A publishing partnership

THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

, , and

Published 2009 November 17 © 2009. The American Astronomical Society. All rights reserved.
, , Citation John T. Rayner et al 2009 ApJS 185 289 DOI 10.1088/0067-0049/185/2/289

0067-0049/185/2/289

ABSTRACT

We present a 0.8–5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ∼ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

Spectral libraries play an important role in attempts to understand and classify individual stellar sources as well as to decompose the integrated spectrum of an aggregate system, such as a galaxy, into its various stellar populations. For example, the most widely used stellar classification process, as originally developed by Morgan et al. (1943), consists of comparing the spectrum of a star against a set of reference stellar spectra (for a review see Garrison 1994). Infrared spectral libraries are particularly useful for studying the physics of cool stars (e.g., Joyce et al. 1998; Gautschy-Loidl et al. 2004), classifying and studying stars in nearby embedded young clusters (e.g., Greene & Meyer 1995; Peterson et al. 2008) and optically obscured regions of the Galaxy (e.g., Figer et al. 1995; Frogel et al. 2001; Kurtev et al. 2007, for evolved, globular, and young clusters, respectively), and studying the unresolved stellar populations of optically obscured extragalactic regions using evolutionary population synthesis (EPS; e.g., Lançon et al. 2007; Riffel et al. 2008). EPS techniques attempt to simulate observed galaxy spectra by combining individual stellar spectra from a library and thereby derive the chemical and evolutionary properties of the unresolved stellar populations (e.g., Fioc & Rocca-Volmerange 1997; Leitherer et al. 1999; Bruzual & Charlot 2003; Maraston 2005; Bruzual 2007; Ramos Almeida et al. 2009).

The niche of near-infrared (NIR ∼ 1–5 μm) spectral classification is clear. While stars earlier than roughly M0 (∼3800 K) are brighter at optical wavelengths, unobscured stars later than about M0 are brighter in the NIR and are thus better characterized at these wavelengths. Furthermore, it makes sense to use infrared diagnostics only when optical extinction compromises optical diagnostics. The optimum infrared wavelengths for observation depend on the amount of extinction. For some objects, such as young stellar objects or evolved stars, the presence of circumstellar dust can result in significant excess continuum emission longward of 2 μm. For this reason the J and H bands are perhaps best to characterize embedded young stars since they avoid the veiling due to warm dust in the K band, while at the same time taking advantage of the reduced extinction relative to the optical (e.g., Meyer et al. 1998). On the other hand, heavily obscured objects without veiling are better characterized in the K band, or even the L' band in extreme cases. Consequently, the ideal infrared spectral library should contain spectra covering a wide range of wavelengths to satisfy a variety of possible applications.

With the maturing of NIR spectrographs and detector arrays, it has become possible to generate increasingly sophisticated NIR libraries of stellar spectra. Ivanov et al. (2004) presented a compilation of NIR spectral libraries available at that time. In Table 1 we revise and update this list. (The list does not include spectral libraries covering mostly L and T dwarfs. For our purposes a "library" is assumed to contain more than ten objects.) All of these libraries have shortcomings since none of them contains a large sample of stars, with a range of metallicities, covering all spectral types and luminosity classes, with spectra spanning a large wavelength range. In light of this, we have undertaken a project to construct an improved spectral library using the facility NIR spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The result of this work is the IRTF Spectral Library, which we are presenting in a series of papers. In the first paper of this series, Cushing et al. (2005) presented the spectra of M, L, and T dwarfs. The current paper presents 210 spectra of F, G, K, and M stars with luminosity classes between I and V (with mostly near-solar metallicities), and includes some asymptotic giant branch (AGB) stars, carbon stars, and S stars. The spectra of all of these stars, including the 13 L dwarfs and two T dwarfs from Cushing et al. (2005), and the gas giant planets (spectra summed along the central meridian) are available in digital form on the IRTF Web site.4 Additional papers on hot stars are currently in preparation.

Table 1. Near-IR Spectral Libraries

Spectral Library Reference λ (μm) Spectral Type Luminosity Class Number of Stars Resolving Power
Johnson & Méndez (1970) 1.2–2.5 A−M I−V 32 550
Kleinmann & Hall (1986) 2.0–2.5 F−M I−V 26 2500–3100
Lambert et al. (1986) 1.5–2.5 C   30 75,000
McGregor et al. (1988) 1.0–2.5 Be, Ae I 13 500
Tanaka et al. (1990) 1.5–2.5 C   33 2000
Terndrup et al. (1991) 0.45–2.45 M III 32 1000
Lançon & Rocca-Volmerange (1992) 1.4–2.5 O−M I−V 56 550
Origlia et al. (1993) 1.5–1.7 G−M I−V 40 1500
Lazaro et al. (1994) 1.1–4.2 C   15 500
Ali et al. (1995) 2.0–2.4 F−M V 33 1380
Oudmaijer et al. (1995) 2.1–2.4 post-AGB   18 400–700, ∼1500
Dallier et al. (1996) 1.57–1.64 O−M I−V 37 1500–2000
Hanson et al. (1996) 2.0–2.4 O−B I−V 180 800–3000
Jones et al. (1996) 1.16–1.22 M V 13 1085
Morris et al. (1996) 1.45–2.4 WR, O, B, LBV I 26 570–1600
Wallace & Hinkle (1996) 2.02–2.41 G−M I−V 12 45000
Blum et al. (1997) 1.5–1.8 O−B I−V 11 575
Figer et al. (1997) 2.0–2.4 WR   38 525
Ramírez et al. (1997) 2.19–2.34 K−M III 43 1380, 4830
Wallace & Hinkle (1997) 2.0–2.4 O−M I−V 115 3000
Joyce (1998) 1.0–4.1 C   29 ∼500
Joyce et al. (1998) 1.0–1.3 M, S, C AGB III 103 1100
Meyer et al. (1998) 1.5–1.7 O−M I−V 85 3000
Pickles (1998) (compilation) 0.15–2.5 O−M I−V 131 50–6000
Förster Schreiber (2000) 1.95–2.45 G−M I−III 31 830, 3000
Lançon & Wood (2000) 0.5–2.5 K−M, AGB I−III 77 1100
Wallace et al. (2000) 1.05–1.34 O−M I−V 88 3000
Frogel et al. (2001) 2.17–2.34 RGB   129 1500
Lenorzer et al. (2002) 2.36–4.05 O−B I−V 75 1500–2000
Malkan et al. (2002) 1.08–1.35 O−M I−V 105 650
Vandenbussche et al. (2002) 2.36–4.05 O−M I−V 293 1500–2000
Wallace & Hinkle (2002) 3.3–4.2 G−M, AGB I−V 42 3000
Ivanov et al. (2004) 1.48–2.45 G−M I−V 218 2000–3000
Ranade et al. (2004) 1.5–1.8 O5−M3 I−V 135 1000
Cushing et al. (2005) 0.8–4.2 M, L, T V 30 940–2000
Lodieu et al. (2005) 0.6–1.0, 1.0–2.5 M6−L2 V 71 600
Hanson et al. (2005) 1.6–2.2 O−B I−V 37 8000–12000
Ranada et al. (2007) 2.0–2.2 O7−M7 I−V 114 1000
van Loon et al. (2008) 2.9–4.1 C, AGB, RSG   50 200–400
Ranade et al. (2007) 1.1–1.3 O5−M8 I−V 125 1000
Venkata Raman & Anandarao (2008) 1.5–1.8, 2.0–2.4 AGB   78 1000
Mármol-Queraltó et al. (2008) 2.1–2.4 O−M I−V 220 2500
Rayner et al. (this work) 0.8–5 F−M, S, C, AGB I−V 212 2000, 2500

Download table as:  ASCIITypeset image

There are several important features of the IRTF Spectral Library. The wide wavelength range of ∼0.8–5 μm (with a larger subset at 0.8–2.4 μm) is covered in only two cross-dispersed instrument settings. For each setting, several spectral orders are simultaneously recorded during a single exposure. In addition, most of the spectral orders in each setting have significant wavelength overlap with the adjacent spectral orders. These instrumental aspects minimize potential calibration problems posed by stitching together multiple nonoverlapping wavelength ranges observed at different times (e.g., sequentially), a situation typically encountered with observations obtained with non-cross-dispersed (single-order) spectrographs. The signal-to-noise ratio (S/N) is better than ∼100 across most of this range (except for the regions of poor atmospheric transmission and for λ>4 μm) and the resolving powers of R ≡ λ/Δλ≈ 2000 at 0.8–2.4 μm, and R≈ 2500 at 2.4–5 μm, enable the accurate measurement of spectral type and luminosity class using established equivalent width (EW) and line ratio criteria (see Section 3.1). In contrast to some other NIR spectral libraries, the continuum shape is preserved during data reduction (for details see Section 2.3), which is particularly useful for characterizing cool stars with strong molecular absorption bands that have been observed at low resolution R ∼ 100. Preserving the continuum shape also allows for absolute flux calibration by scaling the spectra to published Two Micron All Sky Survey photometry (2MASS; Skrutskie et al. 2006) and for the computation of synthetic colors (e.g., YJ, JH, HK, and KL').

2. OBSERVATIONS AND DATA REDUCTION

2.1. Sample Selection

As described by Morgan & Keenan (1973), the MK spectral classification system "is a phenomenology of spectral lines, blends, and bands, based on a general progression of color index (abscissa) and luminosity (ordinate). It is defined by an array of standard stars located on a two-dimensional spectral type versus luminosity-class diagram. These standard reference points do not depend on specific line intensities or ratios of intensities; they have come to be defined by the totality of lines, blends, and bands in the ordinary photographic region" (emphasis added). In the MK system, the classification gives the spectral subtype and luminosity class (e.g., K0 III); this is the observational analogue to the projection on the luminosity-temperature plane (H–R diagram) for stars of a particular composition. Abundance adds a third dimension to the two-dimensional MK diagram and is represented by additional symbols determined by the relative intensities of lines or bands that reveal compositional differences from the Sun. For example, as a means of distinguishing a solar metallicity Population I giant K0 III star from one with a lower metal/hydrogen abundance, the classification of the latter becomes K0 III CN-1 or K0 III CN-2 (e.g., Morgan & Keenan 1973). With better quality spectra, increased precision in spectral classification is possible. For example, giants can often be subdivided into luminosity subclasses IIIa, IIIab, and IIIb. A fundamental characteristic of the MK system is that a finite array of discrete cells (spectral types) represents a continuum; i.e., spectra of stars of a given spectral subtype (e.g., K5 V) are not all identical. The precision attainable with MK classification has been estimated to be ±0.6 spectral subtypes for B and A dwarfs by Jaschek & Jaschek (1973) and ±0.65 spectral subtypes for G and K dwarfs by Gliese (1971). This precision depends upon observational dispersion (heterogeneous group of observers and instruments) and cosmic dispersion (e.g., chemical composition effects and rotation effects).

We attempted to construct a sample of stars with undisputed spectral types, traceable to the original developers of the MK classification system. The original MK standard stars (Johnson & Morgan 1953; Morgan & Keenan 1973) are generally too bright for us to observe. To that end, for the majority of the sample, we chose stars with classifications given by Morgan & Abt (1973), Morgan & Keenan (1973), Morgan et al. (1978), Keenan & McNeil (1989), Keenan & Newsom (2000),5 which in several cases were supplemented by stars taken from compilations of MK standard stars by Garcia (1989) and Jaschek (1978). Whenever references gave conflicting classifications, we chose the most recent revision. For F stars, we supplemented the lists generated from the aforementioned references with stars whose spectral types are given by Gray & Garrison (1989), Gray et al. (2001), and Abt & Morrell (1995). Additionally, for M stars, we included objects with classifications given by Kirkpatrick et al. (1991), Henry et al. (1994), and Kirkpatrick et al. (1997), again deferring to the latest revised classifications whenever conflicting or multiple spectral types were found in the various sources. In a few instances, stars with less certain classifications were observed in order to fill gaps in our coverage of spectral types due to observing limitations.

Despite their known variability in spectral type and relative rarity, we included AGB stars in our sample because their high luminosity makes them important in EPS studies of galaxies. Population synthesis and star counts in clusters indicate that AGB stars contribute more than 50% of the K-band light of stellar populations at 0.1–1 Gyr after an instantaneous burst of star formation (Lançon et al. 1999; Lançon 1999). The AGB phase is also important in providing feedback in the chemical evolution of galaxies. AGB stars are intermediate mass stars (∼0.8–8 M), which ascend the AGB in the H–R diagram when helium and hydrogen ignite in shells surrounding their cores (this phase lasts about 2 × 105 yr). Shell burning in young AGB stars is stable but becomes increasingly unstable as the stars become more luminous, which leads to thermal pulsations. These stars are known as thermally pulsating AGB (TPAGB) stars. TPAGB stars are recognizable by a variety of observational criteria by which they are variously named: characteristic spectra (late-M, S, and C stars), pulsating variability (Mira variables, long-period variables), mass loss and maser emission (OH/IR stars). In our sample TPAGB stars are identified by their variability types (L: irregular, SR: semiregular, and M: Mira) given in the General Catalog of Variable Stars (GCVS; Kholopov et al. 1998).6 About 40 TPAGB stars are included in our sample.

Mass loss eventually removes the hydrogen-rich stellar envelope, effectively terminating the TPAGB phase. The central star subsequently evolves to higher temperatures while the circumstellar envelope expands and cools, exposing the star. Ionizing wind and radiation from the star quickly form a planetary nebula (PN). The transition from TPAGB to PN is known as the post-AGB (PAGB) or protoplanetary nebula phase and lasts a few thousand years. Although PAGB stars were not targeted in our sample, several supergiants that were observed have some of the characteristics of PAGB stars (see Section 4.3). (For a comprehensive review of AGB stars see Habing & Olofsson 2003).

In order to obtain a high S/N out into the thermal infrared (∼2.3–5 μm), we selected relatively bright stars. Consequently, they tend to be local and therefore of mostly solar composition. Figure 1(a) shows the distribution of metallicities for stars in our sample with spectroscopic measurements of [Fe/H] (Cayrel de Strobel et al. 1997). The distribution is typical for stars in the solar neighborhood (Nordström et al. 2004).

Figure 1.

Figure 1. (a) Distribution of metallicities for stars in our sample with spectroscopic measurements of [Fe/H] (61 out of 210, mostly F, G, and K stars) from Cayrel de Strobel et al. (1997). The mean is −0.1 and the dispersion 0.2 dex, which is typical for stars in the solar neighborhood (within 40 pc; Nordström et al. 2004). (b) Distribution of E(BV) color excesses for the stars in our sample. The width of the peak at negative values indicates that the uncertainty in the color excesses is 0.036 mag.

Standard image High-resolution image

The object name, spectral classification and associated reference, GCVS variable type, V, BV, and 2MASS (J, H, and KS) magnitudes for each star in the sample are given in Table 2. All objects in the sample have declinations −30 deg>δ> + 70 deg, a range set by the latitude and declination limit of IRTF, and an airmass < 2 for good telluric correction. The stars have K-band magnitudes of ∼11 >K > 0; the faint limit was set by the desire to obtain high S/N spectra in less than about 30 minutes of integration time, and the bright limit corresponds to detector saturation in the minimum exposure time of 0.1 s (although several brighter targets were observed using ad hoc methods). The total number of stars in the sample is 210. Table 3 gives the composition of the sample by spectral type and luminosity class. Due to practical limitations of observing time, there is no multiepoch coverage of variable stars or large numbers of stars with nonsolar metallicity. However, we anticipate future observing campaigns with SpeX at IRTF will add to the sample.

