Skip to main content
Log in

Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A natural superlattice with composition (SnS)1.2(TiS2)2, built by intercalating a SnS layer into the van der Waals gap of layered TiS2, has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS)1.2(TiS2)2 is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX)1+x (TX2) n (M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se; n = 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).

    Article  CAS  Google Scholar 

  3. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  4. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  5. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  6. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  7. J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S. Il Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).

    Article  CAS  Google Scholar 

  8. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).

    Article  CAS  Google Scholar 

  9. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, Science 315, 351 (2007).

    Article  CAS  Google Scholar 

  10. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  11. F.J. DiSalvo, Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  12. Y.K. Koh, C.J. Vineis, S.D. Calawa, M.P. Walsh, and D.G. Cahill, Appl. Phys. Lett. 94, 153101 (2009).

    Article  Google Scholar 

  13. H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).

    Article  Google Scholar 

  14. G.A. Wiegers, Prog. Solid State Chem. 24, 1 (1996).

    Article  CAS  Google Scholar 

  15. Y. Miyazaki, H. Ogawa, and T. Kajitani, Jpn. J. Appl. Phys. 43, L1202 (2004).

    Article  CAS  Google Scholar 

  16. C. Heideman, N. Nyugen, J. Hanni, Q. Lin, S. Duncombe, D.C. Johnson, and P. Zschack, J. Solid State Chem. 181, 1701 (2008).

    Article  CAS  Google Scholar 

  17. C. Chiritescu, D.G. Cahill, C. Heideman, Q.Y. Lin, C. Mortensen, N.T. Nguyen, D. Johnson, R. Rostek, and H. Bottner, J. Appl. Phys. 104, 033533 (2008).

    Article  Google Scholar 

  18. Y. Oosawa, Y. Gotoh, and M. Onoda, Chem. Lett. 52, 3 (1989).

    Google Scholar 

  19. C.M. Fang, R.A. deGroot, G.A. Wiegers, and C. Haas, J. Phys.-Condens. Mater. 8, 1663 (1996).

    Article  CAS  Google Scholar 

  20. G.A. Wiegers, A. Meetsma, J.L. Deboer, S. Vansmaalen, and R.J. Haange, J. Phys.-Condens. Mater. 3, 2603 (1991).

    Article  CAS  Google Scholar 

  21. C. Auriel, A. Meerschaut, R. Roesky, and J. Rouxel, Eur. J. Solid State Inorg. Chem. 29, 1079 (1992).

    CAS  Google Scholar 

  22. A. Meerschaut, C. Auriel, and J. Rouxel, J. Alloys Compd. 183, 129 (1992).

    Article  CAS  Google Scholar 

  23. A. Meerschaut, L. Guemas, C. Auriel, and J. Rouxel, Eur. J. Solid State Inorg. Chem. 27, 557 (1990).

    CAS  Google Scholar 

  24. P.C. Klipstein, A.G. Bagnall, W.Y. Liang, E.A. Marseglia, and R.H. Friend, J. Phys. C: Solid State 14, 4067 (1981).

    Article  CAS  Google Scholar 

  25. J.A. Wilson, Phys. Status Solidi B 86, 11 (1978).

    Article  CAS  Google Scholar 

  26. J.J. Barry, H.P. Hughes, P.C. Klipstein, and R.H. Friend, J. Phys. C: Solid State 16, 393 (1983).

    Article  CAS  Google Scholar 

  27. A. Meerschaut, Curr. Opin. Solid State Mater. Sci. 1, 250 (1996).

    Article  CAS  Google Scholar 

  28. H. Martinez, C. Auriel, D. Gonbeau, G. Pfister-Guillouzo, and A. Meerschaut, J. Electron. Spectrosc. Relat. Phenom. 95, 145 (1998).

    Article  CAS  Google Scholar 

  29. Y. Ohno, Phys. Rev. B 44, 1281 (1991).

    Article  CAS  Google Scholar 

  30. Y.K. Koh, Y. Cao, D.G. Cahill, and D. Jena, Adv. Funct. Mater. 19, 610 (2009).

    Article  CAS  Google Scholar 

  31. E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989).

    Article  Google Scholar 

  32. R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000).

    Article  CAS  Google Scholar 

  33. D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature 390, 671 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihito Koumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, C., Wang, Y., Wang, N. et al. Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides. J. Electron. Mater. 40, 1271–1280 (2011). https://doi.org/10.1007/s11664-011-1565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1565-5

Keywords

Navigation