Google Scholar 

  • Collins, A., Cadet, J., Epe, B., and Gedik, C. (1997). Carcinogenesis 18, 1833-1836.

    Google Scholar 

  • Copeland, N. E., Hanke, C. W., and Michalak, J. A. (1997). Dermatol. Surg. 23, 447-455.

    Google Scholar 

  • Croteau, D. L., ap, R. C., Hudson, E. K., Dianov, G. L., Hansford, R. G., and Bohr, V. A. (1997). J. Biol. Chem. 272, 27338-27344.

    Google Scholar 

  • Croteau, D. L., and Bohr, V. A. (1997). J. Biol. Chem. 272, 25409-25412.

    Google Scholar 

  • Demple, B., and Harrison, L. (1994). Annu. Rev. Biochem. 63, 915-948.

    Google Scholar 

  • Dianov, G., and Lindahl, T. (1994). Currents Biol. 4, 1069-1076.

    Google Scholar 

  • Driggers, W. J., Grishko, V. I., LeDoux, S. P., and Wilson, G. L. (1996). Cancer Res. 56, 1262-1266.

    Google Scholar 

  • Driggers, W. J., LeDoux, S. P., and Wilson, G. L. (1993). J. Biol. Chem. 268, 22042-22045.

    Google Scholar 

  • Friedberg, E. C. (1996). Annu. Rev. Biochem. 65, 15-42.

    Google Scholar 

  • Frosina, G., Fortini, P., Rossi, O., Carrozzino, F., Raspaglio, G., Cox, L. S., Lane, D. P., Abbondandolo, A., and Dogliotti, E. (1996). J. Biol. Chem. 271, 9573-9578.

    Google Scholar 

  • Hilbert, T. P., Chaung, W. R., Boorstein, R. J., Cunningham, R. P., and Teebor, G. W. (1997). J. Biol. Chem. 272, 6733-6740.

    Google Scholar 

  • Klungland, A., and Lindahl, T. (1997). EMBO J. 16, 3341-3348.

    Google Scholar 

  • Kouchakdjian, M., Bodepudi, V., Shibutani, S., Eisenberg, M., Johnson, F., Grollman, A. P., and Patel, D. J. (1991). Biochemistry 30, 1403-1412.

    Google Scholar 

  • Kubota, Y., Nash, R. A., Klungland, A., Schar, P., Barnes, D. E., and Lindahl, T. (1996). EMBO J. 15, 6662-6670.

    Google Scholar 

  • LeDoux, S. P., Wilson, G. L., Beecham, E. J., Stevnsner, T., Wassermann, K., and Bohr, V. A. (1992). Carcinogenesis 13, 1967-1973.

    Google Scholar 

  • Li, X., Li, J., Harrington, J., Lieber, M. R., and Burgers, P. M. (1995). J. Biol. Chem. 270, 22109-22112.

    Google Scholar 

  • Lindahl, T. (1993). Nature (London) 362, 709-715.

    Google Scholar 

  • Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H., and Copeland, W. C. (1998). Proc. Natl. Acad. Sci. U.S. 95, 12244-12248.

    Google Scholar 

  • Matsumoto, Y., and Kim, K. (1995). Science 269, 699-702.

    Google Scholar 

  • Matsumoto, Y., Kim, K., and Bogenhagen, D. F. (1994). Mol. Cell. Biol. 14, 6187-6197.

    Google Scholar 

  • Myers, K. A., Saffhill, R., and O Connor, PJ. (1988). Carcinogenesis 9, 285-292.

    Google Scholar 

  • Nilsen, H., Otterlei, M., Haug, T., Solum, K., Nagelhus, T. A., Skorpen, F., and Krokan, H. E. (1997). Nucleic Acids Res. 21, 2579-2584.

    Google Scholar 

  • Pettepher, C. C., LeDoux, S. P., Bohr, V. A., and Wilson, G. L. (1991). J. Biol. Chem. 266, 3113-3177.

    Google Scholar 

  • Piersen, C. E., Prasad, R., Wilson, S. H., and Lloyd, R. S. (1996). J. Biol. Chem. 271, 17811-17815.

    Google Scholar 

  • Pinz, K. G., and Bogenhagen, D. F. (1998). Mol. Cell. Biol. 18, 1257-1265.

    Google Scholar 

  • Pinz, K. G., Shibutani, S., and Bogenhagen, D. F. (1995). J. Biol. Chem. 270, 9202-9206.

    Google Scholar 

  • Pirsel, M., and Bohr, V. A. (1993). Carcinogenesis 14, 2105-2108.