Table 2. The Sample

Object HR Number Other Name Spectral Type Ref. Variabilitya Type Vb (mag) BVb (mag) J (mag) H (mag) Ks (mag)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
HD 7927 HR 382 ϕ Cas F0 Ia 1 var 4.987 0.680 3.751 ± 0.296 3.537 ± 0.248 3.186 ± 0.268
HD 135153 HR 5660 i Lup F0 Ib−II 1   4.904 0.376 4.258 ± 0.252 4.007 ± 0.194 3.991 ± 0.276
HD 6130 HR 292   F0 II 1   5.919 0.491 4.991 ± 0.274 4.690 ± 0.254 4.406 ± 0.020
HD 89025 HR 4013 ζ Leo F0 IIIa 1 var 3.435 0.307 2.700 ± 0.232 2.628 ± 0.208 2.631 ± 0.280
HD 13174 HR 623 14 Ari F0 III−IVn 2   4.989 0.335 4.441 ± 0.308 4.357 ± 0.240 4.062 ± 0.036
HD 27397 HR 1351 h Tau F0 IV 1 DSCTC 5.593 0.283 5.002 ± 0.037 4.927 ± 0.047 4.853 ± 0.015
HD 108519     F0 V(n) 1   7.705 0.273 7.093 ± 0.021 6.998 ± 0.031 6.965 ± 0.040
HD 173638 HR 7055   F1 II 1 *I 5.710 0.595 4.213 ± 0.262 3.908 ± 0.228 3.840 ± 0.298
HD 213135 HR 8563   F1 V 2 var 5.942 0.343 5.276 ± 0.020 5.122 ± 0.027 5.031 ± 0.020
BD +38 2803   UU Her F2−F5 Ib 3 SRd 8.190 0.090 7.635 ± 0.020 7.347 ± 0.053 7.253 ± 0.018
HD 182835 HR 7387 ν Aql F2 Ib 1 var 4.660 0.593 3.109 ± 0.250 2.866 ± 0.214 2.728 ± 0.224
HD 40535 HR 2107 1 Mon F2 III−IV 2 DSCT 6.128 0.297 5.489 ± 0.020 5.354 ± 0.029 5.281 ± 0.024
HD 164136 HR 6707 ν Her kA9hF2mF2 (IV) 2 SRd: 4.411 0.383 2.967 ± 0.172 2.823 ± 0.168 2.771 ± 0.214
HD 113139 HR 4931 78 UMa F2 V 1 var 4.929 0.365 4.323 ± 0.282 4.166 ± 0.274 3.953 ± 0.020
HD 26015 HR 1279   F3 V 1 var 6.026 0.395 5.244 ± 8.888 5.055 ± 0.031 5.030 ± 0.026
HD 21770 HR 1069 36 Per F4 III 4 var 5.312 0.401 4.696 ± 0.240 4.442 ± 0.194 4.241 ± 0.036
HD 87822 HR 3979   F4 V 5   6.240 0.445 5.372 ± 0.018 5.251 ± 0.033 5.131 ± 0.021
HD 16232 HR 764 30 Ari B F4 V 6   7.394 0.510 6.080 ± 0.020 5.908 ± 0.029 5.822 ± 0.021
HD 213306 HR 8571 δ Cep F5 Ib−G1 Ib 7 DCEP 3.562 0.480 2.865 ± 0.200 2.608 ± 0.190 2.354 ± 0.216
HD 186155 HR 7495   F5 II−III 1 var 5.066 0.386 4.419 ± 0.254 4.219 ± 0.218 4.142 ± 0.278
HD 17918 HR 856   F5 III 8   6.295 0.471 5.430 ± 0.032 5.288 ± 0.044 5.176 ± 0.021
HD 218804 HR 8825 6 And F5 V 1   5.923 0.436 5.147 ± 0.236 4.738 ± 0.031 4.674 ± 0.018
HD 27524     F5 V 1   6.800 0.436 5.970 ± 0.020 5.786 ± 0.016 5.762 ± 0.020
HD 75555     F5.5 III−IV 1   8.095 0.484 7.214 ± 0.018 7.035 ± 0.016 6.992 ± 0.018
HD 160365 HR 6577   F6 III−IV 1   6.116 0.556 5.005 ± 0.037 4.769 ± 0.020 4.697 ± 0.016
HD 11443 HR 544 α Tri F6 IV 1 ELL 3.416 0.488 2.406 ± 0.236 2.182 ± 0.206 2.274 ± 0.266
HD 215648 HR 8665 ξ Peg F6 V 1 var: 4.197 0.502 3.358 ± 0.254 3.078 ± 0.214 2.961 ± 0.286
HD 201078 HR 8084   F7 II– 1 DCEPS 5.769 0.532 4.638 ± 0.256 4.390 ± 0.222 4.374 ± 0.016
HD 124850 HR 5338 iota Vir F7 III 1 * 4.079 0.514 3.140 ± 0.266 2.909 ± 0.236 2.801 ± 0.266
HD 126660 HR 5404 23 Boo F7 V 1 * 4.052 0.497 3.179 ± 0.244 2.980 ± 0.216 2.739 ± 0.332
HD 190323     F8 Ia 1 var: 6.834 0.874 5.269 ± 0.024 4.992 ± 0.038 4.888 ± 0.018
HD 51956     F8 Ib 9   7.507 0.803 6.063 ± 0.024 5.756 ± 0.033 5.612 ± 0.031
HD 220657 HR 8905 68 Peg F8 III 1   4.407 0.610 3.527 ± 0.266 3.230 ± 0.208 3.033 ± 0.256
HD 111844     F8 IV 1   7.870 0.560 6.796 ± 0.018 6.569 ± 0.017 6.524 ± 0.018
HD 219623 HR 8853   F8 V 1   5.577 0.524 4.871 ± 0.250 4.599 ± 0.190 4.306 ± 0.036
HD 27383   55 Tau F8 V 1 BY: 6.886 0.560 5.820 ± 0.018 5.588 ± 0.021 5.542 ± 0.020
HD 102870 HR 4540 β Vir F8.5 IV−V 1   3.608 0.442 2.597 ± 0.252 2.363 ± 0.230 2.269 ± 0.254
HD 6903 HR 339 ψ3 Psc F9 IIIa 10   5.550 0.689 4.565 ± 0.270 4.189 ± 0.228 4.183 ± 0.348
HD 176051 HR 7162   F9 V 1   5.224 0.588 3.847 ± 0.254 3.611 ± 0.252 3.655 ± 0.042
HD 165908 HR 6775 b Her F9 V metal weak 1   5.046 0.519 3.459 ± 0.198 3.242 ± 0.190 3.107 ± 0.230
HD 114710 HR 4983 β Com F9.5 V 10 BY: 4.257 0.571 3.232 ± 0.234 2.992 ± 0.192 2.923 ± 0.274
HD 185018 HR 7456   G0 Ib−II 11   5.978 0.881 4.364 ± 0.242 3.925 ± 0.216 3.953 ± 0.036
HD 109358 HR 4785 β CVn G0 V 10 var 4.260 0.585 3.213 ± 0.218 2.905 ± 0.198 2.848 ± 0.310
HD 74395 HR 3459 F Hya G1 Ib 11   4.628 0.840 3.194 ± 0.278 2.786 ± 0.262 2.710 ± 0.300
HD 216219     G1 II−III: Fe−1 CH0.5 11   7.450 0.640 6.265 ± 0.020 6.034 ± 0.021 5.935 ± 0.017
HD 21018 HR 1023   G1 III: CH−1: 10   6.383 0.862 4.864 ± 0.026 4.568 ± 8.888 4.357 ± 0.018
HD 10307 HR 483   G1 V 10   4.958 0.618 4.000 ± 0.262 3.703 ± 0.226 3.577 ± 0.314
HD 95128 HR 4277 47 UMa G1− V Fe−0.5 10   5.049 0.606 3.960 ± 0.296 3.736 ± 0.224 3.750 ± 0.340
HD 20619     G1.5 V 10   7.049 0.656 5.876 ± 0.019 5.552 ± 0.040 5.469 ± 0.021
HD 42454     G2 Ib 12   7.361 1.232 5.121 ± 0.037 4.693 ± 0.036 4.598 ± 0.055
HD 39949     G2 Ib 12   7.225 1.090 5.279 ± 0.035 4.814 ± 0.036 4.664 ± 0.016
HD 3421 HR 157   G2 Ib−II 10   5.422 0.884 3.708 ± 0.208 3.320 ± 0.216 3.212 ± 0.276
HD 219477 HR 8842 61 Peg G2 II−III 11   6.490 0.850 5.351 ± 0.248 4.771 ± 0.204 4.537 ± 8.888
HD 126868 HR 5409 ϕ Vir G2 IV 11 var 4.810 0.698 3.541 ± 0.264 3.116 ± 0.426 3.067 ± 0.306
HD 76151 HR 3538   G2 V 10 var: 5.999 0.666 4.871 ± 0.037 4.625 ± 0.276 4.456 ± 0.023
HD 192713 HR 7741 22 Vul G3 Ib−II Wk H&K comp? 11 EA/GS 5.167 1.046 3.532 ± 0.244 3.130 ± 0.202 2.938 ± 0.242
HD 176123 HR 7164   G3 II 11   6.37 0.990 4.651 ± 0.037 4.120 ± 0.202 4.067 ± 0.322
HD 88639 HR 4006   G3 IIIb Fe−1 10 var 6.046 0.844 4.726 ± 0.250 4.226 ± 0.204 4.018 ± 0.036
HD 10697 HR 508 109 Psc G3 Va 10   6.260 0.725 5.386 ± 0.268 4.678 ± 0.031 4.601 ± 0.021
HD 179821     G4 O−Ia 11 SRd (post-AGB) 8.145 1.555 5.371 ± 0.023 4.998 ± 0.023 4.728 ± 0.020
HD 6474     G4 Ia 10 SRd 7.611 1.617 4.808 ± 0.354 4.199 ± 0.290 3.919 ± 0.458
HD 94481 HR 4255   G4 III−IIIb 10   5.653 0.830 4.235 ± 0.234 3.756 ± 0.224 3.745 ± 0.246
HD 108477 HR 4742   G4 III 10   6.313 0.865 4.838 ± 0.037 4.497 ± 0.232 4.271 ± 0.036
HD 214850 HR 8631   G4 V 11   5.726 0.714 4.619 ± 0.196 4.212 ± 0.180 3.937 ± 0.036
HD 190113     G5 Ib 11   7.870 1.500 5.301 ± 0.029 4.777 ± 0.036 4.557 ± 0.018
HD 18474 HR 885   G5: III: CN−3 CH−2 Hδ−1 10   5.470 0.890 3.616 ± 0.196 3.185 ± 0.158 2.975 ± 0.232
HD 193896 HR 7788   G5 IIIa 11   6.290 0.910 4.393 ± 0.278 3.938 ± 0.270 4.139 ± 0.036
HD 165185 HR 6748   G5 V 12 var 5.944 0.618 4.835 ± 0.037 4.614 ± 0.016 4.469 ± 0.016
HD 161664 HR 6617   G6 Ib Hδ1 11 * 6.180 1.490 3.520 ± 0.282 2.850 ± 0.240 2.636 ± 0.280
HD 202314 HR 8126   G6 Ib−IIa Ca1 Ba0.5 11   6.169 1.102 4.701 ± 0.222 4.098 ± 0.250 4.020 ± 0.270
HD 58367 HR 2828 epsilon CMi G6 IIb 10   4.988 1.007 3.457 ± 0.282 2.964 ± 0.224 2.826 ± 0.242
HD 27277     G6 III 10   8.090 0.990 6.278 ± 0.030 5.785 ± 0.029 5.680 ± 0.018
HD 115617 HR 5019 61 Vir G6.5 V 10   4.739 0.709 3.334 ± 0.200 2.974 ± 0.176 2.956 ± 0.236
HD 333385   BD +29 3865 G7 Ia 11 L 8.705 2.187 4.766 ± 0.037 4.305 ± 0.214 3.793 ± 0.036
HD 25877 HR 1270   G7 II 10   6.316 1.161 4.444 ± 0.280 3.973 ± 0.172 3.819 ± 0.220
HD 182694 HR 7382   G7 IIIa 11   5.862 0.924 4.437 ± 0.264 3.994 ± 0.206 3.835 ± 0.286
HD 20618 HR 995 59 Ari G7 IV 10   5.900 0.860 4.446 ± 0.266 4.050 ± 0.220 4.106 ± 0.286
HD 114946 HR 4995 55 Vir G7 IV 10   5.318 0.878 3.742 ± 0.238 3.169 ± 0.192 3.114 ± 0.256
HD 16139     G7.5 IIIa 10   8.058 1.052 6.180 ± 0.026 5.707 ± 0.026 5.587 ± 0.021
HD 208606 HR 8374   G8 Ib 13   6.157 1.600 3.751 ± 0.246 3.124 ± 0.188 2.811 ± 0.280
HD 122563 HR 5270   G8: III: Fe−5 10 * 6.198 0.907 4.786 ± 0.298 4.030 ± 0.234 3.731 ± 0.036
HD 104979 HR 4608 ø Vir G8 III Ba1 CN0.5 CH1 10   4.117 0.982 2.543 ± 0.328 2.126 ± 0.270 2.014 ± 0.270
HD 135722 HR 5681 δ Boo G8 III Fe−1 11 * 3.482 0.951 1.659 ± 0.238 0.985 ± 0.192 1.223 ± 0.196
HD 101501 HR 4496 61 UMa G8 V 10 var 5.323 0.723 3.988 ± 0.242 3.648 ± 0.228 3.588 ± 0.036
HD 75732 HR 3522 ρ1 Cnc G8 V 14   5.944 0.860 4.768 ± 0.244 4.265 ± 0.234 4.015 ± 0.036
HD 170820     G9 II CN1 Hδ1 11   7.371 1.575 4.469 ± 0.264 3.666 ± 0.200 3.543 ± 0.232
HD 222093 HR 8958   G9 III 11   5.652 1.023 4.205 ± 0.268 3.556 ± 0.222 3.520 ± 0.214
HD 165782   AX Sgr K0 Ia 11 SRd 7.680 2.140 3.791 ± 0.258 3.098 ± 0.222 2.798 ± 0.254
HD 44391     K0 Ib 12   7.740 1.400 5.301 ± 0.019 4.759 ± 0.036 4.548 ± 0.017
HD 179870     K0 II 11   7.063 1.245 4.887 ± 0.034 4.048 ± 0.226 4.191 ± 0.036
HD 100006 HR 4433 86 Leo K0 III 15   5.525 1.059 3.970 ± 0.266 3.379 ± 0.216 3.122 ± 0.330
HD 145675   14 Her K0 V 11   6.652 0.877 5.158 ± 0.029 4.803 ± 0.016 4.714 ± 0.016
HD 164349 HR 6713 93 Her K0.5 IIb 11   4.669 1.257 2.574 ± 0.282 2.033 ± 0.208 1.937 ± 0.202
HD 9852     K0.5 III CN1 10   7.930 1.460 5.339 ± 0.041 4.775 ± 0.023 4.576 ± 0.015
HD 63302 HR 3026 QY Pup K1 Ia−Iab 10 SRd 6.347 1.752 3.746 ± 0.248 2.958 ± 0.224 2.702 ± 0.266
HD 36134 HR 1830   K1− III Fe−0.5 10 var 5.778 1.156 3.903 ± 0.280 3.207 ± 0.266 3.124 ± 0.276
HD 91810     K1− IIIb CN1.5 Ca1 10   6.550 1.170 4.998 ± 0.280 4.297 ± 0.015 4.182 ± 0.344
HD 25975 HR 1277 49 Per K1 III 4   6.089 0.944 4.599 ± 0.304 4.057 ± 0.246 4.022 ± 0.366
HD 165438 HR 6756   K1 IV 11   5.766 0.967 4.376 ± 0.322 3.788 ± 0.254 3.749 ± 0.228
HD 142091 HR 5901 11 CrB K1 IVa 11   4.812 0.996 3.035 ± 0.184 2.575 ± 0.180 2.423 ± 0.242
HD 10476 HR 493 107 Psc K1 V 10 var 5.242 0.836 3.855 ± 0.240 3.391 ± 0.226 3.285 ± 0.266
HD 124897 HR 5340 Arcturus K1.5 III Fe−0.5 11 var −0.050 1.231 −2.252 ± 0.157 −2.810 ± 9.996 −2.911 ± 0.170
HD 212466   RW Cep K2 O−Ia 11 SRd 6.626 2.275 3.090 ± 0.212 2.462 ± 0.192 2.027 ± 0.238
HD 2901     K2 III Fe−1 10   6.917 1.232 5.130 ± 0.300 4.250 ± 0.282 4.116 ± 0.338
HD 132935     K2 III 11   6.697 1.364 4.598 ± 0.200 3.654 ± 0.208 3.590 ± 0.240
HD 137759 HR 5744 12 Dra K2 III 11 * 3.291 1.166 1.293 ± 0.220 0.724 ± 0.146 0.671 ± 0.200
HD 3765     K2 V 10 E: 7.363 0.942 5.694 ± 0.024 5.272 ± 0.051 5.164 ± 0.016
HD 23082     K2.5 II 10   7.520 1.850 3.874 ± 0.190 3.116 ± 0.202 2.786 ± 0.224
HD 187238     K3 Iab−Ib 12   7.100 2.040 3.625 ± 0.268 2.749 ± 0.204 2.418 ± 0.268
HD 16068     K3 II−III 10   7.380 1.790 4.773 ± 0.264 3.868 ± 0.296 3.676 ± 0.352
HD 221246 HR 8925   K3 III 11   6.170 1.460 3.989 ± 0.280 3.177 ± 0.244 2.949 ± 0.330
HD 178208 HR 7252   K3 III 11   6.441 1.393 4.514 ± 0.262 3.820 ± 0.222 3.571 ± 0.278
HD 35620 HR 1805 ϕ Aur K3 III Fe1 10   5.079 1.403 2.905 ± 0.256 2.167 ± 0.192 2.104 ± 0.262
HD 99998 HR 4432 e Leo K3+ III Fe−0.5 10   4.675 1.531 2.160 ± 0.266 1.390 ± 0.244 1.247 ± 0.264
HD 114960     K3.5 IIIb CN0.5 CH0.5 10   6.565 1.412 4.207 ± 0.254 3.358 ± 0.242 3.339 ± 0.268
HD 219134 HR 8832   K3 V 11 * 5.567 0.994 3.981 ± 0.258 3.469 ± 0.226 3.261 ± 0.304
HD 185622 HR 7475   K4 Ib 11 Lc: 6.376 2.026 2.138 ± 0.214 1.312 ± 0.140 0.986 ± 0.166
HD 201065     K4 Ib−II 11   7.584 1.793 4.868 ± 0.256 3.939 ± 0.260 3.669 ± 0.260
HD 207991     K4− III 11   6.870 1.600 4.039 ± 0.226 3.222 ± 0.210 2.923 ± 0.270
HD 45977     K4 V 16   9.140 1.120 7.079 ± 0.024 6.601 ± 0.034 6.406 ± 0.018
HD 216946 HR 8726   K5 Ib 11 Lc 4.969 1.773 1.792 ± 0.264 0.958 ± 0.150 0.724 ± 0.178
HD 181596     K5 III 11   7.510 1.600 4.923 ± 0.216 4.026 ± 0.190 3.817 ± 0.206
HD 36003     K5 V 10   7.640 1.113 5.615 ± 0.019 5.111 ± 0.071 4.880 ± 0.024
HD 120477 HR 5200 υ Boo K5.5 III 10 var 4.046 1.520 1.218 ± 0.264 0.438 ± 0.180 0.435 ± 0.182
HD 3346 HR 152   K6 IIIa 10 SRs 5.101 1.582 2.257 ± 0.282 1.375 ± 0.182 1.263 ± 0.182
HD 181475     K7 IIa 11 SRb: 6.960 2.070 2.978 ± 0.298 2.121 ± 0.252 1.816 ± 0.282
HD 194193 HR 7800   K7 III 11 var 5.926 1.612 3.129 ± 0.226 2.240 ± 0.180 1.966 ± 0.264
HD 237903   36 UMa B K7 V 13   8.691 1.352 6.119 ± 0.020 5.499 ± 0.034 5.361 ± 0.016
HD 201092 HR 8086 61 Cyg B K7 V 11 IS 6.055 1.354 3.546 ± 0.278 2.895 ± 0.218 2.544 ± 0.328
HD 213893     M0 IIIb 11   6.691 1.534 4.009 ± 0.330 3.092 ± 0.248 2.869 ± 0.274
HD 19305     M0 V 10   9.072 1.360 6.492 ± 0.021 5.843 ± 0.034 5.646 ± 0.021
HD 236697     M0.5 Ib 10 Lc 8.630 2.157 4.860 ± 0.316 3.878 ± 0.176 3.434 ± 0.358
HD 209290   Gl 846 M0.5 V 11   9.167 1.457 6.196 ± 0.023 5.562 ± 0.051 5.322 ± 0.023
HD 339034   NR Vul M1 Ia 13 Lc 9.302 3.036 3.253 ± 0.266 2.141 ± 0.222 1.691 ± 0.224
HD 14404   PR Per M1− Iab−Ib 10 Lc 7.904 2.303 3.556 ± 0.312 2.682 ± 0.192 2.247 ± 0.298
HD 39801 HR 2061 Betelgeuse M1−M2 Ia−Iab 10 SRc 0.481 1.861 −2.989 ± 0.103 −4.007 ± 0.162 −4.378 ± 0.186
HD 204724 HR 8225 2 Peg M1+ III 11 var 4.554 1.618 1.701 ± 0.292 0.784 ± 0.166 0.666 ± 0.182
HD 42581   Gl 229 A M1 V 17 UV 8.152 1.491 5.104 ± 0.037 4.393 ± 0.254 4.166 ± 0.232
HD 35601     M1.5 Iab−Ib 11 Lc 7.350 2.200 2.930 ± 0.248 1.942 ± 0.222 1.662 ± 0.234
BD +60 265     M1.5 Ib 10   8.493 2.345 4.002 ± 0.208 3.147 ± 0.162 2.625 ± 0.242
HD 36395   Gl 205 M1.5 V 17 BY: 7.966 1.474 4.999 ± 0.300 4.149 ± 0.212 4.039 ± 0.260
HD 206936 HR 8316 μ Cep M2− Ia 11 SRc 4.104 2.327 −0.326 ± 0.204 −1.264 ± 0.180 −1.620 ± 0.160
HD 10465     M2 Ib 10 Lc 6.816 1.860 2.658 ± 0.218 1.862 ± 0.168 1.507 ± 0.194
HD 23475 HR 1155 BE Cam M2 II 10 Lc 4.462 1.877 0.567 ± 0.194 −0.422 ± 0.158 −0.650 ± 0.166
HD 120052 HR 5181 87 Vir M2 III 11 var 5.436 1.619 1.884 ± 0.252 1.018 ± 0.216 0.730 ± 0.256
HD 95735   Gl 411 M2 V 17 BY: 7.498 1.508 4.203 ± 0.242 3.640 ± 0.202 3.254 ± 0.306
Gl 806     M2 V 17 var 10.730 1.570 7.329 ± 0.018 6.769 ± 0.023 6.533 ± 0.016
HD 219734 HR 8860 8 And M2.5 III Ba0.5 11 var 4.830 1.655 1.615 ± 0.198 0.539 ± 0.168 0.506 ± 0.182
Gl 381     M2.5 V 17 var 10.640 1.573 7.021 ± 0.023 6.471 ± 0.049 6.193 ± 0.026
Gl 581   HO Lib M2.5 V 18 BY 10.572 1.601 6.706 ± 0.026 6.095 ± 0.033 5.837 ± 0.023
RW Cyg     M3 to M4 Ia−Iab 11 SRc 8.361 2.881 2.117 ± 0.294 0.964 ± 0.152 0.640 ± 0.210
CD −31 4916     M3 Iab−Ia 13 Lc 8.878 2.238 4.612 ± 0.208 3.486 ± 0.234 3.139 ± 0.246
HD 14469   SU Per M3−M4 Iab 10 SRc 7.697 2.175 2.824 ± 0.254 1.928 ± 0.184 1.455 ± 0.222
HD 40239 HR 2091 π Aur M3 IIb 10 Lc 4.290 1.698 0.245 ± 0.220 −0.602 ± 0.174 −0.813 ± 0.168
HD 39045 HR 2018   M3 III 10 Lb: 6.249 1.752 2.655 ± 0.300 1.698 ± 0.196 1.407 ± 0.178
Gl 388   AD Leo M3 V 18 UV 9.421 1.544 5.449 ± 0.027 4.843 ± 0.020 4.593 ± 0.017
HD 14488   RS Per M3.5 Iab Fe−1 var? 10 SRc 8.490 2.256 3.054 ± 0.218 2.108 ± 0.192 1.562 ± 0.210
HD 28487     M3.5 III Ca−0.5 10 SRc: 6.800 1.740 2.684 ± 0.304 1.784 ± 0.268 1.457 ± 0.302
Gl 273   Luyten's Star M3.5 V 17   9.832 1.554 5.714 ± 0.032 5.219 ± 0.063 4.857 ± 0.023
HD 19058 HR 921 ρ Per M4+ IIIa 10 SRb 3.390 1.646 −0.779 ± 0.182 −1.675 ± 0.158 −1.904 ± 0.152
HD 214665 HR 8621   M4+ III 11 Lb 5.090 1.580 1.087 ± 0.246 0.131 ± 0.168 −0.159 ± 0.174
HD 4408 HR 211 57 Psc M4 III 10 SRs 5.341 1.616 1.441 ± 0.246 0.504 ± 0.156 0.254 ± 0.168
HD 27598   DG Eri M4− III 11 SRb 7.017 1.671 2.987 ± 0.270 2.106 ± 0.230 1.847 ± 0.264
Gl 213     M4 V 18 BY 11.597 1.655 7.124 ± 0.021 6.627 ± 0.018 6.389 ± 0.016
Gl 299     M4 V 18 BY: 12.834 1.768 8.424 ± 0.023 7.927 ± 0.042 7.660 ± 0.026
HD 204585 HR 8223 NV Peg M4.5 IIIa 11 SRb 5.856 1.500 1.262 ± 0.280 0.260 ± 0.162 −0.051 ± 0.186
Gl 268AB   QY Aur M4.5 V 18 UV 11.49 1.70 6.731 ± 0.026 6.152 ± 0.047 5.846 ± 0.018
HD 156014 HR 6406 α1 Her A M5 Ib−II 11 SRc 3.057 1.447 −2.302 ± 0.166 −3.224 ± 0.174 −3.511 ± 0.150
HD 175865 HR 7157 13 R Lyr M5 III 13 SRb 4.026 1.588 −0.738 ± 0.222 −1.575 ± 0.230 −1.837 ± 0.208
Gl 51     M5 V 17 UV 13.78 1.68 8.611 ± 0.027 8.014 ± 0.023 7.718 ± 0.020
Gl 866ABC   EZ Aqr M5 V 18 UV+BY 12.33 1.96 6.553 ± 0.019 5.954 ± 0.031 5.537 ± 0.020
HD 94705 HR 4267 VY Leo M5.5 III: 10 Lb: 5.786 1.453 0.434 ± 0.204 −0.449 ± 0.248 −0.762 ± 0.296
HD 196610 HR 7886 EU Del M6 III 11 SRb 6.058 1.482 0.345 ± 0.206 −0.774 ± 0.210 −1.009 ± 0.204
HD 18191 HR 867 ρ2 Ari M6− III: 10 SRb 5.815 1.452 0.230 ± 0.208 −0.652 ± 0.200 −0.868 ± 0.222
Gl 406   CN Leo M6 V 17 UV 13.529 2.013 7.085 ± 0.024 6.482 ± 0.042 6.084 ± 0.017
GJ 1111   DX Cnc M6.5 V 18 UV 14.824 2.066 8.235 ± 0.021 7.617 ± 0.018 7.260 ± 0.024
HD 14386   Mira M5e−M9e III 19 M 4.954 1.549 −0.732 ± 0.149 −1.574 ± 0.192 −2.213 ± 0.216
HD 108849   BK Vir M7− III: 10 SRb 7.460 1.540 0.544 ± 0.186 −0.376 ± 0.186 −0.730 ± 0.214
HD 207076   EP Aqr M7− III: 11 SRb 6.686 1.491 −0.296 ± 0.202 −1.373 ± 0.274 −1.708 ± 0.376
Gl 644C   vB 8 M7 V 17 UV 16.80 2.20 9.776 ± 0.029 9.201 ± 0.024 8.816 ± 0.023
MY Cep     M7−M7.5 I 19 SRc 14.520 1.86 4.583 ± 0.280 2.980 ± 0.242 2.138 ± 0.278
HD 69243 HR 3248 R Cnc M6e−M9e III 19 M 7.752 1.516 0.770 ± 0.198 −0.327 ± 0.156 −0.705 ± 0.168
BRI B2339 − 0447     M7 − 8 III 20   ... ... 9.143 ± 0.023 8.174 ± 0.031 7.653 ± 0.021
IRAS 01037+1219   WX Psc M8 III 19 M (OH/IR) ... ... 7.437 ± 0.026 4.641 ± 0.200 2.217 ± 0.298
Gl 752B   vB 10 M8 V 17 UV: 17.50 2.13 9.908 ± 0.025 9.226 ± 0.026 8.765 ± 0.022
LP 412 − 31     M8 V 21   ... ... 11.759 ± 0.021 11.066 ± 0.022 10.639 ± 0.018
IRAS 21284 − 0747   HY Aqr M8 − 9 III 20 M ... ... 6.173 ± 0.026 5.316 ± 0.026 4.757 ± 0.023
IRAS 14436 − 0703   AQ Vir M8 − 9 III 20 M ... ... 5.654 ± 0.021 4.980 ± 0.016 4.497 ± 0.316
IRAS 14303 − 1042     M8 − 9 III 20 M ... ... 6.502 ± 0.019 5.643 ± 0.040 4.959 ± 0.021
IRAS 15060+0947   FV Boo M9 III 20 M ... ... 5.450 ± 0.020 4.520 ± 0.232 3.836 ± 0.272
BRI B1219 − 1336   VX Crv M9 III 20 M ... ... 8.659 ± 0.026 7.892 ± 0.031 7.344 ± 0.021
DENIS−P J104814.7     M9 V 22   ... ... 9.538 ± 0.022 8.905 ± 0.044 8.447 ± 0.023
−395606.1                    
LP 944 − 20     M9 V 23   ... ... 10.725 ± 0.021 10.017 ± 0.021 9.548 ± 0.023
LHS 2065     M9 V 17 UV 18.85 ... 11.212 ± 0.026 10.469 ± 0.026 9.942 ± 0.024
LHS 2924     M9 V 17 UV 19.58 ... 11.990 ± 0.021 11.225 ± 0.029 10.744 ± 0.024
BRI B0021 − 0214     M9.5 V 23 BY ... ... 11.992 ± 0.035 11.084 ± 0.022 10.539 ± 0.023
IRAS 14086 − 0703   IO Vir M10+ III 20   ... ... 6.645 ± 0.019 4.861 ± 0.286 3.587 ± 0.356
HD 142143   V* ST Her M6.5S to M7S III: 11 SRb ... ... 0.743 ± 0.242 −0.137 ± 0.210 −0.542 ± 0.206
BD +44 2267   AV CVn S2.5 Zr 2 24 Lb 9.801 1.886 6.278 ± 0.035 5.431 ± 0.061 5.157 ± 0.018
HD 64332   NQ Pup S4.5 Zr 2 Ti 4 10 Lb 7.550 1.730 3.542 ± 0.292 2.587 ± 0.212 2.306 ± 0.274
HD 44544   FU Mon SC5.5 Zr 0.5 24 SR 8.945 3.085 3.395 ± 0.236 2.101 ± 0.204 1.675 ± 0.226
HD 62164   SU Mon S5−S6 Zr 3 to 4 Ti 0 10 SRb 8.250 2.600 2.805 ± 0.258 1.705 ± 0.242 1.257 ± 0.298
HD 76846     C−R2+ IIIa: C2 2.5 10   9.350 1.390 7.354 ± 0.020 6.812 ± 0.023 6.636 ± 0.016
HD 31996 HR 1607 R Lep C7, 6e(N4) 19 M 8.081 5.699 2.160 ± 0.268 0.884 ± 0.224 0.137 ± 0.244
HD 44984 HR 2308 BL Ori C−N4 C2 3.5 10 Lb 6.215 2.341 2.192 ± 0.324 1.006 ± 0.190 0.770 ± 0.196
HD 76221 HR 3541 X Cnc C−N 4.5 C2 5.5 MS 3 10 SRb 6.647 3.365 1.569 ± 0.236 0.489 ± 0.186 0.063 ± 0.194
HD 92055 HR 4163 U Hya C−N4.5 C2 4.5 10 SRb 4.955 2.662 0.803 ± 0.248 −0.254 ± 0.322 −0.716 ± 0.362
HD 70138     C−J4.5 IIIa: C2 6 j 6 10 Lb: 9.420 1.667 5.809 ± 0.023 4.899 ± 0.021 4.382 ± 0.018
HD 48664   CZ Mon C−N5 C2 6 10 Lb 9.450 3.190 4.327 ± 0.260 3.039 ± 0.202 2.434 ± 0.234
HD 57160   BM Gem C−J5− C2 5− j 4 10 SRb ... ... 4.398 ± 0.232 3.304 ± 0.210 2.728 ± 0.254

Notes. aVariability type from the General Catalog of Variable Stars (Kholopov et al. 1998). The variability type is described in http://www.sai.msu.su/groups/cluster/gcvs/gcvs/iii/vartype.txt. bV and BV values are primarily from Mermilliod (2006) and are augmented with values from Kharchenko (2001), Beauchamp et al. (1994), and Leggett (1992). References. (1) Gray et al. 2001; (2) Gray & Garrison 1989; (3) Rosino 1951; (4) Roman 1955; (5) Abt 1981; (6) Cowley 1976; (7) Kraft 1960; (8) Morgan & Keenan 1973; (9) MacConnell & Bidelman 1976; (10) Keenan & Newsom 2000; (11) Keenan & McNeil 1989; (12) Jaschek 1978; (13) Garcia 1989; (14) Cowley et al. 1967; (15) Kharchenko 2001; (16) Upgren et al. 1972; (17) Kirkpatrick et al. 1991; (18) Henry et al. 1994; (19) Kholopov et al. 1998; (20) Kirkpatrick et al. 1997; (21) Kirkpatrick et al. 1995; (22) Delfosse et al. 2001; (23) Kirkpatrick et al. 1999; (24) Ake 1979.

Download table as:  ASCIITypeset images: 1 2 3 4

Table 3. Spectral Composition of Library

Spectral Luminosity Class
Type 0 I II III IV V
F 0 7 4 10 5 15
G 1 12 6 13 3 11
K 1 7 5 19 2 8
M 0 14 2 27 0 25
S ... ... ... 5 ... ...
C ... ... ... 8 ... ...

Download table as:  ASCIITypeset image

2.2. Observations

The observations were carried out over a period of eight years using SpeX at the IRTF. A detailed description of SpeX is given by Rayner et al. (2003). Briefly, SpeX is a 0.8–5.4 μm, medium-resolution, cross-dispersed spectrograph equipped with a 1024 × 1024 Aladdin 3 InSb array. The entire 0.8–5.4 μm wavelength range can be covered with two cross-dispersed modes: the short-wavelength cross-dispersed mode (SXD) and the long-wavelength cross-dispersed mode (LXD). The SXD mode provides simultaneous coverage of the 0.8–2.42 μm wavelength range, except for a 0.06 μm gap between the H and K bands, while the LXD1.9, LXD2.1, and LXD2.3 modes cover the 1.9–4.2, 2.20–5.0, and 2.38–5.4 μm wavelength ranges, respectively. For nearly all stars, the 0farcs3 (2 pixel) slit was used for both the SXD and LXD modes, providing resolving powers of 2000 and 2500, respectively. Measurements of arc lines obtained with the internal calibration unit indicate that the FWHM is 2 pixels at all wavelengths for the 0farcs3 slit. (The resolving power R varies by ∼20% across a spectral order since it depends on the changing grating diffraction angle.) The length of the slit for these modes is 15farcs0 and the spatial scale is 0farcs15 pixel−1. The spectrograph also includes a high-throughput low-resolution R∼ 200 prism mode and a single-order 60'' long-slit R∼ 2000 mode. An autonomous infrared slit viewer employing a 512 × 512 Aladdin 2 InSb array is used for object acquisition, guiding, and imaging photometry. The slit viewer covers a 60'' × 60'' field of view at a spatial scale of 0farcs12 pixel−1. An internal K-mirror image rotator enables the field to be rotated on the slit. Calibration observations are obtained using the internal calibration unit consisting of flat field and arc lamps, integrating sphere, and illumination optics that reproduce the beam from the telescope. A log of the observations including the object name, spectral type, UT date of observation, spectroscopic mode, resolving power, exposure time, associated telluric standard star, and sky conditions is presented in Table 4.

Table 4. Log of SpeX Observations

Object Spectral Type UT Date Spectroscopy Mode R Exp. Time (sec) A0 V Standard Sky Conditions
(1) (2) (3) (4) (5) (6) (7) (8)
HD 7927 F0 Ia 2005 Oct 6 SXD 2000 120 HD 12365 Clear
    2005 Oct 6 LXD1.9 2500 150 HD 12365 Clear
HD 135153 F0 Ib−II 2007 Jun 24 SXD 2000 96 HD 146624 Clear
    2007 Jun 24 LXD2.1 2500 300 HD 146624 Clear
HD 6130 F0 II 2001 Sep 1 SXD 2000 100 HD 12365 Thin Cirrus
    2001 Sep 1 LXD1.9 2500 200 HD 12365 Thin Cirrus
HD 89025 F0 IIIa 2007 Apr 25 SXD 2000 100 HD 88960 Clear
    2007 Apr 25 LXD1.9 2500 200 HD 88960 Clear
HD 13174 F0 III−IVn 2003 Oct 16 SXD 2000 150 HD 16811 Thin Cirrus
    2003 Oct 16 LXD2.1 2500 300 HD 16811 Thin Cirrus
HD 27397 F0 IV 2005 Oct 6 SXD 2000 120 HD 31295 Clear
    2005 Oct 6 LXD2.1 2500 300 HD 31295 Clear
HD 108519 F0 V(n) 2007 Jun 24 SXD 2000 480 HD 107655 Clear
    2007 Jun 24 LXD1.9 2500 600 HD 107655 Thin Cirrus
HD 173638 F1 II 2008 Oct 8 SXD 2000 120 HD 171149 Thin Cirrus
    2008 Oct 12 LXD2.1 2500 300 HD 171149 Thin Cirrus
HD 213135 F1 V 2008 Oct 8 SXD 2000 180 HD 212643 Thin Cirrus
    2008 Oct 12 LXD1.9 2500 450 HD 212643 Thin Cirrus
BD +38 2803 F2−F5 Ib 2003 Aug 10 SXD 2000 720 HD 157778 Clear
    2003 Aug 10 LXD2.1 2500 600 HD 157778 Clear
HD 182835 F2 Ib 2003 Oct 16 SXD 2000 200 HD 177724 Thin Cirrus
HD 40535 F2 III−IV 2006 Dec 21 SXD 2000 150 HD 45380 Clear
    2006 Dec 21 LXD2.1 2500 300 HD 45380 Clear
HD 164136 kA9hF2mF2 (IV) 2005 Oct 6 SXD 2000 120 HD 165029 Clear
    2001 Sep 1 LXD1.9 2500 100 HD 174567 Thin Cirrus
HD 113139 F2 V 2002 May 29 SXD 2000 210 HD 118214 Clear
    2002 May 29 LXD2.1 2500 250 HD 118214 Clear
HD 26015 F3 V 2000 Oct 24 SXD 2000 200 HD 23258 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 21686 Clear
HD 21770 F4 III 2006 Dec 21 SXD 2000 150 HD 21038 Clear
    2006 Dec 21 LXD2.1 2500 300 HD 21038 Clear
HD 87822 F4 V 2001 Mar 10 SXD 2000 300 HD 88960 Thin Cirrus
    2001 Mar 10 LXD2.3 2500 500 HD 88960 Thin Cirrus
HD 16232 F4 V 2001 Aug 6 SXD 2000 60 HD 13869 Clear
    2003 Oct 6 LXD2.1 2500 250 HD 16811 Thin Cirrus
HD 213306 F5 Ib − G1 Ib 2003 Oct 16 SXD 2000 140 HD 223386 Thin Cirrus
    2003 Oct 16 LXD2.1 2500 60 HD 223386 Thin Cirrus
HD 186155 F5 II−III 2001 Aug 31 SXD 2000 90 HD 192538 Thin Cirrus
    2001 Aug 31 LXD1.9 2500 250 HD 192538 Thin Cirrus
HD 17918 F5 III 2000 Oct 24 SXD 2000 200 HD 16811 Clear
    2000 Oct 25 LXD2.3 2500 300 HD 16811 Clear
HD 218804 F5 V 2001 Oct 20 SXD 2000 225 HD 219290 Thin Cirrus
    2001 Oct 20 LXD1.9 2500 200 HD 219290 Thin Cirrus
HD 27524 F5 V 2003 Jan 14 SXD 2000 120 HD 25175 Clear
    2003 Sep 21 LXD2.1 2500 300 HD 25175 Clear
HD 75555 F5.5 III−IV 2007 Apr 25 SXD 2000 600 HD 71906 Clear
HD 160365 F6 III−IV 2003 Jul 7 SXD 2000 100 HD 165029 Thin Cirrus
    2003 Jul 7 LXD2.1 2500 300 HD 165029 Thin Cirrus
HD 11443 F6 IV 2005 Oct 7 SXD 2000 61 HD 13869 Clear
    2005 Oct 7 LXD2.1 2500 150 HD 13869 Clear
HD 215648 F6 V 2008 Oct 8 SXD 2000 180 HD 210501 Thin Cirrus
HD 201078 F7 II– 2008 Oct 11 SXD 2000 360 HD 196724 Thick Cirrus
HD 124850 F7 III 2007 Apr 25 SXD 2000 120 HD 126129 Clear
HD 126660 F7 V 2007 Jun 22 SXD 2000 120 HD 121409 Clear
    2007 Jun 22 LXD2.1 2500 400 HD 121409 Clear
HD 190323 F8 Ia 2008 Oct 8 SXD 2000 160 HD 196724 Thin Cirrus
    2008 Oct 8 LXD2.1 2500 300 HD 196724 Thin Cirrus
HD 51956 F8 Ib 2003 Oct 16 SXD 2000 200 HD 53205 Thin Cirrus
    2006 Dec 21 LXD2.1 2500 300 HD 60357 Clear
HD 220657 F8 III 2006 Dec 21 SXD 2000 90 HD 222749 Clear
    2008 Oct 12 LXD1.9 2500 150 HD 210501 Thin Cirrus
HD 111844 F8 IV 2007 Apr 25 SXD 2000 360 HD 107655 Clear
HD 219623 F8 V 2001 Oct 20 SXD 2000 105 HD 219290 Thin Cirrus
    2001 Oct 20 LXD1.9 2500 200 HD 219290 Thin Cirrus
HD 27383 F8 V 2000 Oct 24 SXD 2000 150 HD 23258 Clear
    2000 Oct 25 LXD2.3 2500 300 HD 23258 Clear
HD 102870 F8.5 IV−V 2007 Apr 25 SXD 2000 120 HD 97585 Clear
    2007 Apr 25 LXD1.9 2500 180 HD 97585 Clear
HD 6903 F9 IIIa 2001 Aug 29 SXD 2000 120 HD 6457 Clear
    2001 Aug 31 LXD1.9 2500 200 HD 13869 Thin Cirrus
HD 176051 F9 V 2001 Oct 11 SXD 2000 180 HD 174567 Clear
    2004 Jul 6 LXD1.9 2500 150 HD 174567 Clear
HD 165908 F9 V metal weak 2003 Aug 10 SXD 2000 40 HD 171623 Clear
    2003 Aug 10 LXD2.1 2500 300 HD 171623 Clear
HD 114710 F9.5 V 2004 Apr 30 SXD 2000 100 HD 121996 Clear
    2004 Apr 30 LXD2.1 2500 150 HD 121996 Clear
HD 185018 G0 Ib−II 2001 Oct 11 SXD 2000 72 HD 182919 Clear
    2003 Oct 7 LXD2.1 2500 250 HD 182919 Clear
HD 109358 G0 V 2007 Jun 24 SXD 2000 120 HD 109615 Clear
    2007 Jun 24 LXD2.1 2500 200 HD 109615 Clear
HD 74395 G1 Ib 2003 Jan 14 SXD 2000 126 HD 71155 Clear
    2003 Nov 20 LXD1.9 2500 150 HD 71155 Clear
HD 216219 G1 II−III: Fe−1 CH0.5 2005 Oct 6 SXD 2000 300 HD 210501 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 208108 Clear
HD 21018 G1 III: CH−1: 2005 Oct 6 SXD 2000 135 HD 21686 Clear
    2005 Oct 6 LXD2.1 2500 300 HD 21686 Clear
HD 10307 G1 V 2006 Dec 21 SXD 2000 120 HD 13869 Clear
    2006 Dec 21 LXD2.1 2500 300 HD 13689 Clear
HD 95128 G1− V Fe−0.5 2001 Mar 10 SXD 2000 150 HD 88960 Thin Cirrus
    2003 May 7 LXD1.9 2500 300 HD 88960 Thin Cirrus
HD 20619 G1.5 V 2001 Jan 25 SXD 2000 300 HD 21686 Thin Cirrus
    2001 Jan 25 LXD2.3 2500 300 HD 21686 Thin Cirrus
HD 42454 G2 Ib 2001 Oct 12 SXD 2000 180 HD 46553 Clear
HD 39949 G2 Ib 2001 Oct 12 SXD 2000 180 HD 46553 Clear
HD 3421 G2 Ib−II 2005 Oct 7 SXD 2000 150 HD 7215 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 7215 Clear
HD 219477 G2 II−III 2008 Oct 12 SXD 2000 180 HD 210501 Thin Cirrus
HD 126868 G2 IV 2007 Jun 24 SXD 2000 150 HD 126129 Clear
    2007 Jun 24 LXD2.1 2500 150 HD 126129 Clear
HD 76151 G2 V 2000 Dec 11 SXD 2000 180 HD 71155 Clear
    2000 Dec 11 LXD2.3 1500 250 HD 71155 Clear
HD 192713 G3 Ib−II Wk H&K comp? 2005 Oct 6 SXD 2000 225 HD 196724 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 196724 Clear
HD 176123 G3 II 2005 Jun 22 SXD 2000 140 HD 182110 Thin Cirrus
    2004 Jul 4 LXD1.9 2500 150 HD 182678 Clear
HD 88639 G3 IIIb Fe−1 2003 Feb 25 SXD 2000 84 HD 88960 Clear
    2003 May 7 LXD1.9 2500 300 HD 88960 Thin Cirrus
HD 10697 G3 Va 2000 Oct 24 SXD 2000 100 HD 6457 Clear
    2000 Oct 25 LXD2.3 2500 300 HD 6457 Clear
HD 179821 G4 O−Ia 2001 Oct 11 SXD 2000 180 HD 171149 Clear
    2005 Aug 26 LXD2.1 2500 300 HD 177724 Clear
HD 6474 G4 Ia 2003 Aug 10 SXD 2000 135 HD 11946 Clear
    2003 Aug 10 LXD2.1 2500 300 HD 11946 Clear
HD 94481 G4 III−IIIb 2003 Feb 25 SXD 2000 120 HD 92245 Clear
HD 108477 G4 III 2003 Feb 25 SXD 2000 144 HD 105764 Clear
    2003 May 8 LXD2.1 2500 300 HD 112304 Clear
HD 214850 G4 V 2004 Jul 5 SXD 2000 160 HD 210501 Clear
    2001 Aug 6 LXD2.1 2500 400 HD 208108 Clear
HD 190113 G5 Ib 2001 Oct 11 SXD 2000 120 HD 192538 Clear
    2001 Oct 19 LXD1.9 2500 240 HD 192538 Thin Cirrus
HD 18474 G5: III: CN−3 CH−2 Hδ−1 2006 Dec 21 SXD 2000 125 HD 21038 Clear
    2006 Dec 21 LXD2.1 2500 300 HD 21038 Clear
HD 193896 G5 IIIa 2003 Oct 16 SXD 2000 200 HD 190454 Thin Cirrus
HD 165185 G5 V 2003 Jul 7 SXD 2000 150 HD 157486 Thin Cirrus
    2003 Jul 7 LXD2.1 2500 300 HD 157486 Thin Cirrus
HD 161664 G6 Ib Hδ1 2003 Aug 5 SXD 2000 125 HD 170364 Thin Cirrus
    2004 Jul 5 LXD1.9 2500 300 HD 155379 Clear
HD 202314 G6 Ib−IIa Ca1 Ba0.5 2005 Oct 6 SXD 2000 300 HD 208108 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 196724 Clear
HD 58367 G6 IIb 2003 Jan 14 SXD 2000 150 HD 50931 Clear
    2004 Mar 9 LXD2.3 2500 300 HD 64648 Clear
HD 27277 G6 III 2005 Oct 7 SXD 2000 160 HD 29526 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 29526 Clear
HD 115617 G6.5 V 2002 May 29 SXD 2000 120 HD 112304 Clear
    2002 May 29 LXD2.1 2500 250 HD 112304 Clear
HD 333385 G7 Ia 2002 Jul 13 SXD 2000 200 HD 192538 Clear
    2004 Jul 5 LXD1.9 2500 300 HD 196724 Clear
HD 25877 G7 II 2005 Oct 6 SXD 2000 120 HD 34787 Clear
    2005 Oct 6 LXD2.1 2500 300 HD 34787 Clear
HD 182694 G7 IIIa 2001 Aug 31 SXD 2000 90 HD 192538 Clear
    2001 Aug 31 LXD1.9 2500 200 HD 192538 Clear
HD 20618 G7 IV 2003 Oct 15 SXD 2000 140 HD 20995 Thin Cirrus
    2003 Oct 15 LXD2.1 2500 200 HD 20995 Thin Cirrus
HD 114946 G7 IV 2007 Jun 24 SXD 2000 90 HD 112304 Clear
    2007 Jun 24 LXD2.1 2500 240 HD 112304 Clear
HD 16139 G7.5 IIIa 2000 Oct 24 SXD 2000 200 HD 13869 Clear
    2000 Oct 25 LXD2.3 2500 300 HD 13869 Clear
HD 208606 G8 Ib 2001 Sep 1 SXD 2000 100 HD 223386 Thin Cirrus
    2001 Aug 31 LXD1.9 2500 200 HD 223386 Thin Cirrus
HD 122563 G8: III: Fe−5 2002 May 31 SXD 2000 200 HD 131951 Clear
    2003 May 8 LXD2.1 2500 300 HD 126129 Clear
HD 104979 G8 III Ba1 CN0.5 CH1 2002 May 31 SXD 2000 100 HD 111744 Clear
    2003 May 7 LXD1.9 2500 200 HD 110411 Thin Cirrus
HD 135722 G8 III Fe−1 2004 Jul 6 SXD 2000 153 HD 127304 Clear
    2004 Jul 6 LXD2.1 2500 100 HD 127304 Clear
HD 101501 G8 V 2003 Feb 25 SXD 2000 120 HD 105388 Clear
    2003 Jan 16 LXD2.1 2500 210 HD 107655 Clear
HD 75732 G8 V 2001 Mar 11 SXD 2000 60 HD 71906 Clear
    2001 Mar 11 LXD2.3 2500 250 HD 71906 Clear
HD 170820 G9 II CN1 Hδ1 2005 Oct 7 SXD 2000 120 HD 163336 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 163336 Clear
HD 222093 G9 III 2001 Aug 29 SXD 2000 360 HD 218639 Clear
    2001 Sep 1 LXD1.9 2500 100 HD 218639 Thin Cirrus
HD 165782 K0 Ia 2005 Jun 22 SXD 2000 250 HD 163336 Thin Cirrus
HD 44391 K0 Ib 2003 Jan 14 SXD 2000 120 HD 46553 Clear
    2003 Nov 20 LXD1.9 2500 300 HD 46553 Clear
HD 179870 K0 II 2003 Oct 7 LXD2.1 2500 250 HD 182919 Clear
    2005 Jun 22 SXD 2000 140 HD 177724 Thin Cirrus
HD 100006 K0 III 2003 Feb 25 SXD 2000 105 HD 101060 Clear
    2003 May 7 LXD1.9 2500 300 HD 107655 Thin Cirrus
HD 145675 K0 V 2003 Jul 6 SXD 2000 140 HD 157778 Thin Cirrus
    2003 Jul 6 LXD2.1 2500 300 HD 157778 Thin Cirrus
HD 164349 K0.5 IIb 2003 Aug 5 SXD 2000 60 HD 165029 Thin Cirrus
HD 9852 K0.5 III CN1 2003 Aug 10 SXD 2000 120 HD 12365 Clear
    2003 Sep 21 LXD2.1 2500 300 HD 11946 Clear
HD 63302 K1 Ia−Iab 2005 Oct 6 SXD 2000 120 HD 67725 Clear
    2005 Oct 7 LXD2.1 2500 125 HD 67725 Clear
HD 36134 K1− III Fe−0.5 2003 Jan 14 SXD 2000 120 HD 34317 Clear
    2003 Nov 20 LXD1.9 2500 200 HD 34317 Clear
HD 91810 K1− IIIb CN1.5 Ca1 2003 Feb 25 SXD 2000 120 HD 92728 Clear
    2003 May 7 LXD1.9 2500 300 HD 92728 Thin Cirrus
HD 25975 K1 III 2003 Jan 14 SXD 2000 144 HD 25152 Clear
    2003 Nov 20 LXD1.9 2500 300 HD 25152 Clear
HD 165438 K1 IV 2002 May 29 SXD 2000 150 HD 171149 Clear
HD 142091 K1 IVa 2003 Feb 24 SXD 2000 180 HD 140729 Clear
HD 10476 K1 V 2002 Nov 11 SXD 2000 120 HD 13869 Thin Cirrus
    2003 Sep 21 LXD2.1 2500 300 HD 6457 Clear
HD 124897 K1.5 III Fe−0.5 2003 May 28 SXD 2000 120 HD 121996 Clear
    2003 May 28 LXD2.1 2500 150 HD 121996 Clear
HD 212466 K2 O−Ia 2005 Aug 26 SXD 2000 100 HD 205314 Clear
    2005 Aug 26 LXD2.1 2500 200 HD 205314 Clear
HD 2901 K2 III Fe−1 2003 Aug 10 SXD 2000 90 HD 1561 Clear
    2003 Aug 10 LXD2.1 2500 300 HD 1561 Clear
HD 132935 K2 III 2002 May 31 LXD2.1 2500 500 HD 141513 Clear
    2004 Jul 5 SXD 2000 200 HD 133772 Clear
HD 137759 K2 III 2003 Feb 23 SXD 2000 72 HD 143187 Clear
HD 3765 K2 V 2000 Oct 20 SXD 2000 300 HD 1561 Thin Cirrus
    2003 Oct 7 LXD2.1 2500 250 HD 6457 Clear
HD 23082 K2.5 II 2003 Oct 3 SXD 2000 150 HD 21038 Clear
    2003 Oct 3 LXD2.1 2500 180 HD 21038 Clear
HD 187238 K3 Iab−Ib 2003 Aug 10 SXD 2000 50 HD 182919 Clear
    2005 Aug 26 LXD2.1 2500 200 HD 182919 Clear
HD 16068 K3 II−III 2003 Aug 10 SXD 2000 75 HD 23452 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 23594 Clear
HD 221246 K3 III 2002 Nov 11 SXD 2000 200 HD 219290 Thin Cirrus
    2008 Oct 8 LXD2.1 2500 150 HD 219290 Thin Cirrus
HD 178208 K3 III 2005 Jun 22 SXD 2000 200 HD 178207 Thin Cirrus
HD 35620 K3 III Fe1 2003 Jan 16 SXD 2000 120 HD 31069 Clear
    2003 Nov 20 LXD1.9 2500 150 HD 31592 Clear
HD 99998 K3+ III Fe−0.5 2003 May 29 SXD 2000 120 HD 97585 Thin Cirrus
    2003 May 29 LXD1.9 2500 200 HD 97585 Thin Cirrus
HD 114960 K3.5 IIIb CN0.5 CH0.5 2003 Feb 25 SXD 2000 150 HD 116960 Clear
    2003 May 7 LXD1.9 2500 300 HD 110411 Thin Cirrus
HD 219134 K3 V 2001 Aug 6 SXD 2000 45 HD 223386 Clear
    2001 Aug 6 LXD2.1 2500 200 HD 223386 Clear
HD 185622 K4 Ib 2003 Aug 10 SXD 2000 50 HD 182919 Clear
HD 201065 K4 Ib−II 2001 Oct 11 SXD 2000 150 HD 205314 Clear
    2001 Oct 11 LXD1.9 2500 300 HD 205314 Clear
HD 207991 K4− III 2002 Jul 13 SXD 2000 150 HD 205314 Clear
    2003 Oct 7 LXD2.1 2500 200 HD 205314 Clear
HD 45977 K4 V 2003 Oct 16 SXD 2000 300 HD 48481 Thin Cirrus
HD 216946 K5 Ib 2003 Oct 16 SXD 2000 110 HD 219290 Thin Cirrus
    2003 Oct 16 LXD2.1 2500 125 HD 219290 Thin Cirrus
HD 181596 K5 III 2005 Jun 24 SXD 2000 250 HD 178207 Thin Cirrus
    2008 Oct 12 LXD2.1 2500 300 HD 178207 Thin Cirrus
HD 36003 K5 V 2000 Dec 11 SXD 2000 300 HD 36058 Clear
    2000 Dec 11 LXD2.3 1500 250 HD 36058 Clear
HD 120477 K5.5 III 2003 May 29 SXD 2000 78 HD 121996 Thin Cirrus
    2003 May 29 LXD1.9 2500 15 HD 121996 Thin Cirrus
HD 3346 K6 IIIa 2003 Oct 16 SXD 2000 100 HD 1561 Thin Cirrus
HD 181475 K7 IIa 2003 Oct 16 SXD 2000 200 HD 171149 Thin Cirrus
HD 194193 K7 III 2003 Oct 16 SXD 2000 150 HD 199312 Thin Cirrus
    2005 Aug 26 LXD2.1 2500 300 HD 192538 Clear
HD 237903 K7 V 2002 Jan 10 SXD 2000 300 HD 92728 Clear
    2002 Jan 11 LXD2.1 1500 500 HD 92728 Thin Cirrus
HD 201092 K7 V 2001 Oct 20 SXD 2000 125 HD 192538 Thin Cirrus
HD 213893 M0 IIIb 2005 Oct 7 SXD 2000 150 HD 212061 Clear
    2005 Oct 7 LXD2.1 2500 300 HD 212061 Clear
HD 19305 M0 V 2001 Oct 12 SXD 2000 600 HD 21379 Clear
    2000 Oct 25 LXD2.3 2500 300 HD 23258 Clear
HD 236697 M0.5 Ib 2001 Oct 11 SXD 2000 180 HD 1561 Clear
    2001 Oct 19 LXD1.9 2500 300 HD 1561 Clear
HD 209290 M0.5 V 2000 Oct 24 SXD 2000 200 GJ 9779 Thin Cirrus
    2000 Oct 25 LXD2.3 2500 300 GJ 9779 Clear
HD 339034 M1 Ia 2003 Jul 6 SXD 2000 150 HD 182919 Thin Cirrus
    2003 Jul 6 LXD2.1 2500 200 HD 182919 Thin Cirrus
HD 14404 M1− Iab−Ib 2003 Jan 16 SXD 2000 120 HD 15090 Clear
    2003 Nov 20 LXD1.9 2500 250 HD 19844 Thin Cirrus
HD 39801 M1−M2 Ia−Iab 2003 Nov 6 SXD 2000 200 HD 41076 Clear
    2003 Nov 6 LXD2.1 2500 200 HD 41076 Clear
HD 204724 M1+ III 2005 Oct 6 SXD 2000 153 HD 208108 Clear
    2005 Oct 6 LXD2.1 2500 184 HD 208108 Clear
HD 42581 M1 V 2002 Jan 10 SXD 2000 200 HD 42301 Clear
    2002 Jan 11 LXD2.1 2500 250 HD 42301 Thin Cirrus
HD 35601 M1.5 Iab−Ib 2001 Oct 12 SXD 2000 180 HD 31069 Clear
    2003 Nov 20 LXD1.9 2500 150 HD 31592 Clear
BD +60 265 M1.5 Ib 2005 Aug 26 SXD 2000 300 HD 11946 Clear
    2005 Aug 26 LXD2.1 2500 200 HD 11946 Clear
HD 36395 M1.5 V 2000 Oct 24 SXD 2000 100 HD 40210 Clear
    2000 Oct 25 LXD2.3 2500 300 HD 34317 Clear
HD 206936 M2− Ia 2005 Aug 26 SXD 2000 100 HD 219290 Clear
    2005 Aug 26 LXD2.3 2500 100 HD 194354 Clear
HD 10465 M2 Ib 2003 Jan 16 SXD 2000 180 HD 1561 Clear
    2003 Oct 7 LXD2.1 2500 200 HD 21038 Clear
HD 23475 M2 II 2003 Jan 16 SXD 2000 60 HD 14632 Clear
HD 120052 M2 III 2002 May 28 SXD 2000 90 HD 124683 Clear
    2002 May 28 LXD2.1 2500 150 HD 124683 Clear
HD 95735 M2 V 2000 Dec 10 SXD 2000 60 HD 88960 Clear
    2000 Dec 10 LXD2.3 1500 500 HD 88960 Clear
Gl 806 M2 V 2003 Jul 7 SXD 2000 300 HD 199312 Thin Cirrus
HD 219734 M2.5 III Ba0.5 2002 Nov 11 SXD 2000 150 HD 219290 Thin Cirrus
    2003 Oct 7 LXD2.1 2500 100 HD 219290 Clear
Gl 381 M2.5 V 2002 Jan 10 SXD 2000 300 HD 85504 Clear
    2002 Jan 11 LXD2.1 1500 500 HD 85504 Thin Cirrus
Gl 581 M2.5 V 2000 Jun 24 SXD 2000 200 HD 141513 Clear
    2000 Jun 24 LXD2.1 2500 150 HD 141513 Clear
RW Cyg M3 to M4 Ia−Iab 2003 Jul 7 SXD 2000 82 HD 199312 Thin Cirrus
    2003 Jul 7 LXD1.9 2500 70 HD 199312 Thin Cirrus
CD −31 4916 M3 Iab−Ia 2002 Jan 11 SXD 2000 250 HD 68027 Thin Cirrus
    2003 Nov 20 LXD1.9 2500 200 HD 70963 Clear
HD 14469 M3−M4 Iab 2003 Jan 16 SXD 2000 120 HD 15090 Clear
    2003 Oct 6 LXD2.1 2500 100 HD 23594 Thin Cirrus
HD 40239 M3 IIb 2002 Jan 10 SXD 2000 50 HD 45105 Clear
    2001 Jan 11 LXD2.1 2500 100 HD 45105 Thin Cirrus
HD 39045 M3 III 2002 Jan 10 SXD 2000 150 HD 46533 Clear
    2002 Jan 11 LXD2.1 2500 125 HD 46533 Thin Cirrus
Gl 388 M3 V 2000 Dec 10 SXD 2000 180 HD 88960 Clear
    2000 Dec 10 LXD2.3 1500 250 HD 88960 Clear
HD 14488 M3.5 Iab Fe−1 var? 2005 Aug 26 SXD 2000 150 HD 23452 Clear
    2005 Aug 26 LXD2.1 2500 150 HD 23594 Clear
HD 28487 M3.5 III Ca−0.5 2003 Jan 16 SXD 2000 126 HD 31411 Clear
    2003 Oct 8 LXD2.1 2500 125 HD 31295 Clear
Gl 273 M3.5 V 2002 Jan 11 SXD 2000 300 HD 50931 Thin Cirrus
    2002 Feb 28 LXD2.1 2500 600 HD 50931 Clear
HD 19058 M4+ IIIa 2003 Jan 16 SXD 2000 108 HD 20995 Clear
    2003 Nov 20 LXD1.9 2500 100 HD 21038 Clear
HD 214665 M4+ III 2001 Oct 21 SXD 2000 100 HD 223386 Thin Cirrus
    2001 Oct 21 LXD1.9 2500 100 HD 223386 Thin Cirrus
HD 4408 M4 III 2003 Jan 3 SXD 2000 50 HD 6457 Clear
    2003 Oct 7 LXD2.1 2500 102 HD 6457 Clear
HD 27598 M4− III 2003 Jan 16 SXD 2000 180 HD 29575 Clear
    2003 Oct 8 LXD2.1 2500 300 HD 29573 Clear
Gl 213 M4 V 2000 Dec 9 SXD 2000 720 HD 34203 Clear
    2000 Dec 9 LXD2.3 1500 500 HD 41076 Clear
Gl 299 M4 V 2000 Dec 11 SXD 2000 1200 HD 75137 Clear
    2000 Dec 11 LXD2.3 1500 5000 HD 75137 Clear
HD 204585 M4.5 IIIa 2002 Jul 14 SXD 2000 110 HD 208108 Clear
Gl 268AB M4.5 V 2000 Dec 10 SXD 2000 600 HD 56386 Clear
    2000 Dec 10 LXD2.3 1500 500 HD 56386 Clear
HD 156014 M5 Ib−II 2005 Aug 26 SXD 2000 100 HD 165029 Clear
    2005 Aug 26 LXD1.9 2500 100 HD 165029 Clear
HD 175865 M5 III 2003 May 7 SXD 2000 60 HD 174567 Thin Cirrus
Gl 51 M5 V 2000 Nov 6 SXD 2000 600 HD 11946 Clear
    2000 Nov 6 LXD2.3 1500 250 HD 11946 Clear
Gl 866ABC M5 V 2001 Oct 11 SXD 2000 600 HD 218639 Clear
    2001 Oct 19 LXD1.9 2500 300 HD 218639 Clear
HD 94705 M5.5 III: 2003 May 8 SXD 2000 60 HD 97595 Clear
    2003 May 8 LXD2.1 2500 60 HD 97595 Thin Cirrus
HD 196610 M6 III 2002 Jul 14 SXD 2000 100 HD 196724 Clear
    2003 Oct 7 LXD2.1 2500 100 HD 196724 Clear
HD 18191 M6− III: 2003 Jan 16 SXD 2000 120 HD 16811 Clear
    2003 Sep 20 LXD2.1 2500 31 HD 16811 Clear
Gl 406 M6 V 2001 Jan 25 SXD 2000 360 HD 97585 Clear
    2001 Jan 24 LXD2.3 2500 500 HD 97585 Clear
GJ 1111 M6.5 V 2000 Dec 9 SXD 2000 960 HD 64648 Clear
    2000 Dec 9 LXD2.3 2000 1000 HD 64648 Clear
HD 14386 M5e−M9e III 2003 Nov 6 SXD 2000 100 HD 15130 Clear
    2003 Sep 20 LXD2.1 2500 153 HD 13936 Clear
HD 108849 M7− III: 2003 May 8 SXD 2000 100 HD 110411 Clear
    2003 May 8 LXD2.1 2500 54 HD 110411 Clear
HD 207076 M7− III: 2003 Oct 16 SXD 2000 100 HD 212061 Thin Cirrus
    2003 Oct 16 LXD2.1 2500 100 HD 212061 Thin Cirrus
Gl 644C M7 V 2001 Jul 12 SXD 2000 1440 HD 148968 Thin Cirrus
    2001 Jul 12 LXD1.9 940 660 HD 148968 Thin Cirrus
MY Cep M7−M7.5 I 2003 Aug 10 SXD 2000 450 HD 223386 Clear
    2003 Aug 10 LXD2.1 2500 200 HD 223386 Clear
HD 69243 M6e−M9e III 2007 Jan 18 SXD 2000 100 HD 64648 Clear
    2007 Jan 18 LXD2.1 2500 100 HD 64648 Clear
BRI B2339 − 0447 M7 − 8 III 2006 Nov 29 SXD 2000 1200 HD 215143 Thin Cirrus
    2006 Nov 29 LXD1.9 2500 300 HD 215143 Thick Cirrus
IRAS 01037+1219 M8 III 2007 Jan 18 SXD 2000 450 HD 6457 Clear
    2007 Jan 18 LXD2.1 2500 100 HD 6457 Clear
Gl 752B M8 V 2001 Jul 13 SXD 2000 600 HD 183324 Clear
    2001 Jul 13 LXD1.9 940 600 HD 183324 Clear
LP 412 − 31 M8 V 2003 Sep 20 SXD 2000 1800 HD 21686 Clear
    2003 Sep 21 LXD1.9 1500 600 HD 21686 Clear
IRAS 21284 − 0747 M8 − 9 III 2006 Nov 29 SXD 2000 300 HD 198070 Thin Cirrus
    2006 Nov 29 LXD2.1 2500 300 HD 212061 Clear
IRAS 14436 − 0703 M8 − 9 III 2006 Jun 24 SXD 2000 200 HD 132072 Thin Cirrus
IRAS 14303 − 1042 M8 − 9 III 2006 Jun 24 SXD 2000 600 HD 132072 Thin Cirrus
IRAS 15060+0947 M9 III 2006 Jun 24 SXD 2000 150 HD 131951 Thin Cirrus
BRI B1219 − 1336 M9 III 2006 Jun 24 SXD 2000 300 HD 110902 Thin Cirrus
DENIS−P J104814.7 − 395606.1 M9 V 2000 Dec 9 SXD 2000 1440 HD 99627 Clear
    2000 Dec 11 LXD1.9 940 1260 HD 99627 Clear
LP 944 − 20 M9 V 2001 Jan 24 SXD 2000 2400 HD 18735 Clear
    2002 Jan 11 LXD2.1 940 3600 HD 18735 Thin Cirrus
LHS 2065 M9 V 2000 Dec 10 SXD 1200 1920 HD 71155 Clear
LHS 2924 M9 V 2003 Feb 23 SXD 2000 1200 HD 127304 Clear
BRI B0021 − 0214 M9.5 V 2001 Oct 12 SXD 2000 1440 HD 9485 Thin Cirrus
    2000 Nov 6 LXD1.9 940 600 HD 1663 Thin Cirrus
IRAS 14086 − 0703 M10+ III 2006 Jun 24 SXD 2000 300 HD 132072 Thin Cirrus
HD 142143 M6.5S to M7S III: 2006 Jul 10 SXD 2000 75 HD 121409 Clear
    2006 Jul 10 LXD2.1 2500 125 HD 121409 Clear
BD +44 2267 S2.5 Zr 2 2008 Apr 2 SXD 2000 90 HD 99966 Clear
    2008 Apr 2 LXD1.9 2500 90 HD 99966 Clear
HD 64332 S4.5 Zr 2 Ti 4 2007 Mar 16 SXD 2000 150 HD 67725 Clear
    2007 Mar 16 LXD2.1 2500 300 HD 67725 Clear
HD 44544 SC5.5 Zr 0.5 2008 Apr 2 SXD 2000 90 HD 45137 Clear
    2008 Apr 2 LXD1.9 2500 90 HD 45137 Clear
HD 62164 S5−S6 Zr 3 to 4 Ti 0 2007 Mar 15 SXD 2000 135 HD 67725 Clear
    2007 Mar 15 LXD2.1 2500 150 HD 67725 Clear
HD 76846 C−R2+ IIIa: C2 2.5 2007 Mar 15 SXD 2000 360 HD 71906 Clear
    2007 Mar 16 LXD1.9 2500 300 HD 71906 Clear
HD 31996 C7, 6e(N4) 2007 Jan 18 SXD 2000 140 HD 29573 Clear
    2007 Jan 18 LXD2.1 2500 150 HD 29573 Clear
HD 44984 C−N4 C2 3.5 2007 Mar 15 SXD 2000 306 HD 42477 Clear
    2007 Mar 15 LXD2.1 2500 255 HD 42477 Clear
HD 76221 C−N 4.5 C2 5.5 MS 3 2007 Mar 15 SXD 2000 92 HD 64648 Clear
    2007 Mar 16 LXD2.1 2500 102 HD 64648 Clear
HD 92055 C−N4.5 C2 4.5 2007 Apr 25 SXD 2000 180 HD 92245 Clear
    2007 Apr 25 LXD1.9 2500 255 HD 92245 Clear
HD 70138 C−J4.5 IIIa: C2 6 j 6 2007 Mar 17 SXD 2000 180 HD 69589 Clear
    2007 Mar 17 LXD2.1 2500 300 HD 69589 Clear
HD 48664 C−N5 C2 6 2007 Mar 16 SXD 2000 180 HD 45137 Clear
    2007 Mar 16 LXD2.1 2500 300 HD 45137 Clear
HD 57160 C−J5− C2 5− j 4 2007 Mar 17 SXD 2000 150 HD 64648 Clear
    2007 Mar 17 LXD2.1 2500 300 HD 64648 Clear