    Google Scholar 

  • Radicella, J. P., Dherin, C., Desmaze, C., Fox, M. S., and Boiteux, S. (1997). Proc. Natl. Acad. Sci. U.S. 94, 8010-8015.

    Google Scholar 

  • Ravanat, J.-L., and Cadet, J. (1995). Chem. Res. Toxicol. 8, 379-388.

    Google Scholar 

  • Reenan, R. A. G., and Kolodner R. D. (1992). Genetics 132, 975-985.

    Google Scholar 

  • Richter, C. (1992). Mutat. Res. 275, 249-255.

    Google Scholar 

  • Roldán-Arjona, T., Wei, W.-F., Carter, K. C., Klungland, A., Anselmino, C., Wang, R.-P., Augustus, M., and Lindahl, T. (1997). Proc. Natl. Acad. Sci. U.S. 94, 8016-8020.

    Google Scholar 

  • Rosenquist, T. A., Zharkov, D. O., and Grollman, A. P. (1997). Proc. Natl. Acad. Sci. U. S. 94, 7429-7434.

    Google Scholar 

  • Ryoji, M., Katayama, H., Fusamae, H., Matsuda, A., Sakai, F., and Utano, H. (1996). Nucleic Acids Res. 24, 4057-4062.

    Google Scholar 

  • Satoh, M. S., Huh, N., Rajewsky, M. F., and Kuroki, T. (1988). J. Biol. Chem. 263, 6854-6856.

    Google Scholar 

  • Schneider, J. E., Price, S., Maidt, L., Gutteridge, J. M., and Floyd, R. A. (1990). Nucleic Acids Res. 18, 631-635.

    Google Scholar 

  • Shen, C. C., Wertelecki, W., Driggers, W. J., LeDoux, S. P., and Wilson, G. L. (1995). Mutat. Res. 337, 19-23.

    Google Scholar 

  • Shibutani, S., Takeshita, M., and Grollman, A. P. (1991). Nature (London) 349, 431-434.

    Google Scholar 

  • Singhal, R. K., Prasad, R., and Wilson, S. H. (1995). J. Biol. Chem 270, 949-957.

    Google Scholar 

  • Snyderwine, E. G. and Bohr, V. A. (1992). Cancer Res. 52, 4183-4189.

    Google Scholar 

  • Sobol, R. W., Horton, J. K., Kuhn, R., Gu, H., Singhal, R. K., Prasad, R., Rajewsky, K., and Wilson, S. H. (1996). Nature (London) 379, 183-186.

    Google Scholar 

  • Souza-Pinto, N., Croteau, D. L., Hudson, E. K., Heansford, E. G., and Bohr, V. A. (1999). Nucleic Acids Res. 27, 1935-1942.

    Google Scholar 

  • Stierum, R. H., Dianov, G. L., and Bohr, V. A. (1999). Nucleic Acids Research, 27, 312-319.

    Google Scholar 

  • Suter, M., and Richter, C. (1999) Biochemistry 38, 459-464.

    Google Scholar 

  • Taffe, B. G., Larminat, F., Laval, J., Croteau, D. L., Anson, R. M., and Bohr, V. A. (1996). Mutat. Res. 364, 183-192.

    Google Scholar 

  • Takao, M., Aburatani, H., Kobayashi, K., and Yasui, A. (1998). Nucleic Acids Res. 26, 2917-2922.

    Google Scholar 

  • Thyagarajan, B., Padua, R. A., and Campbell, C. (1996). J. Biol. Chem. 271, 27536-27543.

    Google Scholar 

  • Tomkinson, A. E., Bonk, R. T., and Linn, S. (1988). J. Biol. Chem 263, 12532-12537.

    Google Scholar 

  • Tomkinson, A. E., Bonk, R. T., Kim, J., Bartfeld, N., and Linn, S. (1990). Nucleic Acids Res 18, 929-935.

    Google Scholar 

  • Wiseman, H., Kaur, H., and Halliwel, B. (1995). Cancer Lett. 93, 113-120.

    Google Scholar 

  • Wood, R. D. (1996). Annu. Rev. Biochem. 65, 135-167.

    Google Scholar 

  • Wood, R. D. (1997). J. Biol. Chem., 272, 23465-23468.

    Google Scholar 

  • Yakes, F. M. and Van Houten, B. (1997). Proc. Natl. Acad. Sci. U.S. 94, 514-519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohr, V.A., Anson, R.M. Mitochondrial DNA Repair Pathways. J Bioenerg Biomembr 31, 391–398 (1999). https://doi.org/10.1023/A:1005484004167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005484004167

Navigation