Download table as:  ASCIITypeset images: 1 2 3 4 5 6

To facilitate subtraction of the additive components of the total signal (electronic bias level, dark current, sky and background emission) during the reduction process, the observations were obtained in a series of exposures in which the target was nodded along the slit between two positions separated by 7farcs5, and a sequence of nodded pairs was taken to build up S/N. A minimum of three pairs were taken (six spectra) to allow noisy pixels (mainly due to cosmic ray hits) to be rejected by a sigma-clipping algorithm. Guiding was done on spill-over from the science target in the slit using the infrared slit-viewing camera. In the SXD mode, where atmospheric dispersion is significant compared to the slit width of 0farcs3 (see Figure 2), the image rotator was set to the parallactic angle prior to each observation. As discussed in Section 2.3, observing at the parallactic angle minimized spectral slope variations. This is not as important in the LXD mode where atmospheric dispersion is an order a magnitude smaller.

Figure 2.

Figure 2. Atmospheric dispersion for the summit of Mauna Kea and the conditions indicated, as a function of wavelength (relative to 2.4 μm) and zenith angle. Since the magnitude of atmospheric dispersion in the NIR is significant compared to the slit width used (0farcs3), observations were made at the parallactic angle to minimize slit losses and measure the spectral shape more accurately.

Standard image High-resolution image

An A0 V star was observed before or after each science object to correct for absorption due to the Earth's atmosphere (see Figure 3) and to flux calibrate the science object spectra. The airmass difference between the object and "telluric standard" was almost always less than 0.1 and usually less than 0.05. However, in a few cases where there was a paucity of nearby A0 V stars, the airmass difference was as large as 0.15. Standard stars were also chosen to be located within 10 deg of the science object whenever possible, to minimize the effects of any differential flexure in the instrument between the observations of the object and standard. This limit on the angular distance provides a good compromise between the requirements to match airmass, minimize flexure, and find suitably bright standard stars. On those few occasions when it was necessary to observe a telluric standard more than 10 deg away from the object due to a lack of A0 V stars in certain parts of the sky, we found that telluric CO2 (predominantly at 2.01 μm) features were sometimes not adequately removed by the standard star despite a good airmass match and good correction of telluric H2O. (See, for example, Figure 54, where the F7 III and F8 III stars were corrected with telluric standard stars at separations and airmass differences of 14 deg and 0.09, and 21 deg and 0.05, respectively.) We attribute this to the possibility that telluric H2O and CO2 are not well mixed and to patchy CO2 distribution. Finally, a set of internal flat field exposures and argon arc lamp exposures was taken after each object/standard pair for flat fielding and wavelength calibration purposes.

Figure 3.

Figure 3. Atmospheric transmission for Mauna Kea (4200 m, airmass 1.15, precipitable water vapor 2 mm) overplotted with the spectrum of Gl 406 (M6 V).

Standard image High-resolution image

2.3. Data Reduction

We reduced the data using Spextool (Cushing et al. 2004), the facility IDL-based data reduction package for SpeX. The initial image processing consisted of correcting each science frame for nonlinearity, subtracting the pairs of images taken at the two different slit positions, and dividing the pair-subtracted images by a normalized flat field. In each frame, the spectra in the individual orders were then optimally extracted (e.g., Horne 1986) and wavelength calibrated. (All wavelengths are given in vacuum.) The extracted spectra in each order from the set of frames for a given object were then combined using the median. This resulted in a single spectrum in each order for a given object.

The spectra in the individual orders were then corrected for telluric absorption and flux calibrated using the extracted A0 V spectra and the technique described by Vacca et al. (2003). In addition to correcting for the absorption due to the atmosphere, this process also removes the signature of the instrumental throughput and restores the intrinsic (i.e., above the atmosphere) spectrum of each science object in each spectral order. Briefly, this technique scales a theoretical model spectrum of Vega to the observed visual magnitude of the observed standard star, convolves it to the observed resolution, and adjusts the H i line strengths to match the observed strengths of the standard star. The ratio of the adjusted model spectrum to the observed spectrum of the A0V star gives the telluric correction spectrum (which also includes correction for the instrument throughput) in each order. The science object spectrum is then divided by the telluric spectrum. The resulting flux calibration is accurate to about 10%. The sharp and deep telluric absorption features are marginally sampled with a 2 pixel-wide slit so that when the object and telluric correction spectra are ratioed, residuals remain at the wavelengths of these features due to a small amount of instrumental flexure between the object and standard star positions. In order to minimize these systematic errors, the telluric correction spectrum is first shifted relative to the object spectrum until the noise in these regions is minimized. Typically, these shifts are ∼0.1–0.2 pixel for telescope movements of 10 deg.

In principle, the flux density levels of the telluric-corrected spectra in two adjacent orders should match exactly in the wavelength region where they overlap; in practice we find offsets of usually less than 1%, although occasionally as large as 3%. The level mismatch was removed by scaling one spectrum to the level of the other. The scale factor was determined from a section of the overlap region where both spectra were judged to have sufficient S/N to allow an accurate determination. The telluric-corrected and scaled spectra in the individual orders were then merged together to form a single, continuous spectrum for the science object. Regions of strong telluric absorption were then removed. The precise wavelength intervals removed depended on the transparency of the atmosphere at the time of observation but always included the ∼2.5–2.8 μm and ∼4.2–4.6 μm regions. For each object, the SXD and LXD spectra were combined in a manner similar to that used to combine the individual orders. A scale factor was determined from the overlapping wavelength region and then used to adjust the SXD and LXD spectra to a common level.

The next step in the reduction process was to absolutely flux calibrate the spectra using the 2MASS photometry listed in Table 2. For each spectrum, we computed correction factors based on the JHKS photometry given by

Equation (1)

where FVegaX is the Vega flux, mX is the magnitude of the object, ZPX is the passband zero point, SX(λ) is the system response function in bandpass X, and fobsλ is the flux density of the object. We used the Vega fluxes (5.082 × 10−10, 2.843 × 10−10, 1.122 × 10−10 W m−2), zero points (+0.001, −0.019, +0.017), and the system response functions given by Cohen et al. (2003). Each spectrum was then multiplied by a single scale factor 〈C〉 given by the weighted average of the J-, H-, and KS-band correction factors (fλ = fobsλ×C〉). The weights were given by the errors in the scale factors, which in turn were derived from the photometric uncertainties. This scaling has the effect of shifting the entire spectrum up or down so that the overall absolute flux level is correct, while simultaneously preserving the relative flux calibration of each spectral order derived from the observations and telluric correction procedures. For variable stars in the sample (mostly TPAGB stars), the absolute flux calibration is only approximate since the 2MASS photometry was obtained at an earlier epoch than the SpeX spectroscopy. Furthermore, not all the SXD and LXD spectra of individual stars were obtained at the same epoch.

The spectrum of each object is then shifted to zero radial velocity. To do this, we first selected two stars, HD 219623 (F8 V) and HD 201092 (K7 V), as representatives of F–G, and K–M stars, respectively, and measured their apparent radial velocities using the observed wavelengths of strong, isolated atomic lines. For HD 219623 we measured the positions of the Pa epsilon (0.9548590 μm), Pa γ (1.0052128 μm), Pa β (1.282159 μm), Mg i (1.4881683 μm), Mg i (1.7113304 μm), and Br γ (2.166120 μm) lines and for HD 201092 we used the Si i (1.0588042 μm), Mg i (1.1831408 μm), Mg i (1.4881683 μm), and Mg i (1.7113304 μm) lines. The observed radial velocities for these two stars were determined by averaging the radial velocity measurements obtained from these lines. The standard error on the mean radial velocity was ∼3 km s−1 for both stars. We then shifted the spectra of these two stars in wavelength to correspond to zero radial velocity. To determine the radial velocities of the remaining stars in the library, we cross-correlated the 1.05–1.10 μm spectra of the F–G stars (which contain isolated lines of Si, C, Mg, and Fe) against that of HD 219623 and the 2.285–2.33 μm spectra of the K and M stars (which contain the Δν = +2 CO overtone bands) against that of HD 201092. The peak of each cross-correlation function was fitted with a second-order polynomial to determine the radial velocity. Based on our implementation of the cross-correlation technique described by Tonry & Davis (1979) as well as a comparison of the radial velocities derived from different wavelength regions in each spectrum, we estimate the uncertainty in our radial velocity values to be generally less than 30 km s−1. The spectrum of each object was then shifted to zero radial velocity using the radial velocity derived from the cross-correlation. It should be noted that, in order to preserve the accuracy of our data, we did not resample or rebin the final spectra to a common wavelength scale after shifting them, and therefore each spectrum has a unique wavelength array. In most cases, the velocity shifts are small: the average shift was found to be 4.5 ± 37 km s−1 with a maximum of about 131 km s−1. Both values are smaller than our velocity resolution (150 km s−1 per resolution element).

Although the stars in our sample are generally bright and nearby, some stars show evidence of interstellar reddening. For those applications requiring true spectral energy distributions (e.g., EPS studies) reddening needs to be corrected. Consequently, as a final step in the data reduction, we corrected the spectra for reddening. We determined the E(BV) ≡ (BV) − (BV)0 color excess from the observed (BV) color and an intrinsic (BV)0 color appropriate for its spectral type. The observed colors were taken from the Mermilliod (2006) catalog and are on the Johnson photometric system. For the few stars that were not included in this catalog, we adopted the (BV) color given by Kharchenko (2001), Leggett (1992), and Beauchamp et al. (1994). We adopted the calibration of intrinsic colors as a function of spectral type by Fitzgerald (1970). For the M dwarfs, we found that the Fitzgerald (1970) values gave unreasonably large color excess values for stars that are very nearby (less than 20 pc). Furthermore, while other calibrations of intrinsic colors (e.g., Schmidt-Kaler 1982) agree well with that of Fitzgerald (1970) at earlier spectral types, they differ markedly for M stars, with the later calibrations becoming progressively redder. For these reasons, we adopted the intrinsic colors given by Leggett (1992) for the M dwarfs, which generally yield very small (or even negative) values for E(BV) for these stars. To derive intrinsic colors for stars with intermediate spectral types and luminosity classes not tabulated in the combined FitzGerald/Leggett calibration, we performed a two-dimensional surface interpolation over the intrinsic color values as a function of spectral subtype and luminosity class. The distribution of E(BV) values for the stars in our sample is shown in Figure 1(b). As expected for the bright (and generally nearby) stars in our sample, the distribution is peaked near zero. Fitting a Gaussian to the values of E(BV) < 0 indicates that the uncertainty on the color excesses is about σ = 0.036 mag. All color excesses determined to be less than zero were set to zero in the dereddening process. Furthermore, based on our findings for the standard deviation of the distribution, we chose not to correct any spectra with E(BV) < 0.108. The 66 dereddened stars along with their (BV), (BV)0, E(BV), and AV values are given in Table 5.

Table 5. Stars with E(BV) > 0.108

Object Spectral Type (BV) (mag) (BV)0 (mag) E(BV) (mag) AV (mag)
(1) (2) (3) (4) (5) (6)
HD 6130 F0 II 0.491 0.200 0.291 0.9
HD 7927 F0 Ia 0.680 0.150 0.530 1.6
HD 135153 F0 Ib−II 0.376 0.180 0.196 0.6
HD 173638 F1 II 0.595 0.220 0.375 1.1
HD 182835 F2 Ib 0.593 0.180 0.413 1.2
HD 213306 F5 Ib − G1 Ib 0.480 0.260 0.220 0.7
HD 190323 F8 Ia 0.874 0.550 0.324 1.0
HD 51956 F8 Ib 0.803 0.550 0.253 0.8
HD 6903 F9 IIIa 0.689 0.580 0.109 0.3
HD 185018 G0 Ib−II 0.881 0.770 0.111 0.3
HD 21018 G1 III: CH−1: 0.862 0.690 0.172 0.5
HD 39949 G2 Ib 1.090 0.880 0.210 0.6
HD 42454 G2 Ib 1.232 0.880 0.352 1.1
HD 192713 G3 Ib−II Wk H&K comp? 1.046 0.890 0.156 0.5
HD 176123 G3 II 0.990 0.870 0.120 0.4
HD 179821 G4 O−Ia 1.555 0.960 0.595 1.8
HD 6474 G4 Ia 1.617 0.960 0.657 2.0
HD 190113 G5 Ib 1.500 1.000 0.500 1.5
HD 202314 G6 Ib−IIa Ca1 Ba0.5 1.102 0.980 0.122 0.4
HD 161664 G6 Ib Hδ1 1.490 1.040 0.450 1.4
HD 16139 G7.5 IIIa 1.052 0.940 0.112 0.3
HD 333385 G7 Ia 2.187 1.100 1.087 3.3
HD 25877 G7 II 1.161 0.950 0.211 0.6
HD 208606 G8 Ib 1.600 1.140 0.460 1.4
HD 75732 G8 V 0.860 0.740 0.120 0.4
HD 170820 G9 II CN1 Hδ1 1.575 1.020 0.555 1.7
HD 165782 K0 Ia 2.140 1.180 0.960 2.9
HD 44391 K0 Ib 1.400 1.180 0.220 0.7
HD 9852 K0.5 III CN1 1.460 1.050 0.410 1.2
HD 164349 K0.5 IIb 1.257 1.100 0.157 0.5
HD 179870 K0 II 1.245 1.060 0.185 0.6
HD 124897 K1.5 III Fe−0.5 1.231 1.120 0.111 0.3
HD 63302 K1 Ia−Iab 1.752 1.200 0.552 1.7
HD 124897 K1.5 III Fe−0.5 1.231 1.120 0.111 0.3
HD 23082 K2.5 II 1.850 1.350 0.500 1.5
HD 132935 K2 III 1.364 1.160 0.204 0.6
HD 212466 K2 O−Ia 2.275 1.230 1.045 3.1
HD 221246 K3 III 1.460 1.260 0.200 0.6
HD 187238 K3 Iab−Ib 2.040 1.420 0.620 1.9
HD 16068 K3 II−III 1.790 1.260 0.530 1.6
HD 35620 K3 III Fe1 1.403 1.260 0.143 0.4
HD 178208 K3 III 1.393 1.260 0.133 0.4
HD 99998 K3+III Fe−0.5 1.531 1.260 0.271 0.8
HD 185622 K4 Ib 2.026 1.500 0.526 1.6
HD 201065 K4 Ib−II 1.793 1.460 0.333 1.0
HD 207991 K4− III 1.600 1.430 0.170 0.5
HD 45977 K4 V 1.120 1.000 0.120 0.4
HD 216946 K5 Ib 1.773 1.600 0.173 0.5
HD 181475 K7 IIa 2.070 1.520 0.550 1.6
HD 236697 M0.5 Ib 2.157 1.650 0.507 1.5
HD 35601 M1.5 Iab−Ib 2.200 1.650 0.550 1.7
HD 39801 M1−M2 Ia−Iab 1.861 1.650 0.211 0.6
HD 14404 M1− Iab−Ib 2.303 1.650 0.653 2.0
HD 339034 M1 Ia 3.036 1.650 1.386 4.2
BD+60 265 M1.5 Ib 2.345 1.650 0.695 2.1
HD 10465 M2 Ib 1.860 1.650 0.210 0.6
HD 206936 M2− Ia 2.327 1.650 0.677 2.0
HD 23475 M2 II 1.877 1.590 0.287 0.9
CD −31 4916 M3 Iab−Ia 2.238 1.670 0.568 1.7
HD 14469 M3−M4 Iab 2.175 1.670 0.505 1.5
HD 28487 M3.5 III Ca−0.5 1.740 1.620 0.120 0.4
HD 14488 M3.5 Iab Fe−1 var? 2.256 1.710 0.546 1.6
HD 39045 M3 III 1.752 1.600 0.152 0.5
RW Cyg M3 to M4 Ia−Iab 2.881 1.670 1.211 3.6
Gl 299 M4 V 1.768 1.650 0.118 0.4
Gl 866ABC M5 V 1.960 1.800 0.160 0.5

Download table as:  ASCIITypeset images: 1 2

The reddening-corrected spectrum fcorλ(λ) is given by

Equation (2)

where fλ(λ) is the absolute flux calibrated spectrum and Aλ is the extinction law as a function of wavelength. We adopted the NIR law given by Fitzpatrick & Massa (2007) with RV = 3.0. For this law,

Equation (3)

We note that these dereddened spectra should be used with care because the dereddening process assumes an intrinsic stellar color and a mean Galactic extinction law that may not be accurate or appropriate in all cases. For example, we find E(BV) = 0.06 (or AV = 0.18) for the M6 dwarf Gl 406, which resides at a distance of only 2.4 pc (van Altena et al. 1995). No significant extinction is expected at this distance. In addition, M giant stars and PAGB and TPAGB stars may have local extinction due to dust formation in their cool outer atmospheres, which is difficult to separate for any interstellar extinction that may be present. Variable stars are also problematic due to changes in the intrinsic color. Therefore, unless otherwise noted, we will continue to use the uncorrected spectra in the remainder of the analysis, including the figures. Nevertheless, the dereddened spectra are available on the IRTF Web site (see footnote 4).

We have found that the observed spectral slope from any given object varies slightly between individual observations. An example of this small effect is illustrated in Figure 4. In order to quantify this effect, we have computed the differences (ΔXY = (XY)obs − (XY)synth) between the colors derived from the 2MASS photometry and those derived from synthetic photometry on our observed spectra. The synthetic color for any two of the 2MASS bandpasses is given by

Equation (4)

where the symbols have the same meaning as in Equation (1). The results for the 53 stars with relatively good (5%) 2MASS photometry (from Table 2) are plotted in Figure 5. The average differences are 〈ΔJH〉 = 0.00 ± 0.04 (RMS), $\langle \Delta _{H-K_S}\rangle = 0.02\pm 0.04$, and $\langle \Delta _{J-K_S}\rangle = 0.01\pm 0.05$. Although the colors derived from the 2MASS photometry are not as precise as those measured from the spectra via synthetic photometry (better than 1%), the photometric residuals on the sample of 53 cool stars indicate that our measurements of spectral slope are accurate to within a few percent for F, G, K, and M spectral types. Similar (but larger) effects have been observed by Goto et al. (2003) while using adaptive optics with medium resolution spectroscopy. Their simulations demonstrate that spectral slope variations result from changes in the fraction of light from the object transmitted by a finite width slit as a function of wavelength. Therefore, temporal changes in seeing, guiding, and differential atmospheric refraction are probably the cause of the small variations we observe. Although SpeX does not have an atmospheric dispersion corrector, we minimized the effects of differential refraction (and therefore the wavelength-dependent light loss through the slit) by moving the internal image rotator to observe at the parallactic angle (see Figure 6 of Rayner et al. 2004) and by combining multiple spectra together.

Figure 4.

Figure 4. Top: the third (black) and fifth (red) spectra in a sequence of ten consecutive spectra of Gl 213 (M4 V). These two spectra show the largest slope difference in the sequence. The difference is equivalent to JKS = 0.015. Bottom: the flux ratio of the two spectra showing that the difference in slope is small across the range 0.8–2.4 μm. As described in Section 2.3 we can measure spectral slopes (i.e., photometric colors) accurate to a few percent.

Standard image High-resolution image
Figure 5.

Figure 5. Computed residuals (observed−synthetic) between the observed and synthesized 2MASS JH, HKS, and JKS colors of 53 library stars with relatively good (5%) 2MASS photometry. The average residuals are 〈ΔJH〉 = 0.00 ± 0.04 (rms), $\langle \Delta _{H-K_S}\rangle = 0.02\pm 0.04$ (rms), and $\langle \Delta _{J-K_S}\rangle = 0.01\pm 0.05$ (rms). The plotted error bars show the 2MASS error in magnitudes. The error on the synthetic color is insignificant by comparison. The residuals imply that the measured spectral slope of these cool stars is accurate to within a few percent.

Standard image High-resolution image

As a further test of the accuracy of the spectral slopes, we have computed the synthetic ZY, YJ, JH, HK, and KL' colors of eight A0 V stars observed with the same instrumental setup. The synthetic color for any two bandpasses X and Y is given by

Equation (5)

where fλ(λ) is the flux density of the object, fVegaλ(λ) is the flux density of Vega, and S(λ) is the system response function for each bandpass that we assume to be given by the product of the filter transmission and the atmospheric transmission. Equation (5) assumes that Vega has zero color in all passband combinations. We used the Wide Field Camera (WFCAM; Casali et al. 2007) ZYJHK filter profiles that include the atmospheric transmission at an airmass of 1.3 with a precipitable water vapor content of 1.0 mm (Hewett et al. 2006). The Z and Y bands are custom filters designed for the UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007) centered at ∼0.88 and ∼1.03 μm, while the JHK bands were constructed to the specifications of the Mauna Kea Observatories Near-Infrared (MKO-NIR) filter set (Tokunaga et al. 2002). We constructed an L' system response function using the MKO-NIR L'-band filter profile and ATRAN (Lord 1992) to calculate the atmospheric transmission under the same atmospheric conditions. For fVegaλ(λ) we used a Kurucz model of Vega (Teff = 9550 K, log g = 3.950, vrot = 25 km s−1, and vturb = 2 km s−1), scaled to the flux density at λ = 5556 Å given by Mégessier (1995). The factors of λ inside the integrals convert the energy flux densities fλ to photon flux densities, which ensures that the integrated fluxes are proportional to the observed photon count rate (e.g., Koornneef et al. 1986; Buser & Kurucz 1992).

The mean colors of the eight A0 V stars are 〈ZY〉 = −0.015 ± 0.007 (rms), 〈YJ〉 = 0.007 ± 0.006 (rms), 〈JH〉 = 0.019 ± 0.005 (rms), 〈HK〉 = −0.005 ± 0.004, and 〈KL'〉 = −0.001 ± 0.010. Given that we expect the mean colors to be zero, the mean colors of the A0V stars represent the precision in our ability to measure spectral slope. Taken together, the 2MASS and A0V star photometry indicates that we can measure spectral slope to within a few percent. Finally, slope variations introduced due to uncertainties in the spectral types of the A0 V standard stars are small since an uncertainty of a 0.5 subtype at A0 is equivalent to δJH = 0.003, δHK = 0.005, and ${\delta }_{J-L^{\prime }}=0.010$ (Cox 2000).

3. DATA AND ANALYSIS

3.1. The Spectra

Digital versions of the spectra are available at the IRTF Web site, which contains a full description of the data products. The data are available in text or Spextool FITS format and files can be downloaded individually or bundled together in a tar file. The files contain wavelength, flux, and error. The errors include the photon Poisson noise and read noise (Vacca et al. 2004) for both the object and the associated telluric standard, which are then propagated through each step of the reduction process. The file headers contain more information (including object name, epoch, spectral type, observing modes, 2MASS JHK magnitudes, measured radial velocity, flux, and wavelength units). As an example, the flux and S/N spectra of HD 63302 (K1 1a–Iab) and HD 10696 (G3 V) are shown in Figure 6. We estimate that the actual S/N in our fully reduced stellar spectra is limited to less than 1000 by systematic errors in the flat field measurement even though the formal S/N can be greater than 1000. Also, systematic errors in telluric correction (e.g., if the airmasses of an object and standard star are not ideally matched), systematic errors in the slope, as well as any errors in the spectral type of the A0 V telluric standard are not accounted for in the formal S/N estimate (see Figure 6).

Figure 6.

Figure 6. Left: the flux and S/N spectra of HD 63302 (K1 Ia–Iab). Telluric correction is excellent. Right: the flux and S/N spectra of HD 10697 (G3 Va). Note the flux error in the spectrum at ∼1.9 μm and ∼1.4 μm despite the fact that the S/N > 100. This is due to relatively poor telluric correction in these regions for this particular observation. Therefore, care must be taken in interpreting features in regions of high telluric contamination even if the S/N is high.

Standard image High-resolution image

Representative spectra, covering 0.8–5.0 μm, of dwarfs, giants, and supergiants in our sample are shown in Figures 79. Given the large wavelength range and the change in flux wavelength and spectral type, it is difficult to display the spectra at a scale that allows close examination of all of the interesting spectral features in one plot. For display purposes, we therefore use λfλ (normalized at the given wavelength) as a function of log λ. The plots show the general trend of spectral features with MK spectral type. Feature identifications and changes with spectral type are described in more detail in Sections 3.23.4.

Figure 7.

Figure 7. Dwarf sequence from 0.8–5 μm. The spectra are of HD 108159 (F0 V(n)), HD 26015 (F3 V), HD 126660 (F7 V), HD 76151 (G2 V), HD 115617 (G6.5 V), HD 145675 (K0 V), HD 36003 (K5 V), HD 42581 (M1 V), Gl 213 (M4 V), and Gl 752B (M8 V). The spectra have been normalized to unity at 1.10 μm and offset by constants (dotted lines). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image
Figure 8.

Figure 8. Giant sequence from 0.8–5 μm. The spectra are of HD 89025 (F0 IIIa), HD 160365 (F6 III–IV), HD 27277 (G6 III), HD 100006 (K0 III), HD 120477 (K5.5 III), HD 213893 (M0 IIIb), HD 4408 (M4 III), HD 18191 (M6− III), HD 108849 (M7− III), and IRAS 21284 − 0747 (M8–9 III). The spectra have been normalized to unity at 1.10 μm and offset by constants (dotted lines). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image
Figure 9.

Figure 9. Supergiant sequence from 0.8–5.0 μm. The spectra are of HD 7927 (F0 Ia), BD +38 2803 (F2–F5 Ib), HD 74395 (G1 Ib), HD 202314 (G6 Ib–IIa Ca1 Ba0.5), HD 63302 (K1 Ia–Iab), HD 187238 (K3 Iab–Ib), HD 216946 (K5 Ib Ca1 Ba0.5), CD −31 4916 (M3 Iab–Ia), and HD 156014 (M5 Ib–II). The spectra have been normalized to unity at 1.10 μm and offset by constants (dotted lines). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image

It should be noted that MK spectral classification is based on comparing an optical spectrum with a set of stars (anchor points) that define certain spectral types. Therefore it is not necessarily the case that the trends in NIR spectral features will follow the optical types. Also, the exact numbers for the effective temperature, surface gravity, and composition (i.e., metallicity) are model dependent (i.e., not directly observable) and will change as models improve. Although there are no formal MK classification criteria for the NIR, much work has been conducted on NIR spectral classification. The pioneering study on cool stars was done by Kleinmann & Hall (1986), who identified a number of temperature and luminosity sensitive atomic (Na i, Ca i, Br γ) and molecular (CO, H2O) features in the K band. Subsequent studies developed a variety of spectral type versus EW indices for cool stars. Notable examples among these are the studies by Origlia et al. (1993), Dallier et al. (1996), Meyer et al. (1998), Ramírez et al. (1997), Förster Schreiber (2000), Gorlova et al. (2003), Davies et al. (2007), Ivanov et al. (2004), and Mármol-Queraltó et al. (2008). We do not propose to add to these and other NIR classification schemes but present the IRTF Spectral Library as a resource for further investigation. The examples of EWs of several prominent features in data as a function of spectral type and luminosity are, however, presented in Section 4.1.

As an example of the mismatches in the trends of the NIR spectral features with MK type, Figure 10 shows a spectral sequence of K giant stars from 0.8 to 2.45 μm based on their MK types. From the trend in the overall spectral shape and depth of the first overtone vibration–rotation bands of CO in the K band (∼2.29–2.5 μm), two of the stars appear out of sequence (they are bluer and with shallower CO absorption than expected) and should appear earlier in the sequence by about one spectral subtype. When the stars are corrected for reddening (see Figure 11 and Table 5), the sequence of spectral shapes behaves as expected but the CO band depths still appear to be out of sequence. A possible explanation is that these stars are slightly metal poor (see, for example, Mármol-Queraltó et al. 2008). However, this explanation is inconsistent with the assigned MK spectral types: one star being of approximately solar metallicity (HD 137759, K2 III) and the other star being slightly metal rich (HD 114960, K3.5 IIIb CN0.5 CH0.5), although neither star has a formal [Fe/H] measurement. Another possibility is the uncertainty in assigning the MK spectral type as discussed in Section 2.1. Given these uncertainties, spectral classification using the IRTF Spectral Library is probably best done by comparing a given stellar spectrum of an unknown type with an ensemble of spectra for a sequence of MK types, rather than trying to find the closest individual spectral match. The effect of reddening should also be considered.

Figure 10.

Figure 10. K giant sequence from 0.8–2.45 μm. The stars are HD 36124 (K1− III Fe-0.5), HD 132935 (K2 III), HD 137759 (K2 III), HD 221246 (K3 III), HD 99998 (K3+ III Fe−0.5), HD 114960 (K3.5 IIIb CN0.5 CH0.5), HD 181596 (K5 III), HD 3346 (K6 IIIa), and HD 194193 (K7 III). Stars forming a smooth spectral sequence are plotted in black, while the two stars (HD 137759 and HD 114960), which appear slightly out of sequence (see Section 3.1), are plotted in gray.

Standard image High-resolution image
Figure 11.

Figure 11. Same as Figure 11 except that the dereddened spectra are plotted. The spectral continuum shapes now behave as expected but the CO band depths (wavelengths ⩾2.29 μm) of the two stars HD 137759 and HD 114960 (plotted in gray) still appear slightly out of sequence (see Section 3.1).

Standard image High-resolution image

Plots of the dwarf sequences F3, F5, F9, G2, G8, K1, K7, M3, and M7 for the I, Y, J, H, K, and L bands, respectively, are shown in Figures 1217. Luminosity effects at spectral types F, G, K, and M, across the 0.8–5 μm range, are shown in Figures 1821. Plots showing luminosity effects at spectral types F5 and G6 for the I, Y, J, H, K, and L bands, respectively, are shown in Figures 2227; likewise luminosity effects at spectral types K5 and M5 are shown in Figures 2833. A 0.8–5 μm sequence of M, S, and C giants is plotted in Figure 34. All these spectra are discussed in more detail in the subsequent sections. More complete spectral sequences are given in the Appendix.

Figure 12.

Figure 12. Sequence of F, G, K, and M dwarf stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 26015 (F3 V), HD 27524 (F5 V), HD 165908 (F9 V metal weak), HD 76151 (G2 V), HD 101501 (G8 V), HD 10476 (K1 V), HD 237903 (K7 V), Gl 388 (M3 V), and Gl 644C (vB 8) (M7 V). The K1.5 III comparison star is Arcturus (HD 124897). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 13.

Figure 13. Same as Figure 12 except over the Y band (0.95–1.10 μm). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 14.

Figure 14. Same as Figure 12 except over the J band (1.12–1.34 μm). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 15.

Figure 15. Same as Figure 12 except over the H band (1.48–1.78 μm). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 16.

Figure 16. Same as Figure 12 except over the K band (1.92–2.5 μm). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 17.

Figure 17. Same as Figure 12 except over the L band (3.3–4.2 μm). The spectra have been normalized to unity at 3.60 μm and offset by constants.

Standard image High-resolution image
Figure 18.

Figure 18. Luminosity effects at spectral type F. The spectra are of HD 27524 (F5 V), HD 17918 (F5 III), and HD 213306 (F5 Ib−G1 Ib) and have been normalized to unity at 1.10 μm and offset by constants (dotted lines). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image
Figure 19.

Figure 19. Luminosity effects at spectral type G. The spectra are of HD 115617 (G6.5 V), HD 27277 (G6 III), and HD 161664 (G6 Ib Hδ 1) and have been normalized to unity at 1.10 μm and offset by constants (dotted lines). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image
Figure 20.

Figure 20. Luminosity effects at spectral type K. The spectra are of HD 36003 (K5 V), HD 120477 (K5.5 III), and HD 216946 (K5 Ib) and have been normalized to unity at 1.10 μm and offset by constants (dotted lines). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image
Figure 21.

Figure 21. Luminosity effects at spectral type M. The spectra are of Gl 866ABC (M5 V), HD 94705 (M5.5 III:), and HD 156014 (M5 Ib–II) and have been normalized to unity at 1.10 μm and offset by constants (dotted lines). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image
Figure 22.

Figure 22. Luminosity effects at spectral types F5 (left) and G6 (right) plotted over the I band (0.82–0.95 μm). The spectra are of HD 213306 (F5 Ib–G1 Ib), HD 17918 (F5 III), HD 27524 (F5 V), HD 161664 (G6 Ib Hδ1), HD 27277 (G6 III), and HD 115617 (G6.5 V). The G2 V comparison star is HD 76151. The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 23.

Figure 23. Same as Figure 22 except over the Y band. The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 24.

Figure 24. Same as Figure 22 except over the J band. The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 25.

Figure 25. Same as Figure 22 except over the H band. The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 26.

Figure 26. Same as Figure 22 except over the K band. The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 27.

Figure 27. Same as Figure 22 except over the L band. The spectra have been normalized to unity at 3.60 μm and offset by constants.

Standard image High-resolution image
Figure 28.

Figure 28. Luminosity effects at spectral types K5 (left) and M5 (right) plotted over the I band (0.82–0.95 μm). The spectra are of HD 216946 (K5 Ib), HD 120477 (K5.5 III), HD 36003 (K5 V), HD 156014 (M5 Ib–II), HD 94705 (M5.5 III:), and Gl 866ABC (M5 V). The K1.5 III comparison star is Arcturus (HD 124897). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 29.

Figure 29. Same as Figure 28 except over the Y band. The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 30.

Figure 30. Same as Figure Same as Figure 28 except over the J band. The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 31.

Figure 31. Same as Figure 28 except over the H band. The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 32.

Figure 32. Same as Figure 28 except over the K band. The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 33.

Figure 33. Same as Figure 28 except over the L band. The spectra have been normalized to unity at 3.60 μm and offset by constants.

Standard image High-resolution image
Figure 34.

Figure 34. Sequence of M, S, and C giants of approximately the same effective temperature, illustrating the effects of increasing carbon abundance over oxygen during AGB evolution. The spectra are of HD 213893 (M0 IIIb), HD 64332 (S4.5 Zr 2 Ti 4), HD 92055 (C–N4.5 C2 4.5), and HD 76221 (C–N 4.5 C2 5.5 MS 3) and have been normalized to unity at 1.08 μm and offset by constants (dotted lines). Also plotted is the very cool carbon star R Lep (HD 31996, C7,6e (N4)). Regions of strong (transmission <20%) telluric absorption are shown in dark gray, while regions of moderate (transmission <80%) telluric absorption are shown in light gray.

Standard image High-resolution image

3.2. Atomic Line Identifications

The S/N of the spectra is high enough that almost all of the absorption features seen in the spectra are real and not noise. However given that the resolving power of the spectra is R∼2000, the carriers of only the strongest and most isolated lines can be unambiguously identified. We therefore use the line identifications presented in the high-resolution (R ∼ 100000) spectral atlases of the solar photosphere (Wallace et al. 1993; Wallace & Livingston 2003) and Arcturus (K1.5 III; Hinkle et al. 1995, 2000). We selected only those absorption lines in the atlases with depths less than 0.8 (where the continuum has been normalized to unity) because weaker lines are only marginally detectable in our spectra.

Tables 6 and 7 list all atomic metal lines with depths less than 0.8 in the solar and Arcturus atlases, respectively. The wavelengths of the lines are in vacuum and were taken primarily from the atlases themselves. The revised solar atlas (Wallace & Livingston 2003) does not present the wavelengths of the lines, so we obtained them from an earlier version of the atlas (Livingston & Wallace 1991). A few of the lines in the revised atlas either lack identifications in the original atlas or have since been identified as being carried by two lines. We determined the wavelengths of these lines using the National Institute of Standards and Technology Atomic Spectra Database,7 the Atomic Line List,8 and the Fe i line list compiled by Nave et al. (1994). For several interesting atomic absorption lines we have calculated EW values for our sample of stars. Table 8 gives the EW definitions and Table 9 gives the EW values (see Section 4.1 for a discussion and Figure 35 for plots of prominent EWs).

Table 6. Strong Metal Lines in the Solar Spectrum

Vacuum Wavelength (μm) Element Vacuum Wavelength (μm) Element Vacuum Wavelength (μm) Element Vacuum Wavelength (μm) Element
0.8185503 Na i 0.8189049 Fe i 0.8197077 Na i 0.8201178 Fe i
0.8203977 Ca ii 0.8209999 Fe i 0.8215293 Mg i 0.8222636 Fe i
0.8234587 Fe i 0.8241394 Fe i 0.8250417 Fe i 0.8251063 Ca ii
0.8278187 Fe i 0.8295802 Fe i 0.8312545 Mg i 0.8329342 Fe i
0.8334208 Fe i 0.8337440 C i 0.8341703 Fe i 0.8348416 Mg i
0.8363099 Fe i 0.8367942 Fe i 0.8380165 Ti i 0.8384830 Ti i
0.8390078 Fe i 0.8403729 Fe i 0.8414668 Ti i 0.8426453 Fe i
0.8428818 Ti i 0.8437274 Ti i 0.8437971 Ti i 0.8441896 Fe i
0.8446303 Si i 0.8448679 O i 0.8470736 Fe i 0.8474081 Fe i
0.8499332 Fe i 0.8500351 Ca ii 0.8503886 Si i 0.8504558 Si i
0.8516415 Fe i 0.8517452 Fe i 0.8529025 Fe i 0.8538507 Si i
0.8540359 Fe i 0.8544438 Ca ii 0.8559130 Si i 0.8574182 Fe i
0.8584627 Fe i 0.8595333 Fe i 0.8598319 Si i 0.8601196 Fe i
0.8614170 Fe i 0.8616300 Fe i 0.8618639 Fe i 0.8623976 Fe i
0.8650841 Si i 0.8664288 Fe i 0.8664520 Ca ii 0.8677128 Fe i
0.8691012 Fe i 0.8701834 Fe i 0.8712790 Fe i 0.8715083 Mg i
0.8715584 Fe i 0.8720220 Mg i 0.8730407 Si i 0.8738417 Mg i
0.8744852 Si i 0.8754413 Si i 0.8759590 Fe i 0.8766370 Fe i
0.8775278 Al ii 0.8776303 Al ii 0.8786852 Fe i 0.8792801 Si i
0.8792925 Fe i 0.8795756 Fe i 0.8807058 Fe i 0.8809176 Mg i
0.8810580 Fe i 0.8826647 Fe i 0.8840858 Fe i 0.8849166 Fe i
0.8864981 Ni i 0.8869392 Fe i 0.8870855 Fe i 0.8878464 Fe i
0.8895167 Si i 0.8901676 Si i 0.8914515 Ca ii 0.8922469 Fe i
0.8926021 Mg i 0.8929807 Ca ii 0.8931506 Fe i 0.8945528 Fe i
0.8947657 Fe i 0.8948706 Fe i 0.8949643 Cr i 0.8951550 Si i
0.8968393 Ni i 0.8977870 Fe i 0.9002026 Fe i 0.9009236 Fe i
0.9010844 Fe i 0.9010982 Si i 0.9012314 Cr i 0.9013069 Fe i
0.9019524 Cr i 0.9024057 Si i 0.9026843 Fe i 0.9033187 Fe i
0.9063915 C i 0.9064729 Fe i 0.9064950 C i 0.9072912 Fe i
0.9080772 C i 0.9082075 Fe i 0.9082858 Fe i 0.9090810 Fe i
0.9091000 C i 0.9091901 Fe i 0.9097327 C i 0.9102910 Fe i
0.9103157 Fe i 0.9114210 C i 0.9119636 Fe i 0.9148637 Fe i
0.9159606 Fe i 0.9167071 Fe i 0.9175726 Fe i 0.9181093 Fe i
0.9212557 Fe i 0.9215392 S i 0.9217023 Fe i 0.9220099 Fe i
0.9220780 Mg ii 0.9230627 S i 0.9240078 S i 0.9246802 Mg ii
0.9249094 Fe i 0.9171317 Si i 0.9258316 Mg i 0.9260811 Fe i
0.9261549 Fe i 0.9293024 Cr i 0.9320690 Fe i 0.9320776 Si i
0.9352980 Fe i 0.9361990 Fe i 0.9364927 Fe i 0.9375472 Fe i
0.9390756 Fe i 0.9397251 Fe i 0.9403693 Fe i 0.9408311 C i
0.9416090 Si i 0.9416630 Fe i 0.9417544 Mg i 0.9432405 Mg i
0.9432690 Fe i 0.9435351 Mg i 0.9441373 Mg i 0.9446394 Fe i
0.9449643 Cr i 0.9465610 Fe i 0.9515871 Fe i 0.9522640 Ni i
0.9548691 Ti i 0.9572529 Fe i 0.9576939 Cr i 0.9602228 Ti i
0.9605668 C i 0.9623435 C i 0.9636864 Fe i 0.9640942 Ti i
0.9650013 Ti i 0.9655762 Fe i 0.9661080 C i 0.9678200 Ti i
0.9692054 Si i 0.9708333 Ti i 0.9731082 Ti i 0.9741243 Fe i
0.9766045 Fe i 0.9766579 Fe i 0.9786000 Ti i 0.9790378 Ti i
0.9802999 Fe i 0.9836885 Fe i 0.9864443 Fe i 0.9870889 Fe i
0.9891745 Fe i 0.9893340 Ca ii 1.00394 Sr ii 1.00678 Fe i
1.01266 C i 1.01484 Fe i 1.01960 Ni i 1.02191 Fe i
1.02212 Fe i 1.02918 Si i 1.03301 Sr ii 1.03437 Fe i
1.03466 Ca i 1.03741 Si i 1.03814 Ni i 1.03986 Fe i
1.04266 Fe i 1.04556 Fe i 1.04583 S i 1.04596 S i
1.04623 S i 1.04725 Fe i 1.05351 Fe i 1.05880 Si i
1.06063 Si i 1.06306 Si i 1.06639 Si i 1.06860 C i
1.06883 C i 1.06926 Si i 1.06942 C i 1.06972 Si i
1.07103 C i 1.07304 Si i 1.07325 C i 1.07523 Si i
1.07560 Fe i 1.07860 Fe i 1.07875 Si i 1.07898 Si i
1.08140 Mg i 1.08213 Fe i 1.08301 Si i 1.08468 Si i
1.08524 Fe i 1.08665 Fe i 1.08718 Si i 1.07556 Si i
1.08858 Si i 1.08872 Fe i 1.08883 Si i 1.08993 Fe i
1.09172 Mg ii 1.09179 Sr ii 1.09563 Mg i 1.09603 Mg i
1.09684 Mg i 1.09823 Si i 1.09828 Ni i 1.09851 Si i
1.09875 Si i 1.10163 Fe i 1.10186 Cr i 1.10210 Si i
1.11228 Fe i 1.11600 Cr i 1.11906638 Si i 1.13115 Si i
1.133822 C i 1.13939 Cr i 1.14069 Na i 1.14255 Fe i
1.14423 Fe i 1.14878 Cr i 1.15059 Si i 1.15757 Fe i
1.15947 Si i 1.15955 Si i 1.15963 Fe i 1.16107 Fe i
1.16137 Cr i 1.16143 Si i 1.16320 C i 1.16414 Fe i
1.16442 Si i 1.16629 C i 1.16728 C i 1.16932 Fe i
1.16934 K i 1.17035 Si i 1.17514 C i 1.17565 C i
1.17580 C i 1.17761 K i 1.17865 Fe i 1.18314 Mg i
1.18422 Ca ii 1.18861 Fe i 1.18873 Fe i 1.18937 Fe i
1.1896124 Ti i 1.189617 C i 1.18990 C i 1.19530 Ca ii
1.19763 Fe i 1.19875 Si i 1.19949 Si i 1.2008834 Fe i
1.2008685 Fe i 1.20348 Si i 1.20431 Mg i 1.20564 Fe i
1.20853 Si i 1.20866 Mg i 1.20870 Mg i 1.21068 Si i
1.21140 Si i 1.22305 Fe i 1.22740 Si i 1.23463 Fe i
1.23936 Si i 1.23992 Si i 1.24264 Mg i 1.24356 K i
1.24369 Mg i 1.25255 K i 1.25874 Si i 1.26175 C i
1.26422 Fe i 1.26522 Fe i 1.26826 Na i 1.28106 Fe i
1.28833 Fe i 1.29034 Mn i 1.29795 Mn i 1.30331 Si i
1.30345 Si i 1.30371 Ca i 1.31056 Si i 1.31270 Al i
1.31386 Ca i 1.31515 Fe i 1.31544 Al i 1.31805 Si i
1.32912 Si i 1.32915 Fe i 1.32975 Mn i 1.33127 Si i
1.33227 Mn i 1.33297 Si i 1.33558 Fe i 1.33958 Fe i
1.34359 Ni i 1.48761 Ni i 1.4881595 Mg i 1.4881674 Mg i
1.4881847 Mg i 1.4882243 Mg i 1.49015 Fe i 1.49422 Fe i
1.49602 Fe i 1.49633 Fe i 1.49929 Fe i 1.50218 Fe i
1.50291 Mg i 1.50218 Mg i 1.50518 Mg i 1.50559 Fe i
1.50814 Fe i 1.50988 Fe i 1.51000 Fe i 1.51265 Fe i
1.51403 Fe i 1.51482 Fe i 1.51633 Mn i 1.51672 K i
1.51725 K i 1.51824 Fe i 1.52117 Fe i 1.52219 Mn i
1.52238 Fe i 1.52491 Fe i 1.52973 Fe i 1.52987 Fe i
1.52991 Fe i 1.53396 Fe i 1.53480 Fe i 1.53811 Si i
1.53989 Fe i 1.53999 Fe i 1.54265 Si i 1.55050 Fe i
1.55056 Fe i 1.55360 Fe i 1.55385 Fe i 1.55463 Fe i
1.55594 Ni i 1.55596 Ni i 1.55620 Si i 1.55925 Fe i
1.56085 Fe i 1.56259 Fe i 1.56362 Fe i 1.56369 Ni i
1.56571 Fe i 1.56663 Fe i 1.56818 Fe i 1.56907 Fe i
1.56961 Fe i 1.56970 Fe i 1.57279 Fe i 1.57450 Mg i
1.57462 Fe i 1.57533 Mg i 1.57656 Fe i 1.57701 Mg i
1.57737 Fe i 1.57759 Fe i 1.57784 Fe i 1.57933 Fe i
1.58029 Fe i 1.58145 Fe i 1.58225 Fe i 1.58235 Fe i
1.58379 Si i 1.58395 Fe i 1.58420 Fe i 1.48681 Fe i
1.58729 Fe i 1.58828 Fe i 1.58839 Mg i 1.58888 Si i
1.58905 Mg i 1.58921 Fe i 1.58928 Si i 1.58939 Mg i
1.58968 Fe i 1.58973 Fe i 1.58996 Fe i 1.59059 Fe i
1.59087 Fe i 1.59104 Fe i 1.59157 Fe i 1.59250 Fe i
1.59462 Fe i 1.59644 Si i 1.59692 Fe i 1.59720 Fe i
1.59851 Fe i 1.60021 Fe i 1.60092 C i 1.60111 Fe i
1.60115 Fe i 1.6012453 Fe i 1.60140 Fe i 1.60422 Fe i
1.60450 Fe i 1.60471 Fe i 1.60644 Si i 1.60758 Fe i
1.60803 Fe i 1.60992 Si i 1.61047 Fe i 1.61068 Fe i
1.61204 Fe i 1.61303 Fe i 1.61552 Ca i 1.61576 Fe i
1.61610 Fe i 1.61618 Ca i 1.61681 Si i 1.61695 Fe i
1.61794 Fe i 1.61840 Fe i 1.61853 Fe i 1.61902 Fe i
1.61995 Fe i 1.62015 Ca i 1.62029 Fe i 1.62087 Fe i
1.62122 Fe i 1.62180 Fe i 1.62201 Si i 1.62301 Fe i
1.62361 Fe i 1.62404 Fe i 1.62463 Si i 1.62892 Fe i
1.62973 Fe i 1.63149 Ni i 1.63208 Fe i 1.63231 Fe i
1.63289 Fe i 1.63675 Ni i 1.63846 Si i 1.63860 Si i
1.63867 Fe i 1.63989 Fe i 1.64026 Fe i 1.64091 Fe i
1.64123 Fe i 1.64394 Si i 1.64411 Fe i 1.64493 Fe i
1.64714 Fe i 1.64912 Fe i 1.65108 Fe i 1.65217 Fe i
1.65266 Fe i 1.65290 Fe i 1.65365 Fe i 1.65565 Fe i
1.65663 Fe i 1.66173 Fe i 1.66504 Fe i 1.66581 Fe i
1.66659 Fe i 1.66700 Fe i 1.66853 Si i 1.67235 Al i
1.67278 Fe i 1.67552 Al i 1.67576 Fe i 1.67679 Al i
1.68042 Fe i 1.68251 Fe i 1.68328 Si i 1.68719 Ni i
1.68950 C i 1.69746 Fe i 1.70009 Ni i 1.70057 Ni i
1.70101 Fe i 1.70157 Fe i 1.71133 Mg i 1.71658 Fe i
1.72090 Fe i 1.72105 Si i 1.72303 Si i 1.69862 C i
1.73010 Fe i 1.73321 Si i 1.73433 C i 1.74123 Mg i
1.74533 C i 1.74717 Si i 1.75104 C i 1.75853 Fe i
1.76135 Fe i 1.76219 Si i 1.76282 Si i 1.94583 Ca i
1.94897 Fe i 1.94987 Si i 1.95111 Ca i 1.95114 Si i
1.95135 Si i 1.97280 Si i 1.97822 Ca i 1.98204 Ca i
1.98585 Ca i 1.98676 Ca i 1.99226 Ca i 1.99344 Si i
1.99392 Ca i 1.99673 Ca i 2.03019 Si i 2.03075 Si i
2.03494 Si i 2.03840 Si i 2.06085 Si i 2.0635328 Fe i
2.0634902 Fe i 2.07040 Fe i 2.07043 Si i 2.07226 Fe i
2.08099 Si i 2.08107 Fe i 2.08465 Fe i 2.09224 Si i
2.10655 Mg i 2.10666 Mg i 2.10988 Al i 2.11696 Al i
2.13601 Si i 2.17857 Si i 2.18257 Si i 2.18853 Si i
2.20624 Na i 2.20688 Si i 2.20897 Na i 2.22632 Fe i
2.23869 Fe i 2.24794 Fe i 2.25438 Si i 2.26141 Ca i
2.26260 Fe i 2.26311 Ca i 2.26573 Ca i 2.26720 Si i
2.28142 Mg i 2.31509 Fe i 2.33548 Na i 2.33855 Na i
2.92882 Ca i 3.15174 Si i 3.39709 Mg i 3.40135 Si i
3.67901 Mg i 3.68263 Mg i 3.69866 Si i 3.74558 Si i
3.866486 Mg i 3.86681 Mg i 3.866874 Mg i 3.866945 Mg i

Download table as:  ASCIITypeset images: 1 2 3

Table 7. Strong Metal Lines in the Arcturus Spectrum

Vacuum Wavelength (μm) Element Vacuum Wavelength (μm) Element Vacuum Wavelength (μm) Element Vacuum Wavelength (μm) Element
0.8027028 Ti i 0.8030128 Fe i 0.8030499 Fe i 0.8048243 Fe i
0.8049814 Fe i 0.8056425 Mg i 0.8070439 Ti i 0.8072310 Zr i
0.8074360 Fe i 0.8077351 Fe i 0.8082752 Fe i 0.8087374 Fe i
0.8094836 Cu i 0.8095446 Si i 0.8095706 V i 0.8096137 Co i
0.8099087 Fe i 0.8100928 Mg i 0.8110530 Fe i 0.8114371 Fe i
0.8118973 V i 0.8135217 Zr i 0.8146790 V i 0.8163294 V i
0.8185480 Na i 0.8189032 Fe i 0.8197064 Na i 0.8201155 Fe i
0.8206336 Fe i 0.8207177 Fe i 0.8209977 Fe i 0.8215279 Mg i
0.8217390 Si i 0.8222621 Fe i 0.8234564 Fe i 0.8236885 Mg ii
0.8241376 Fe i 0.8243787 V i 0.8250378 Fe i 0.8258151 V i
0.8278146 Fe i 0.8295770 Fe i 0.8307854 Mg i 0.8309685 Ti i
0.8312525 Mg i 0.8329329 Fe i 0.8334191 Fe i 0.8336662 Ti i
0.8341673 Fe i 0.8348395 Mg i 0.8350545 Cr i 0.8360798 Fe i
0.8363079 Fe i 0.8366520 Ti i 0.8367910 Fe i 0.8380144 Ti i
0.8384535 Fe i 0.8384815 Ti i 0.8385065 Ti i 0.8390056 Fe i
0.8391777 Ti i 0.8399179 Ti i 0.8403690 Fe i 0.8414653 Ti i
0.8419245 Ti i 0.8425206 Fe i 0.8426436 Fe i 0.8426707 Ti i
0.8428797 Ti i 0.8437259 Ti i 0.8437950 Ti i 0.8441220 Ti i
0.8441871 Fe i 0.8448662 O i 0.8449943 Fe i 0.8453193 Ti i
0.8459405 Ti i 0.8469459 Ti i 0.8470719 Fe i 0.8474049 Fe i
0.8484293 Fe i 0.8498326 Ti i 0.8499307 Fe i 0.8500336 Ca ii
0.8504538 Si i 0.8516391 Fe i 0.8517432 Fe i 0.8520352 Ti i
0.8520672 Ti i 0.8528994 Fe i 0.8540337 Fe i 0.8541677 Ti i
0.8544418 Ca ii 0.8550420 Ti i 0.8559113 Si i 0.8584600 Fe i
0.8595293 Fe i 0.8601174 Fe i 0.8612958 Fe i 0.8614148 Fe i
0.8618629 Fe i 0.8623950 Fe i 0.8650827 Si i 0.8664501 Ca ii
0.8666082 Fe i 0.8677115 Fe i 0.8677735 Ti i 0.8685348 Ti i
0.8690998 Fe i 0.8694700 Ti i 0.8701081 Fe i 0.8701822 Fe i
0.8712764 Fe i 0.8715065 Mg i 0.8715575 Fe i 0.8720207 Mg i
0.8730389 Si i 0.8731530 Fe i 0.8737091 Ti i 0.8738401 Mg i
0.8744834 Si i 0.8749805 Fe i 0.8754395 Si i 0.8759578 Fe i
0.8766359 Fe i 0.8769070 Ti i 0.8773071 Ni i 0.8775262 Al i
0.8776281 Al i 0.8792786 Si i 0.8792915 Fe i 0.8795737 Fe i
0.8807030 Fe i 0.8809161 Mg i 0.8810571 Fe i 0.8811812 Ni i
0.8826625 Fe i 0.8840839 Fe i 0.8849152 Fe i 0.8864966 Ni i
0.8869347 Fe i 0.8870847 Fe i 0.8878439 Fe i 0.8880660 Fe i
0.8895155 Si i 0.8922441 Fe i 0.8926003 Mg i 0.8931514 Fe i
0.8934225 Fe i 0.8945497 Fe i 0.8947629 Fe i 0.8948699 Fe i
0.8949629 Cr i 0.8977847 Fe i 0.8979327 Cr i 0.8981617 Ti ii
0.8991901 Ti i 0.9012296 Cr i 0.9013046 Fe i 0.9014527 Fe i
0.9016438 Fe i 0.9019508 Cr i 0.9024039 Si i 0.9026830 Fe i
0.9029781 Ti i 0.9033171 Fe i 0.9038323 Cr i 0.9082865 Fe i
0.9090797 Fe i 0.9093169 Ti i 0.9119615 Fe i 0.9148623 Fe i
0.9159576 Fe i 0.9175701 Fe i 0.9181061 Fe i 0.9210801 Cr i
0.9212541 Fe i 0.9215371 S i 0.9217012 Fe i 0.9220072 Fe i
0.9220762 Mg ii 0.9230605 S i 0.9249080 Fe i 0.9255053 Ti ii
0.9258303 Mg i 0.9260793 Fe i 0.9266506 Cr i 0.9293002 Cr i
0.9148637 Fe i 0.9159606 Fe i 0.9167070 Fe i 0.9175726 Fe i
0.9181134 Fe i 0.9210817 Cr i 0.9212556 Fe i 0.9215392 S i
0.9217023 Fe i 0.9220099 Fe i 0.9230627 S i 0.9249094 Fe i
0.9258317 Mg i 0.9260811 Fe i 0.9261549 Fe i 0.9266518 Cr i
0.9293024 Cr i 0.9312817 Si i 0.9352979 Fe i 0.9361989 Fe i
0.9364927 Fe i 0.9397251 Fe i 0.9416090 Si i 0.9416630 Fe i
0.9417543 Mg i 0.9432690 Fe i 0.9435350 Mg i 0.9441373 Mg i
0.9449393 Cr i 0.9449643 Cr i 0.9456792 Fe i 0.9515871 Fe i
0.9522640 Ni i 0.9548691 Ti i 0.9559132 Fe i 0.9572530 Fe i
0.9574435 Cr i 0.9576939 Cr i 0.9602228 Ti i 0.9636863 Fe i
0.9640943 Ti i 0.9650013 Ti i 0.9655763 Fe i 0.9673135 Cr i
0.9678200 Ti i 0.9691528 Ti i 0.9708333 Ti i 0.9721622 Ti i
0.9731082 Ti i 0.9737231 Cr i 0.9741244 Fe i 0.9746277 Ti i
0.9749596 Ti i 0.9755765 Fe i 0.9766045 Fe i 0.9766579 Fe i
0.9772983 Ti i 0.9786000 Ti i 0.9786267 Ti i 0.9790378 Ti i
0.9802999 Fe i 0.9834844 Ti i 0.9864443 Fe i 0.9891744 Fe i
0.9930072 Ti i 1.0000700 Ti i 1.0005833 Ti i 1.0014491 Ti i
1.0037248 Ti i 1.0039405 Sr ii 1.0051583 Ti i 1.0060489 Ti i
1.0062660 Ti i 1.0067806 Fe i 1.0116788 Fe i 1.0148349 Fe i
1.0157956 Fe i 1.0170261 Fe i 1.0196018 Ni i 1.0197901 Fe i
1.0219150 Fe i 1.0221207 Fe i 1.0268037 Fe i 1.0291761 Si i
1.0330141 Sr ii 1.0333055 Ni i 1.0343722 Fe i 1.0346644 Ca i
1.0374111 Si i 1.0381445 Ni i 1.0381855 Fe i 1.0398643 Fe i
1.0399659 Ti i 1.0425887 Fe i 1.0426605 Fe i 1.0472531 Fe i
1.0489107 Cr i 1.0498997 Ti i 1.0535121 Fe i 1.0580062 Fe i
1.0587546 Ti i 1.0588038 Si i 1.0606332 Si i 1.0610631 Ti i
1.0630562 Si i 1.0663891 Si i 1.0664550 Ti i 1.0679972 Ti i
1.0692649 Si i 1.0697178 Si i 1.0729326 Ti i 1.0730350 Si i
1.0735811 Ti i 1.0752330 Si i 1.0755950 Fe i 1.0777825 Ti i
1.0786009 Fe i 1.0787510 Si i 1.0789814 Si i 1.0814048 Mg i
1.0821258 Fe i 1.0830059 Si i 1.0846822 Si i 1.0866494 Fe i
1.0871763 Si i 1.0872520 Si i 1.0884745 Fe i 1.0885787 Si i
1.0887246 Fe i 1.0888312 Si i 1.0899290 Fe i 1.0908706 Cr i
1.0917865 Sr ii 1.0956322 Mg i 1.0960310 Mg i 1.0968449 Mg i
1.0982314 Si i 1.0982832 Ni i 1.0985065 Si i 1.0987538 Si i
1.0990231 Fe i 1.1018567 Cr i 1.1020985 Si i 1.1122839 Fe i
1.1199913 Si i 1.1292922 Si i 1.1301955 Si i 1.1313826 Cr i
1.1359061 Fe i 1.1377194 Fe i 1.1384568 Na i 1.1393868 Cr i
1.1401185 Cr i 1.1406901 Na i 1.1425449 Fe i 1.1468461 Fe i
1.1509821 Fe i 1.1525394 Mg i 1.1594684 Si i 1.1596762 Fe i
1.1610750 Fe i 1.1613739 Cr i 1.1614279 Si i 1.1641448 Fe i
1.1644164 Si i 1.1693174 Fe i 1.1693404 K i 1.1772836 K i
1.1776053 K i 1.1783770 Ti i 1.1786489 Fe i 1.1800410 Ti i
1.1831409 Mg i 1.1842238 Ca ii 1.1886096 Fe i 1.1887335 Fe i
1.1893740 Fe i 1.1896127 Ti i 1.1952813 Ti i 1.1953015 Ca ii
1.1976326 Fe i 1.1977134 Ti i 1.1987475 Si i 1.1994848 Si i
1.2034808 Si i 1.2043117 Mg i 1.2085302 Si i 1.2086581 Mg i
1.2086955 Mg i 1.2106853 Si i 1.2193432 Fe i 1.2230455 Fe i
1.2274054 Si i 1.2393557 Si i 1.2399229 Si i 1.2426428 Mg i
1.2435646 K i 1.2436854 Mg i 1.2525237 Cr i 1.2525537 K i
1.2560430 Fe i 1.2603718 Ti i 1.2619374 Fe i 1.2652198 Fe i
1.2674569 Ti i 1.2682612 Na i 1.2741874 Ti i 1.2810649 Fe i
1.2814987 Ti i 1.2819546 Ca i 1.2821606 H i 1.2825179 Ti i
1.2828366 Fe i 1.2834942 Ti i 1.2850548 Ti i 1.2883288 Fe i
1.2903364 Mn i 1.2913619 Cr i 1.2935865 Ni i 1.2940556 Cr i
1.2979500 Mn i 1.3010241 Fe i 1.3015456 Ti i 1.3034537 Si i
1.3037132 Ca i 1.3080848 Ti i 1.3105651 Si i 1.3127033 Al i
1.3138542 Ca i 1.3151513 Fe i 1.3154383 Al i 1.3180501 Si i
1.3204755 Cr i 1.3216071 Ni i 1.3285099 Mn i 1.3285278 Fe i
1.3291215 Si i 1.3291460 Fe i 1.3297479 Mn i 1.3312743 Si i
1.3322705 Mn i 1.3329283 Si i 1.3355823 Fe i 1.3376334 Ti i
1.3393101 Fe i 1.3395761 Fe i 1.3419361 Mn i 1.3435909 Ni i
1.4992872 Fe i 1.5021801 Fe i 1.5029104 Mg i 1.5044355 Mg i
1.5051826 Mg i 1.5055858 Fe i 1.5081407 Fe i 1.5098820 Fe i
1.5099983 Fe i 1.5126510 Fe i 1.5140258 Fe i 1.5148195 Fe i
1.5163289 Mn i 1.5167234 K i 1.5172549 K i 1.5182400 Fe i
1.5198640 Fe i 1.5211682 Fe i 1.5221899 Mn i 1.5223777 Fe i
1.5249135 Fe i 1.5266664 Mn i 1.5297316 Fe i 1.5298738 Fe i
1.5339035 Ti i 1.5339574 Fe i 1.5347990 Fe i 1.5381089 Si i
1.5398877 Fe i 1.5399925 Fe i 1.5494567 Fe i 1.5505035 Fe i
1.5505557 Fe i 1.5535998 Fe i 1.5538487 Fe i 1.5546325 Fe i
1.5548002 Ti i 1.5559624 Ni i 1.5562042 Si i 1.5592519 Fe i
1.5595753 Fe i 1.5607105 Ti i 1.5608485 Fe i 1.5615399 Fe i
1.5617894 Fe i 1.5625923 Fe i 1.5636216 Fe i 1.5636895 Ni i
1.5652785 Fe i 1.5657146 Fe i 1.5666293 Fe i 1.5681803 Fe i
1.5690306 Fe i 1.5690727 Fe i 1.5696139 Fe i 1.5697035 Fe i
1.5703273 Ti i 1.5719864 Ti i 1.5727886 Fe i 1.5734056 Fe i
1.5745006 Mg i 1.5746226 Fe i 1.5753291 Mg i 1.5765617 Fe i
1.5768629 Fe i 1.5770147 Mg i 1.5773731 Fe i 1.5774924 Fe i
1.5778378 Fe i 1.5793310 Fe i 1.5802877 Fe i 1.5814452 Fe i
1.5822462 Fe i 1.5823454 Fe i 1.5826032 Fe i 1.5827140 Fe i
1.5837954 Si i 1.5839489 Fe i 1.5841107 Ti i 1.5841966 Fe i
1.5857646 Fe i 1.5868044 Fe i 1.5872858 Fe i 1.5882785 Fe i
1.5883902 Mg i 1.5888811 Si i 1.5890528 Mg i 1.5892781 Si i
1.5893862 Mg i 1.5897301 Fe i 1.5899568 Fe i 1.5902364 Fe i
1.5905859 Fe i 1.5908689 Fe i 1.5910387 Fe i 1.5915647 Fe i
1.5916936 Fe i 1.5924995 Fe i 1.5946201 Fe i 1.5958447 Fe i
1.5958813 Mg i 1.5964437 Si i 1.5966916 Fe i 1.5969226 Fe i
1.5972019 Fe i 1.5985088 Fe i 1.6002094 Fe i 1.6011125 Fe i
1.6011451 Fe i 1.6012459 Fe i 1.6013985 Fe i 1.6042203 Fe i
1.6045034 Fe i 1.6047096 Fe i 1.6064409 Si i 1.6075788 Fe i
1.6080309 Fe i 1.6093127 Fe i 1.6099193 Si i 1.6104678 Fe i
1.6106802 Fe i 1.6120366 Fe i 1.6130308 Fe i 1.6141232 Ca i
1.6155175 Ca i 1.6157657 Fe i 1.6160973 Fe i 1.6161778 Ca i
1.6168131 Si i 1.6169443 Fe i 1.6179391 Fe i 1.6184003 Fe i
1.6185325 Fe i 1.6190221 Fe i 1.6199481 Fe i 1.6201500 Ca i
1.6202925 Fe i 1.6208676 Fe i 1.6212171 Fe i 1.6217965 Fe i
1.6220121 Si i 1.6230050 Fe i 1.6236082 Fe i 1.6240402 Fe i
1.6246289 Si i 1.6250896 Fe i 1.6289216 Fe i 1.6297294 Fe i
1.6314951 Ni i 1.6320779 Fe i 1.6323154 Fe i 1.6328914 Fe i
1.6335988 Fe i 1.6367558 Ni i 1.6384614 Si i 1.6385334 Fe i
1.6386023 Si i 1.6386729 Fe i 1.6388615 Fe i 1.6398865 Fe i
1.6402644 Fe i 1.6409076 Fe i 1.6412269 Fe i 1.6439419 Si i
1.6441112 Fe i 1.6444888 Fe i 1.6449307 Fe i 1.6459396 Fe i
1.6471419 Fe i 1.6478580 Fe i 1.6491168 Fe i 1.6510801 Fe i
1.6521735 Fe i 1.6526587 Fe i 1.6528981 Fe i 1.6536499 Fe i
1.6543711 Fe i 1.6545939 Fe i 1.6556516 Fe i 1.6566292 Fe i
1.6617302 Fe i 1.6650419 Fe i 1.6658076 Fe i 1.6664068 Fe i
1.6665922 Fe i 1.6670032 Fe i 1.6685326 Si i 1.6723540 Al i
1.6727843 Fe i 1.6755176 Al i 1.6757642 Fe i 1.6767949 Al i
1.6804235 Fe i 1.6825109 Fe i 1.6832772 Si i 1.6871891 Ni i
1.6894975 C i 1.6974543 Fe i 1.7000887 Ni i 1.7005669 Ni i
1.7010089 Fe i 1.7015741 Fe i 1.7072339 Fe i 1.7113303 Mg i
1.7165793 Fe i 1.7208997 Fe i 1.7210463 Si i 1.7230331 Si i
1.7307038 Fe i 1.7332059 Si i 1.7343286 C i 1.7412291 Mg i
1.7414241 Fe i 1.7471683 Si i 1.7553341 Fe i 1.7585284 Fe i
1.7613504 Fe i 1.7621891 Si i 1.7628162 Si i 1.7688737 Fe i
1.7711463 Fe i 1.7725933 Fe i 1.7726210 Fe i 1.7732942 Fe i
1.7758583 Mg i 1.7766912 Mg i 1.7775974 Fe i 1.7840949 Fe i
1.7850865 Fe i 1.7890004 Fe i 1.7935075 Fe i 1.7942698 Fe i
1.7943777 Fe i 1.7971303 Fe i 1.7984291 Fe i 1.7987210 Fe i
1.7991446 Ni i 1.8006762 Cr i 1.8045770 Ni i 1.8078612 Fe i
1.8101228 Fe i 1.8194902 Fe i 1.9430568 Mg i 1.9458301 Ca i
1.9489667 Fe i 1.9496166 Fe i 1.9498705 Si i 1.9511040 Ca i
1.9511446 Si i 1.9513500 Si i 1.9514636 Fe i 1.9598082 Fe i
1.9616920 Fe i 1.9618503 Fe i 1.9640681 Fe i 1.9723943 V i
1.9727936 Si i 1.9728928 Mg i 1.9739257 Mg i 1.9782195 Ca i
1.9797279 Fe i 1.9820428 Ca i 1.9852129 Fe i 1.9858512 Ca i
1.9867646 Ca i 1.9922628 Ca i 1.9928778 Fe i 1.9934361 Si i
1.9939170 Ca i 1.9967282 Ca i 2.0097535 Fe i 2.0286617 Fe i
2.0301933 Si i 2.0349441 Si i 2.0355272 Fe i 2.0383973 Si i
2.0569580 Fe i 2.0608501 Si i 2.0635321 Fe i 2.0703959 Fe i
2.0704272 Si i 2.0722606 Fe i 2.0809875 Si i 2.0810766 Fe i
2.0846491 Fe i 2.0922821 Si i 2.1065505 Mg i 2.1066642 Mg i
2.1098835 Al i 2.1169577 Al i 2.1244261 Fe i 2.1360087 Si i
2.1785696 Si i 2.1788888 Ti i 2.1825655 Si i 2.1885319 Si i
2.1903353 Ti i 2.2010505 Ti i 2.2057965 Sc i 2.2062447 Na i
2.2068751 Si i 2.2089689 Na i 2.2217295 Ti i 2.2238901 Ti i
2.2263176 Fe i 2.2266250 Fe i 2.2280107 Ti i 2.2316670 Ti i
2.2386901 Fe i 2.2398975 Fe i 2.2450020 Ti i 2.2479405 Fe i
2.2543838 Si i 2.2614114 Ca i 2.2626002 Fe i 2.2631137 Ca i
2.2632897 Ca i 2.2657359 Ca i 2.2671964 Si i 2.2814252 Mg i
2.2969596 Ti i 2.3150909 Fe i 2.3354795 Na i 2.3385518 Na i
2.3447857 Ti i 2.4572999 Mg i 2.4825687 Mg i 2.4867327 Mg i
3.0277195 Mg i 3.1517396 Si i 3.3970842 Mg i 3.6771872 Mg i
3.6789458 Mg i 3.6825631 Mg i 3.7091205 Fe i 3.8632832 Al i
3.8664858 Mg i 3.8669012 Mg i 3.8721194 Al i    

Download table as:  ASCIITypeset images: 1 2 3

Table 8. EW Limit Definitions

Feature Feature Limits (μm) First Continuum Level Limits (μm) Second Continuum Level Limits (μm)
Ca ii (0.866 μm)   0.860–0.875   0.862–0.864 0.870–0.873
Na i (1.14 μm)   1.120–1.160   1.125–1.130 1.150–1.160
Al i (1.313 μm)   1.300–1.330   1.305–1.309 1.320–1.325
Mg i (1.485 μm)   1.475–1.4975   1.4775–1.485 1.491–1.497
Mg i (1.711 μm)   1.695–1.726   1.702–1.708 1.715–1.720
Na i (2.206 μm)   2.185–2.230   2.192–2.198 2.213–2.220

Download table as:  ASCIITypeset image

Table 9. EWs

Object Spectral Type Ca ii (0.866 μm) Na i (1.14 μm) Al i (1.313 μm) Mg i (1.485 μm) Mg i (1.711 μm) Na i (2.206 μm)
HD 7927 F0 Ia 3.73 ± 0.12 0.13 ± 0.36 0.32 ± 0.03 0.59 ± 0.18 0.03 ± 0.03 −0.12 ± 0.04
HD 135153 F0 Ib−II 4.38 ± 0.07 0.45 ± 0.41 0.48 ± 0.12 0.60 ± 0.28 0.20 ± 0.05 0.28 ± 0.10
HD 6130 F0 II 4.06 ± 0.08 0.66 ± 0.25 0.49 ± 0.05 0.53 ± 0.10 0.20 ± 0.04 0.31 ± 0.05
HD 89025 F0 IIIa 3.28 ± 0.03 1.01 ± 0.14 0.38 ± 0.03 0.48 ± 0.07 0.24 ± 0.04 0.27 ± 0.03
HD 13174 F0 III−IVn 3.05 ± 0.04 0.99 ± 0.17 0.61 ± 0.05 0.62 ± 0.12 0.37 ± 0.03 0.50 ± 0.04
HD 27397 F0 IV 2.76 ± 0.04 0.45 ± 0.23 0.41 ± 0.05 0.63 ± 0.09 0.32 ± 0.03 0.50 ± 0.05
HD 108519 F0 V(n) 2.56 ± 0.03 0.58 ± 0.17 0.37 ± 0.03 0.52 ± 0.06 0.31 ± 0.03 0.41 ± 0.04
HD 173638 F1 II 4.48 ± 0.09 0.57 ± 0.30 0.46 ± 0.03 0.41 ± 0.08 0.15 ± 0.05 0.09 ± 0.06
HD 213135 F1 V 2.07 ± 0.03 0.49 ± 0.17 0.41 ± 0.04 0.74 ± 0.08 0.50 ± 0.04 0.65 ± 0.05
BD +38 2803 F2−F5 Ib 2.04 ± 0.03 0.21 ± 0.16 0.14 ± 0.05 0.62 ± 0.16 0.26 ± 0.03 −0.02 ± 0.03
HD 182835 F2 Ib 4.74 ± 0.10 0.28 ± 0.36 0.57 ± 0.04 0.46 ± 0.09 0.21 ± 0.05 0.32 ± 0.06
HD 40535 F2 III−IV 2.80 ± 0.03 0.73 ± 0.16 0.46 ± 0.02 0.53 ± 0.06 0.34 ± 0.03 0.43 ± 0.05
HD 164136 kA9hF2mF2 (IV) 2.62 ± 0.04 0.92 ± 0.13 0.42 ± 0.04 0.52 ± 0.09 0.31 ± 0.05 0.35 ± 0.05
HD 113139 F2 V 2.19 ± 0.04 1.00 ± 0.13 0.44 ± 0.05 0.62 ± 0.10 0.41 ± 0.03 0.44 ± 0.03
HD 26015 F3 V 2.38 ± 0.04 0.70 ± 0.17 0.53 ± 0.02 0.83 ± 0.06 0.40 ± 0.04 0.64 ± 0.05
HD 21770 F4 III 2.04 ± 0.03 0.41 ± 0.14 0.35 ± 0.03 0.60 ± 0.04 0.33 ± 0.03 0.39 ± 0.05
HD 87822 F4 V 2.27 ± 0.04 0.51 ± 0.18 0.55 ± 0.02 0.95 ± 0.06 0.48 ± 0.04 0.61 ± 0.04
HD 16232 F4 V 1.92 ± 0.06 0.41 ± 0.25 0.81 ± 0.05 1.26 ± 0.10 0.80 ± 0.06 1.09 ± 0.04
HD 213306 F5 Ib − G1 Ib 4.42 ± 0.08 1.40 ± 0.37 1.09 ± 0.13 0.77 ± 0.48 0.49 ± 0.08 0.96 ± 0.08
HD 186155 F5 II−III 2.99 ± 0.07 0.63 ± 0.31 0.75 ± 0.06 0.93 ± 0.09 0.46 ± 0.05 0.58 ± 0.06
HD 17918 F5 III 2.69 ± 0.05 0.81 ± 0.14 0.64 ± 0.02 0.71 ± 0.05 0.37 ± 0.03 0.59 ± 0.04
HD 218804 F5 V 1.98 ± 0.04 1.16 ± 0.17 0.61 ± 0.08 0.86 ± 0.15 0.75 ± 0.04 0.91 ± 0.04
HD 27524 F5 V 2.12 ± 0.05 0.69 ± 0.18 0.64 ± 0.03 1.03 ± 0.07 0.54 ± 0.05 0.75 ± 0.05
HD 75555 F5.5 III−IV 2.57 ± 0.05 0.82 ± 0.20 0.58 ± 0.04 0.87 ± 0.08 0.47 ± 0.04 0.62 ± 0.08
HD 160365 F6 III−IV 2.49 ± 0.05 0.57 ± 0.16 0.62 ± 0.02 0.76 ± 0.07 0.44 ± 0.05 0.83 ± 0.04
HD 11443 F6 IV 2.24 ± 0.05 0.61 ± 0.17 0.57 ± 0.03 0.83 ± 0.06 0.46 ± 0.04 0.67 ± 0.05
HD 215648 F6 V 2.05 ± 0.03 0.65 ± 0.19 0.32 ± 0.07 0.26 ± 0.13 0.24 ± 0.04 0.28 ± 0.06
HD 201078 F7 II– 3.64 ± 0.06 1.17 ± 0.23 0.74 ± 0.06 0.71 ± 0.13 0.39 ± 0.05 0.65 ± 0.10
HD 124850 F7 III 2.16 ± 0.05 0.38 ± 0.22 0.58 ± 0.03 0.96 ± 0.06 0.52 ± 0.04 0.60 ± 0.06
HD 126660 F7 V 2.00 ± 0.05 0.78 ± 0.16 0.59 ± 0.03 1.09 ± 0.08 0.61 ± 0.05 0.67 ± 0.05
HD 190323 F8 Ia 5.27 ± 0.11 1.04 ± 0.40 1.11 ± 0.03 0.99 ± 0.14 0.35 ± 0.08 0.68 ± 0.09
HD 51956 F8 Ib 3.61 ± 0.09 1.08 ± 0.29 1.07 ± 0.03 0.98 ± 0.12 0.53 ± 0.08 1.10 ± 0.05
HD 220657 F8 III 2.52 ± 0.06 1.01 ± 0.24 0.66 ± 0.08 0.73 ± 0.14 0.41 ± 0.06 0.55 ± 0.05
HD 111844 F8 IV 2.27 ± 0.03 0.57 ± 0.20 0.45 ± 0.04 0.61 ± 0.06 0.28 ± 0.02 0.39 ± 0.05
HD 219623 F8 V 2.35 ± 0.05 0.61 ± 0.32 0.89 ± 0.07 1.22 ± 0.14 0.79 ± 0.06 0.84 ± 0.04
HD 27383 F8 V 2.31 ± 0.05 0.58 ± 0.24 0.91 ± 0.04 1.44 ± 0.10 0.94 ± 0.07 1.04 ± 0.04
HD 102870 F8.5 IV−V 2.31 ± 0.07 0.54 ± 0.27 0.83 ± 0.04 1.24 ± 0.10 0.73 ± 0.06 0.93 ± 0.04
HD 6903 F9 IIIa 2.68 ± 0.06 0.88 ± 0.21 0.79 ± 0.04 0.89 ± 0.09 0.42 ± 0.06 0.68 ± 0.04
HD 176051 F9 V 2.08 ± 0.07 0.84 ± 0.17 0.99 ± 0.04 1.55 ± 0.11 1.22 ± 0.06 0.96 ± 0.06
HD 165908 F9 V metal weak 1.79 ± 0.05 0.29 ± 0.24 0.42 ± 0.09 0.92 ± 0.26 0.61 ± 0.06 0.49 ± 0.08
HD 114710 F9.5 V 2.33 ± 0.05 0.45 ± 0.25 0.89 ± 0.04 1.40 ± 0.13 0.90 ± 0.06 0.96 ± 0.06
HD 185018 G0 Ib−II 3.38 ± 0.08 0.49 ± 0.33 0.94 ± 0.06 0.89 ± 0.12 0.52 ± 0.09 0.93 ± 0.06
HD 109358 G0 V 1.97 ± 0.06 0.23 ± 0.17 0.79 ± 0.03 1.24 ± 0.08 0.88 ± 0.05 0.90 ± 0.03
HD 74395 G1 Ib 3.82 ± 0.09 0.70 ± 0.37 1.14 ± 0.05 1.05 ± 0.13 0.55 ± 0.12 1.19 ± 0.04
HD 216219 G1 II−III: Fe−1 CH0.5 2.17 ± 0.05 0.81 ± 0.20 0.50 ± 0.05 0.81 ± 0.10 0.33 ± 0.05 0.42 ± 0.07
HD 21018 G1 III: CH−1: 2.99 ± 0.09 1.00 ± 0.28 0.99 ± 0.05 1.07 ± 0.11 0.58 ± 0.11 1.11 ± 0.03
HD 10307 G1 V 2.06 ± 0.07 0.39 ± 0.22 0.88 ± 0.08 1.38 ± 0.16 0.95 ± 0.06 1.11 ± 0.04
HD 95128 G1− V Fe−0.5 2.25 ± 0.05 0.27 ± 0.23 0.87 ± 0.03 1.45 ± 0.09 0.93 ± 0.06 1.06 ± 0.03
HD 20619 G1.5 V 1.96 ± 0.06 −0.03 ± 0.22 0.90 ± 0.03 1.59 ± 0.09 1.15 ± 0.05 1.00 ± 0.06
HD 42454 G2 Ib 4.19 ± 0.10 1.38 ± 0.41 1.10 ± 0.09 0.94 ± 0.17 0.57 ± 0.11 1.21 ± 0.05
HD 39949 G2 Ib 3.51 ± 0.09 1.17 ± 0.38 0.95 ± 0.09 0.96 ± 0.18 0.53 ± 0.11 1.14 ± 0.05
HD 3421 G2 Ib−II 3.13 ± 0.07 0.76 ± 0.26 0.91 ± 0.06 0.88 ± 0.13 0.52 ± 0.09 0.74 ± 0.06
HD 219477 G2 II−III 2.95 ± 0.06 0.75 ± 0.24 0.82 ± 0.07 0.76 ± 0.10 0.40 ± 0.09 0.80 ± 0.05
HD 126868 G2 IV 2.27 ± 0.07 0.61 ± 0.24 0.88 ± 0.06 1.22 ± 0.15 0.79 ± 0.08 0.96 ± 0.07
HD 76151 G2 V 2.18 ± 0.08 0.83 ± 0.23 1.15 ± 0.04 1.81 ± 0.14 1.20 ± 0.10 1.31 ± 0.04
HD 192713 G3 Ib−II Wk H&K comp? 3.94 ± 0.12 1.23 ± 0.44 1.24 ± 0.08 1.22 ± 0.21 0.52 ± 0.18 1.39 ± 0.07
HD 176123 G3 II 3.16 ± 0.08 0.98 ± 0.25 0.99 ± 0.05 1.03 ± 0.13 0.54 ± 0.11 0.96 ± 0.04
HD 88639 G3 IIIb Fe−1 2.36 ± 0.07 0.32 ± 0.25 0.85 ± 0.04 0.98 ± 0.10 0.69 ± 0.09 0.93 ± 0.03
HD 10697 G3 Va 2.32 ± 0.09 1.30 ± 0.26 1.06 ± 0.06 1.45 ± 0.14 0.97 ± 0.08 1.08 ± 0.05
HD 179821 G4 O−Ia 3.44 ± 0.25 0.79 ± 0.47 0.66 ± 0.05 0.83 ± 0.20 −0.44 ± 0.07 −1.75 ± 0.08
HD 6474 G4 Ia ± 4.55 0.10 ± 1.63 0.35 ± 1.09 0.07 ± 0.93 0.18 ± 0.25 0.07 ± 0.23 0.08
HD 94481 G4 III−IIIb 2.69 ± 0.07 0.93 ± 0.22 0.87 ± 0.04 1.09 ± 0.13 0.65 ± 0.09 0.98 ± 0.04
HD 108477 G4 III 2.91 ± 0.09 0.63 ± 0.30 0.96 ± 0.04 0.99 ± 0.14 0.59 ± 0.11 1.10 ± 0.05
HD 214850 G4 V 2.25 ± 0.06 0.71 ± 0.19 0.83 ± 0.05 1.26 ± 0.11 0.87 ± 0.07 0.95 ± 0.03
HD 190113 G5 Ib 3.61 ± 0.12 1.16 ± 0.52 1.13 ± 0.09 1.17 ± 0.24 0.67 ± 0.20 1.62 ± 0.06
HD 18474 G5: III: CN−3 CH−2 Hδ − 1 2.65 ± 0.08 0.45 ± 0.27 0.92 ± 0.05 1.00 ± 0.09 0.68 ± 0.10 1.05 ± 0.05
HD 193896 G5 IIIa 2.76 ± 0.07 0.76 ± 0.29 0.93 ± 0.05 1.02 ± 0.12 0.63 ± 0.10 1.10 ± 0.04
HD 165185 G5 V 2.00 ± 0.07 0.64 ± 0.23 0.91 ± 0.06 1.37 ± 0.15 0.99 ± 0.06 0.93 ± 0.05
HD 161664 G6 Ib Hδ1 3.77 ± 0.14 1.47 ± 0.51 1.21 ± 0.12 0.90 ± 0.32 0.48 ± 0.17 1.40 ± 0.07
HD 202314 G6 Ib−IIa Ca1 Ba0.5 3.45 ± 0.11 0.61 ± 0.39 1.03 ± 0.07 0.87 ± 0.16 0.57 ± 0.16 1.23 ± 0.08
HD 58367 G6 IIb 3.24 ± 0.10 0.95 ± 0.35 1.09 ± 0.07 1.14 ± 0.17 0.60 ± 0.14 1.13 ± 0.05
HD 27277 G6 III 2.61 ± 0.07 0.44 ± 0.33 0.99 ± 0.05 1.13 ± 0.12 0.80 ± 0.11 1.14 ± 0.05
HD 115617 G6.5 V 2.25 ± 0.06 0.53 ± 0.19 1.28 ± 0.05 1.81 ± 0.10 1.37 ± 0.08 1.27 ± 0.04
HD 333385 G7 Ia 5.54 ± 0.15 1.70 ± 0.42 1.51 ± 0.07 1.19 ± 0.16 −0.09 ± 0.12 −2.05 ± 0.13
HD 25877 G7 II 3.31 ± 0.09 0.93 ± 0.42 1.02 ± 0.08 1.08 ± 0.19 0.59 ± 0.15 1.28 ± 0.07
HD 182694 G7 IIIa 2.67 ± 0.09 0.97 ± 0.34 0.97 ± 0.07 1.14 ± 0.19 0.79 ± 0.13 1.18 ± 0.05
HD 20618 G7 IV 2.27 ± 0.08 0.66 ± 0.24 0.95 ± 0.06 1.18 ± 0.12 0.93 ± 0.09 1.12 ± 0.02
HD 114946 G7 IV 1.96 ± 0.07 0.51 ± 0.20 0.91 ± 0.03 1.25 ± 0.11 1.01 ± 0.09 1.05 ± 0.04
HD 16139 G7.5 IIIa 2.42 ± 0.09 0.63 ± 0.31 0.90 ± 0.06 1.12 ± 0.13 0.74 ± 0.11 1.08 ± 0.04
HD 208606 G8 Ib 4.71 ± 0.17 1.72 ± 0.69 1.37 ± 0.16 1.27 ± 0.38 0.58 ± 0.26 1.91 ± 0.15
HD 122563 G8: III: Fe−5 0.84 ± 0.04 0.18 ± 0.17 0.07 ± 0.08 0.26 ± 0.18 0.26 ± 0.02 −0.01 ± 0.03
HD 104979 G8 III Ba1 CN0.5 CH1 2.34 ± 0.07 0.72 ± 0.37 0.85 ± 0.12 1.21 ± 0.20 0.76 ± 0.12 0.97 ± 0.08
HD 135722 G8 III Fe−1 2.33 ± 0.07 0.80 ± 0.21 0.95 ± 0.07 1.15 ± 0.13 0.79 ± 0.11 0.98 ± 0.06
HD 101501 G8 V 2.27 ± 0.06 0.64 ± 0.22 1.25 ± 0.05 1.88 ± 0.14 1.42 ± 0.09 1.34 ± 0.04
HD 75732 G8 V 2.37 ± 0.10 0.90 ± 0.37 1.87 ± 0.06 2.16 ± 0.17 2.05 ± 0.15 2.32 ± 0.05
HD 170820 G9 II CN1 Hδ1 3.71 ± 0.13 0.78 ± 0.60 1.03 ± 0.15 0.98 ± 0.28 0.45 ± 0.26 1.42 ± 0.16
HD 222093 G9 III 2.52 ± 0.09 0.88 ± 0.29 1.04 ± 0.07 1.17 ± 0.16 0.87 ± 0.14 1.09 ± 0.04
HD 165782 K0 Ia 5.69 ± 0.13 1.72 ± 0.54 1.38 ± 0.06 0.85 ± 0.17 −0.12 ± 0.09 −0.75 ± 0.12
HD 44391 K0 Ib 3.76 ± 0.14 1.44 ± 0.47 1.10 ± 0.10 1.28 ± 0.25 0.68 ± 0.22 1.66 ± 0.09
HD 179870 K0 II 3.06 ± 0.12 1.49 ± 0.42 1.01 ± 0.12 1.32 ± 0.26 0.74 ± 0.18 1.34 ± 0.07
HD 100006 K0 III 2.53 ± 0.10 0.67 ± 0.32 1.01 ± 0.06 1.18 ± 0.14 0.74 ± 0.15 1.16 ± 0.07
HD 145675 K0 V 2.19 ± 0.13 1.28 ± 0.33 1.88 ± 0.07 2.76 ± 0.20 2.07 ± 0.16 2.60 ± 0.05
HD 164349 K0.5 IIb 3.05 ± 0.12 1.66 ± 0.41 1.04 ± 0.12 1.28 ± 0.24 0.74 ± 0.21 1.41 ± 0.10
HD 9852 K0.5 III CN1 3.09 ± 0.14 1.17 ± 0.43 1.08 ± 0.12 1.37 ± 0.26 0.79 ± 0.23 1.69 ± 0.10
HD 63302 K1 Ia−Iab 4.74 ± 0.18 1.91 ± 0.82 1.49 ± 0.20 1.72 ± 0.40 1.01 ± 0.44 2.78 ± 0.26
HD 36134 K1− III Fe−0.5 2.58 ± 0.10 0.75 ± 0.29 1.08 ± 0.07 1.26 ± 0.17 1.03 ± 0.17 1.35 ± 0.06
HD 91810 K1− IIIb CN1.5 Ca1 2.98 ± 0.13 0.65 ± 0.45 1.28 ± 0.11 1.35 ± 0.22 1.08 ± 0.23 1.87 ± 0.10
HD 25975 K1 III 2.30 ± 0.09 0.90 ± 0.27 1.24 ± 0.06 1.68 ± 0.14 1.29 ± 0.13 1.33 ± 0.04
HD 165438 K1 IV 2.30 ± 0.10 1.03 ± 0.32 1.27 ± 0.08 1.54 ± 0.18 1.40 ± 0.14 1.52 ± 0.05
HD 142091 K1 IVa 2.38 ± 0.10 0.81 ± 0.38 1.33 ± 0.09 1.58 ± 0.20 1.35 ± 0.16 1.57 ± 0.07
HD 10476 K1 V 2.22 ± 0.09 1.25 ± 0.21 1.50 ± 0.05 2.14 ± 0.16 1.82 ± 0.10 1.54 ± 0.04
HD 212466 K2 O−Ia 6.13 ± 0.22 3.22 ± 1.05 1.81 ± 0.17 1.88 ± 0.42 0.53 ± 0.27 1.29 ± 0.14
HD 2901 K2 III Fe−1 2.40 ± 0.06 0.68 ± 0.25 1.00 ± 0.07 1.17 ± 0.15 1.32 ± 0.20 1.54 ± 0.04
HD 132935 K2 III 2.77 ± 0.08 0.55 ± 0.32 1.08 ± 0.09 1.11 ± 0.17 1.14 ± 0.21 1.45 ± 0.06
HD 137759 K2 III 2.60 ± 0.11 1.36 ± 0.33 1.23 ± 0.09 1.60 ± 0.20 1.21 ± 0.20 1.79 ± 0.09
HD 3765 K2 V 2.22 ± 0.10 1.66 ± 0.30 2.05 ± 0.07 2.71 ± 0.22 2.44 ± 0.15 2.17 ± 0.05
HD 23082 K2.5 II 3.56 ± 0.15 1.73 ± 0.54 1.16 ± 0.18 1.56 ± 0.32 1.20 ± 0.40 2.61 ± 0.20
HD 187238 K3 Iab−Ib 4.02 ± 0.16 2.06 ± 0.66 1.45 ± 0.20 1.61 ± 0.34 1.23 ± 0.45 3.09 ± 0.25
HD 16068 K3 II−III 3.34 ± 0.13 1.36 ± 0.54 1.05 ± 0.19 1.50 ± 0.32 1.12 ± 0.35 2.43 ± 0.16
HD 221246 K3 III 3.33 ± 0.13 1.34 ± 0.39 1.26 ± 0.13 1.39 ± 0.22 1.23 ± 0.32 2.26 ± 0.13
HD 178208 K3 III 2.87 ± 0.12 1.62 ± 0.42 1.38 ± 0.14 1.77 ± 0.26 1.36 ± 0.31 2.42 ± 0.12
HD 35620 K3 III Fe1 2.98 ± 0.14 1.09 ± 0.56 1.12 ± 0.16 1.36 ± 0.30 1.35 ± 0.35 2.38 ± 0.16
HD 99998 K3+ III Fe−0.5 2.83 ± 0.11 0.75 ± 0.36 1.00 ± 0.12 1.46 ± 0.21 1.61 ± 0.34 2.16 ± 0.07
HD 114960 K3.5 IIIb CN0.5 CH0.5 2.93 ± 0.14 1.35 ± 0.39 1.43 ± 0.15 1.76 ± 0.25 1.47 ± 0.37 2.77 ± 0.15
HD 219134 K3 V 2.44 ± 0.09 1.29 ± 0.46 2.19 ± 0.08 2.86 ± 0.19 2.79 ± 0.14 2.73 ± 0.04
HD 185622 K4 Ib 4.30 ± 0.17 2.37 ± 0.61 1.50 ± 0.23 1.78 ± 0.34 1.55 ± 0.56 3.74 ± 0.30
HD 201065 K4 Ib−II 3.61 ± 0.15 1.87 ± 0.46 1.15 ± 0.17 1.61 ± 0.30 1.32 ± 0.42 2.79 ± 0.17
HD 207991 K4− III 2.83 ± 0.12 0.59 ± 0.40 1.11 ± 0.14 1.14 ± 0.20 1.64 ± 0.34 2.18 ± 0.07
HD 45977 K4 V 2.28 ± 0.09 1.06 ± 0.40 2.80 ± 0.07 2.95 ± 0.20 3.21 ± 0.19 3.49 ± 0.05
HD 216946 K5 Ib 3.84 ± 0.14 1.95 ± 0.47 1.19 ± 0.21 1.96 ± 0.32 1.76 ± 0.52 3.49 ± 0.21
HD 181596 K5 III 3.31 ± 0.09 1.76 ± 0.30 1.02 ± 0.15 1.44 ± 0.24 1.81 ± 0.42 2.74 ± 0.09
HD 36003 K5 V 2.19 ± 0.09 1.51 ± 0.26 2.86 ± 0.06 3.08 ± 0.16 3.47 ± 0.15 3.03 ± 0.04
HD 120477 K5.5 III 2.89 ± 0.10 1.21 ± 0.35 1.39 ± 0.14 1.63 ± 0.22 1.90 ± 0.44 2.79 ± 0.12
HD 3346 K6 IIIa 2.89 ± 0.09 1.04 ± 0.37 1.01 ± 0.13 1.49 ± 0.21 1.99 ± 0.42 2.59 ± 0.09
HD 181475 K7 IIa 3.97 ± 0.16 1.60 ± 0.57 1.22 ± 0.22 1.61 ± 0.34 1.69 ± 0.52 3.43 ± 0.21
HD 194193 K7 III 3.05 ± 0.13 1.08 ± 0.31 1.10 ± 0.14 1.45 ± 0.20 1.95 ± 0.43 2.60 ± 0.09
HD 237903 K7 V 2.13 ± 0.08 1.88 ± 0.21 2.83 ± 0.06 2.70 ± 0.15 3.65 ± 0.16 3.69 ± 0.02
HD 201092 K7 V 1.71 ± 0.06 2.66 ± 0.38 2.68 ± 0.15 2.36 ± 0.28 3.72 ± 0.15 3.43 ± 0.07
HD 213893 M0 IIIb 2.81 ± 0.08 1.13 ± 0.29 1.25 ± 0.12 1.63 ± 0.17 2.05 ± 0.41 2.40 ± 0.06
HD 19305 M0 V 2.17 ± 0.08 2.19 ± 0.23 3.09 ± 0.08 2.62 ± 0.15 3.76 ± 0.17 4.18 ± 0.04
HD 236697 M0.5 Ib 3.93 ± 0.16 2.07 ± 0.56 1.18 ± 0.23 1.75 ± 0.36 2.13 ± 0.63 3.74 ± 0.22
HD 209290 M0.5 V 1.61 ± 0.08 2.01 ± 0.27 2.87 ± 0.07 2.04 ± 0.14 3.54 ± 0.17 4.88 ± 0.03
HD 339034 M1 Ia 5.22 ± 0.28 3.73 ± 1.00 1.70 ± 0.32 2.03 ± 0.55 0.83 ± 0.56 3.38 ± 0.37
HD 14404 M1− Iab−Ib 4.11 ± 0.15 2.04 ± 0.58 1.11 ± 0.22 1.79 ± 0.38 1.46 ± 0.63 3.52 ± 0.23
HD 39801 M1−M2 Ia−Iab 3.94 ± 0.15 2.43 ± 0.64 1.42 ± 0.27 1.91 ± 0.38 2.04 ± 0.68 4.12 ± 0.28
HD 204724 M1+ III 3.45 ± 0.12 1.46 ± 0.36 1.25 ± 0.17 1.24 ± 0.21 1.90 ± 0.47 3.38 ± 0.18
HD 42581 M1 V 1.54 ± 0.06 2.58 ± 0.28 2.96 ± 0.06 1.73 ± 0.11 3.25 ± 0.17 5.36 ± 0.03
HD 35601 M1.5 Iab−Ib 4.14 ± 0.18 3.20 ± 0.71 1.20 ± 0.29 2.00 ± 0.48 1.86 ± 0.64 3.77 ± 0.28
BD +60 265 M1.5 Ib 4.09 ± 0.18 2.81 ± 0.61 1.18 ± 0.24 1.85 ± 0.35 1.48 ± 0.62 3.51 ± 0.33
HD 36395 M1.5 V 1.60 ± 0.07 4.02 ± 0.23 3.52 ± 0.08 2.34 ± 0.18 3.89 ± 0.21 7.49 ± 0.06
HD 206936 M2− Ia 4.23 ± 0.20 3.42 ± 1.00 1.67 ± 0.31 1.78 ± 0.62 1.57 ± 0.62 3.81 ± 0.41
HD 10465 M2 Ib 4.03 ± 0.14 2.81 ± 0.55 1.35 ± 0.28 1.63 ± 0.38 2.40 ± 0.69 3.88 ± 0.22
HD 23475 M2 II 3.62 ± 0.12 1.94 ± 0.55 1.31 ± 0.22 1.70 ± 0.37 2.37 ± 0.57 3.82 ± 0.22
HD 120052 M2 III 2.85 ± 0.09 0.85 ± 0.40 1.11 ± 0.14 1.83 ± 0.26 2.42 ± 0.44 2.49 ± 0.07
HD 95735 M2 V 1.43 ± 0.04 2.23 ± 0.28 2.36 ± 0.07 1.19 ± 0.16 2.13 ± 0.16 3.00 ± 0.09
Gl 806 M2 V 1.25 ± 0.08 3.01 ± 0.26 2.39 ± 0.07 1.02 ± 0.12 2.18 ± 0.17 4.11 ± 0.09
HD 219734 M2.5 III Ba0.5 3.19 ± 0.12 1.27 ± 0.40 1.29 ± 0.17 1.73 ± 0.28 2.33 ± 0.51 3.20 ± 0.12
Gl 381 M2.5 V 1.11 ± 0.07 3.10 ± 0.21 2.48 ± 0.08 1.01 ± 0.16 1.97 ± 0.16 4.47 ± 0.07
Gl 581 M2.5 V 0.98 ± 0.05 3.38 ± 0.19 2.39 ± 0.06 0.78 ± 0.16 1.56 ± 0.16 4.71 ± 0.09
RW Cyg M3 to M4 Ia−Iab 3.96 ± 0.19 2.87 ± 0.70 1.45 ± 0.29 1.93 ± 0.42 1.38 ± 0.67 4.19 ± 0.39
CD −31 4916 M3 Iab−Ia 3.42 ± 0.14 1.47 ± 0.68 1.05 ± 0.24 2.02 ± 0.41 2.25 ± 0.69 3.98 ± 0.32
HD 14469 M3−M4 Iab 3.42 ± 0.10 2.26 ± 0.54 1.17 ± 0.26 2.16 ± 0.46 2.07 ± 0.78 4.25 ± 0.30
HD 40239 M3 IIb 3.36 ± 0.10 2.02 ± 0.33 1.23 ± 0.18 1.64 ± 0.28 2.30 ± 0.60 3.67 ± 0.18
HD 39045 M3 III 2.63 ± 0.10 1.22 ± 0.31 1.00 ± 0.16 1.86 ± 0.23 2.41 ± 0.53 3.04 ± 0.08
Gl 388 M3 V 0.76 ± 0.08 4.56 ± 0.25 2.63 ± 0.09 1.09 ± 0.17 2.12 ± 0.20 5.80 ± 0.09
HD 14488 M3.5 Iab Fe−1 var? 3.08 ± 0.10 2.25 ± 0.61 1.08 ± 0.26 2.04 ± 0.42 2.34 ± 0.77 4.33 ± 0.32
HD 28487 M3.5 III Ca−0.5 2.68 ± 0.08 0.46 ± 0.35 1.14 ± 0.16 1.63 ± 0.32 2.63 ± 0.58 3.05 ± 0.12
Gl 273 M3.5 V 1.13 ± 0.05 3.58 ± 0.28 2.51 ± 0.07 0.71 ± 0.18 1.43 ± 0.17 4.28 ± 0.10
HD 19058 M4+ IIIa 2.79 ± 0.09 0.73 ± 0.38 0.98 ± 0.18 1.82 ± 0.32 2.74 ± 0.61 3.59 ± 0.12
HD 214665 M4+ III 2.91 ± 0.10 0.88 ± 0.51 1.44 ± 0.28 1.73 ± 0.44 2.40 ± 0.62 3.61 ± 0.16
HD 4408 M4 III 3.14 ± 0.11 1.37 ± 0.32 1.14 ± 0.18 1.77 ± 0.28 2.44 ± 0.62 3.60 ± 0.14
HD 27598 M4− III 2.76 ± 0.09 0.47 ± 0.33 1.04 ± 0.17 1.82 ± 0.27 2.57 ± 0.57 2.92 ± 0.11
Gl 213 M4 V 0.69 ± 0.08 4.78 ± 0.22 2.52 ± 0.07 0.52 ± 0.17 1.06 ± 0.17 3.72 ± 0.13
Gl 299 M4 V 0.75 ± 0.09 5.68 ± 0.19 2.66 ± 0.07 0.22 ± 0.20 0.59 ± 0.15 2.86 ± 0.14
HD 204585 M4.5 IIIa 3.00 ± 0.08 1.64 ± 0.33 1.19 ± 0.24 1.68 ± 0.30 2.48 ± 0.67 4.26 ± 0.20
Gl 268AB M4.5 V 0.07 ± 0.10 6.67 ± 0.25 2.21 ± 0.09 0.44 ± 0.18 0.82 ± 0.18 6.52 ± 0.10
HD 156014 M5 Ib−II 2.48 ± 0.09 1.78 ± 0.33 1.21 ± 0.24 1.98 ± 0.37 2.73 ± 0.69 4.18 ± 0.15
HD 175865 M5 III 2.70 ± 0.08 1.53 ± 0.40 1.14 ± 0.21 1.89 ± 0.29 2.53 ± 0.67 4.13 ± 0.15
Gl 51 M5 V −0.60 ± 0.14 7.82 ± 0.29 2.73 ± 0.13 0.50 ± 0.29 0.61 ± 0.25 6.79 ± 0.15
Gl 866ABC M5 V −0.54 ± 0.17 10.62 ± 0.28 2.35 ± 0.17 0.25 ± 0.23 −0.02 ± 0.25 6.44 ± 0.15
HD 94705 M5.5 III: 2.22 ± 0.09 1.18 ± 0.35 1.43 ± 0.20 1.85 ± 0.30 2.73 ± 0.63 4.33 ± 0.16
HD 196610 M6 III 1.96 ± 0.08 1.65 ± 0.37 1.35 ± 0.22 1.96 ± 0.29 2.57 ± 0.68 3.67 ± 0.13
HD 18191 M6− III: 2.31 ± 0.08 1.02 ± 0.40 1.32 ± 0.20 1.96 ± 0.32 2.82 ± 0.61 3.88 ± 0.19
Gl 406 M6 V −0.86 ± 0.21 11.88 ± 0.25 2.34 ± 0.19 −0.00 ± 0.21 −0.25 ± 0.30 7.01 ± 0.17
GJ 1111 M6.5 V −1.62 ± 0.24 12.22 ± 0.39 2.32 ± 0.22 0.20 ± 0.36 −0.46 ± 0.31 5.06 ± 0.23
HD 14386 M5e−M9e III 0.42 ± 0.23 0.78 ± 0.44 −0.00 ± 0.25 −0.09 ± 0.55 1.43 ± 0.46 1.39 ± 0.32
HD 108849 M7− III: 1.46 ± 0.12 0.84 ± 0.34 1.13 ± 0.23 2.02 ± 0.47 2.82 ± 0.75 4.15 ± 0.19
HD 207076 M7− III: 1.76 ± 0.13 1.29 ± 0.31 1.21 ± 0.20 1.92 ± 0.42 2.48 ± 0.65 3.51 ± 0.12
Gl 644C M7 V −1.75 ± 0.27 12.72 ± 0.31 2.54 ± 0.22 0.24 ± 0.37 −0.57 ± 0.34 4.37 ± 0.26
MY Cep M7−M7.5 I 1.94 ± 0.13 2.19 ± 0.77 1.40 ± 0.25 2.37 ± 0.49 2.12 ± 0.77 4.20 ± 0.24
HD 69243 M6e−M9e III 0.15 ± 0.26 1.26 ± 0.47 0.52 ± 0.29 −0.47 ± 0.95 1.77 ± 0.71 2.13 ± 0.68
BRI B2339 − 0447 M7 − 8 III 0.72 ± 0.15 0.88 ± 0.47 1.69 ± 0.15 1.79 ± 0.68 2.35 ± 0.60 3.02 ± 0.22
IRAS 01037+1219 M8 III 0.54 ± 2.54 1.82 ± 0.68 0.83 ± 0.30 −0.32 ± 0.84 1.37 ± 0.55 2.22 ± 0.26
Gl 752B M8 V −1.45 ± 0.30 12.56 ± 0.38 2.05 ± 0.33 0.25 ± 0.43 −0.62 ± 0.40 5.02 ± 0.28
LP 412 − 31 M8 V −2.63 ± 0.31 14.84 ± 0.36 2.60 ± 0.29 0.20 ± 0.37 −0.80 ± 0.40 6.88 ± 0.26
IRAS 21284 − 0747 M8 − 9 III 0.42 ± 0.27 2.20 ± 0.60 0.78 ± 0.26 −1.25 ± 1.06 1.65 ± 0.59 1.49 ± 0.68
IRAS 14436 − 0703 M8 − 9 III 0.54 ± 0.36 4.99 ± 0.79 1.31 ± 0.45 −4.24 ± 1.78 1.74 ± 0.78 1.20 ± 0.97
IRAS 14303 − 1042 M8 − 9 III 0.72 ± 0.35 0.98 ± 1.18 1.37 ± 0.56 −4.68 ± 1.66 0.59 ± 0.56 0.20 ± 0.86
IRAS 15060+0947 M9 III 0.08 ± 0.27 2.15 ± 0.52 1.18 ± 0.24 1.34 ± 0.81 2.46 ± 0.71 3.29 ± 0.20
BRI B1219 − 1336 M9 III 0.79 ± 0.18 0.75 ± 0.57 0.78 ± 0.24 −0.52 ± 0.67 2.28 ± 0.62 1.23 ± 0.51
DENIS−P J104814.7 − 395606.1 M9 V −2.79 ± 0.35 13.89 ± 0.49 1.51 ± 0.37 0.15 ± 0.53 −1.17 ± 0.48 2.44 ± 0.31
LP 944 − 20 M9 V −1.62 ± 0.57 12.27 ± 0.48 1.21 ± 0.44 −0.08 ± 0.46 −1.12 ± 0.53 2.34 ± 0.34
LHS 2065 M9 V −1.41 ± 0.38 14.23 ± 0.41 1.78 ± 0.31 0.31 ± 0.30 −1.30 ± 0.48 5.78 ± 0.26
LHS 2924 M9 V −1.20 ± 0.44 13.62 ± 0.50 1.80 ± 0.40 0.05 ± 0.43 −1.18 ± 0.52 4.51 ± 0.35
BRI B0021 − 0214 M9.5 V −4.46 ± 0.87 13.92 ± 0.70 1.41 ± 0.56 −0.24 ± 0.58 −1.54 ± 0.65 2.64 ± 0.44
IRAS 14086 − 0703 M10+ III 0.78 ± 6.59 5.96 ± 1.19 0.37 ± 0.59 −2.43 ± 1.02 −0.35 ± 0.55 0.08 ± 0.55

Download table as:  ASCIITypeset images: 1 2 3

Figure 35.

Figure 35. EWs of prominent atomic absorption lines as a function of spectral type. The Ca ii EW is a good luminosity class indicator. The Na i 2.20 μm EW provides a good indication of spectral subtype, while the Na i 1.14 μm doublet EW can be used as a clear indicator of the very latest spectral subtypes.

Standard image High-resolution image

3.3. Molecular Band Identifications

Molecular absorption bands are prominent in the spectra of late-type stars. Identifications for many of these features can be found in Spinrad & Wing (1969), Brett (1990), Brett (1989), and Lançon & Wood (2000). Table 10 lists the vacuum wavelengths and identifications for each of the band heads identified in the spectra. Below, we describe some of the absorption bands in detail.

Table 10. Molecular Features in FGKM Spectra

Wavelength (μm) Transition References
(1) (2) (3)
TiO
0.82009172 R head 1–0 band of δ (b1Π − a1Δ) 1
0.82081 R3 head 0–2 band of γ (A3Φ − X3Δ) 2
0.82523 R2 head 0–2 band of γ (A3Φ − X3Δ) 2
0.82720357 R head 2–1 band of δ (b1Π − a1Δ) 1
0.82913 R3 head 1–3 band of γ (A3Φ − X3Δ) 2
0.83052 R1 head 0–2 band of γ (A3Φ − X3Δ) 2
0.83368 R2 head 1–3 band of γ (A3Φ − X3Δ) 2
0.83748 R3 head 2–4 band of γ (A3Φ − X3Δ) 2
0.83888 R1 head 1–3 band of γ (A3Φ − X3Δ) 2
0.84195 R2 head 2–4 band of γ (A3Φ − X3Δ) 2
0.8434 R1 head 0–0 band of epsilon (E3Π − X3 Δ) 3
0.8444 R2 head 0–0 band of epsilon (E3Π − X3 Δ) 3
0.8454 R3 head 0–0 band of epsilon (E3Π − X3 Δ) 3
0.8497 R1 head 1–1 band of epsilon (E3Π − X3 Δ) 3
0.85078 R2 head 3–5 band of γ (A3Φ − X3Δ) 2
0.8508 R2 head 1–1 band of epsilon (E3Π − X3 Δ) 3
0.8518 R3 head 1–1 band of epsilon (E3Π − X3 Δ) 3
0.85183 Q2 head 3–5 band of γ (A3Φ − X3Δ) 2
0.85608 R1 head 3–5 band of γ (A3Φ − X3Δ) 2
0.8562 R1 head 2–2 band of epsilon (E3Π − X3 Δ) 3
0.8571 R2 head 2–2 band of epsilon (E3Π − X3 Δ) 3
0.85718 Q1 head 3–5 band of γ (A3Φ − X3Δ) 2
0.8582 R3 head 2–2 band of epsilon (E3Π − X3 Δ) 3
0.886207 R head 0–0 band of δ (b1Π − a1Δ) 4
0.887093 Q head 0–0 band of δ (b1Π − a1Δ) 4
0.893983 R head 1–1 band of δ (b1Π− a1Δ) 4
0.90171 R head 2–2 band of δ (b1Π − a1Δ) 4
0.9211 R1 head 0–1 band of epsilon (E3Π − X3 Δ) 2
0.9221 R2 head 0–1 band of epsilon (E3Π − X3 Δ) 2
0.9233 R3 head 0–1 band of epsilon (E3Π − X3 Δ) 2
0.9279 R1 head 1–2 band of epsilon (E3Π − X3 Δ) 2
0.9289 R2 head 1–2 band of epsilon (E3Π − X3 Δ) 2
0.9300 R3 head 1–2 band of epsilon (E3Π − X3 Δ) 2
0.9345 R1 head 2–3 band of epsilon (E3Π − X3 Δ) 2
0.9356 R2 head 2–3 band of epsilon (E3Π − X3 Δ) 2
0.9368 R3 head 2–3 band of epsilon (E3Π − X3 Δ) 2
0.9728 R head 0–1 band of δ (b1Π − a1Δ) 5
0.9817 R head 1–2 band of δ (b1Π − a1Δ) 5
0.9902 R head 2–3 band of δ (b1Π − a1Δ) 5
0.9989 R head 3–4 band of δ (b1Π − a1Δ) 5
1.0027652 R head 1–0 band of Φ (b1Π − d1Σ) 6
1.0140301 R head 2–1 band of Φ (b1Π − d1Σ) 6
1.0254435 R head 3–2 band of Φ (b1Π − d1Σ) 6
1.1035239 R head 0–0 band of Φ (b1Π − d1Σ) 6
1.1160977 R head 1–1 band of Φ (b1Π − d1Σ) 6
1.2423352 R head 0–1 band of Φ (b1Π − d1Σ) 6
1.2567493 R head 1–2 band of Φ (b1Π − d1Σ) 6
CN
0.91092 SR21 head 1–0 band of A2Π − X2Σ+ 7, 8
0.91431 R2 head 1–0 band of A2Π − X2Σ+ 7, 8
0.91709 R1 head 1–0 band of A2Π − X2Σ+ 7, 8
0.91920 Q1 head 1–0 band of A2Π − X2Σ+ 7, 8
1.0875 SR21 head 0–0 band of A2Π − X2Σ+ 7, 8
1.0929 R2 head 0–0 band of A2Π − X2Σ+ 7, 8
1.0966 R1 head 0–0 band of A2Π − X2Σ+ 7, 8
1.0999 Q1 head 0–0 band of A2Π − X2Σ+ 7, 8
1.4078 R2 head 0–1 band of A2Π − X2Σ+ 7, 9
1.4138 R1 head 0–1 band of A2Π − X2Σ+ 7, 9
1.4549 R2 head 1–2 band of A2Π − X2Σ+ 7, 9
1.9649 R2 head 3–5 band of A2Π − X2Σ+ 10
2.0470 R2 head 3–5 band of A2Π − X2Σ+ 10
2.1349 R2 head 3–5 band of A2Π − X2Σ+ 10
2.2236 R2 head 3–5 band of A2Π − X2Σ+ 10
CrH
0.8613 head 0–0 band of A6Σ+X6Σ+ 8
FeH
0.8964 R head 1–0 band of F4Δ − X4Δ 11
0.9899 R head 0–0 band of F4Δ − X4Δ 11
1.1942 R head 0–1 band of F4Δ − X4Δ 11
1.2392 R head 1–2 band of F4Δ − X4Δ 11
1.58306 head E4Π − A4Π 12
1.59161 head E4Π − A4Π 12
1.62501 head E4Π − A4Π 12
H2O
0.89–0.99 31 + 2ν3, 2ν1 + ν3, 3ν11 + 2ν2 + ν3, 2ν1 + 2ν2 13
1.09–1.20 ν2 + 2ν3, ν1 + ν2 + ν3, 2ν1 + ν2, 3ν2 + ν3, ν1 + 2ν2 13
1.3–1.51 3, ν1 + ν2, 2ν1, 2ν2 + ν3, ν1 + 2ν2 13
1.75–2.05 ν2 + ν3, ν1 + ν2, 3ν2 13
2.3–3.2 ν1, ν3, 2ν2 13
ZrO
0.93019 R3 head 0–0 band of b3Π − a3Δ 14
0.931801 R1(c) head 0–0 band of b3Π − a3Δ 14
0.931845 R1(d) head 0–0 band of b3Π − a3Δ 14
0.932060 head unknown 14
0.93317 R2 head 0–0 band of b3Π − a3Δ 14
0.934417 head unknown 14
0.935860 head unknown 14
VO
1.04626 SR43 head 0–0 band of A4Π − X4Σ 15, 16
1.04822 RQ43 head 0–0 band of A4Π − X4Σ 15, 16
1.45092 R3 head 0–0 band of A4Π − X4Σ 15, 16
1.45300 RQ21 head 0–0 band of A4Π − X4Σ 15, 16
1.17–1.20 0–1 band of A4Π − X4Σ 16
C2
1.1727 head 2–0 band of A' 3ΣgX' 3Πu 17
1.7680 head 0–0 band of A' 3ΣgX' 3Πu 17
12CO
1.5582 R head 3–0 band of X1Σ+X1Σ+ 18
1.5779 R head 4–1 band of X1Σ+X1Σ+ 18
1.5982 R head 5–2 band of X1Σ+X1Σ+ 18
1.6189 R head 6–3 band of X1Σ+X1Σ+ 18
1.6401 R head 7–4 band of X1Σ+X1Σ+ 18
1.6618 R head 8–5 band of X1Σ+X1Σ+ 18
1.6840 R head 9–6 band of X1Σ+X1Σ+ 18
1.7067 R head 10–7 band of X1Σ+X1Σ+ 18
1.7230 R head 11–8 band of X1Σ+X1Σ+ 18
1.7538 R head 12–9 band of X1Σ+X1Σ+ 18
2.2935 R head 2–0 band of X1Σ+X1Σ+ 18
2.3227 R head 3–1 band of X1Σ+X1Σ+ 18
2.3525 R head 4–2 band of X1Σ+X1Σ+ 18
2.3830 R head 5–3 band of X1Σ+X1Σ+ 18
2.4141 R head 6–4 band of X1Σ+X1Σ+ 18
13CO
2.3448 R head 2–0 band of X1Σ+X1Σ+ 18
2.3739 R head 3–1 band of X1Σ+X1Σ+ 18
2.4037 R head 4–2 band of X1Σ+X1Σ+ 18
2.4341 R head 5–3 band of X1Σ+X1Σ+ 18
OH
3.4–4.2 series 1–0 bands of X2Π − X2Π 19
3.4–4.2 series 2–1 bands of X2Π − X2Π 19
SiO
4.0042 R head 2–0 band of X1Σ+X1Σ+ 20
4.0437 R head 3–1 band of X1Σ+X1Σ+ 20
4.0838 R head 4–2 band of X1Σ+X1Σ+ 20
4.1247 R head 5–3 band of X1Σ+X1Σ+ 20
4.1663 R head 5–3 band of X1Σ+X1Σ+ 20

References. (1) Valenti et al. 1998; (2) Gatterer et al. 1957; (3) Linton & Broida 1977; (4) Phillips 1950; (5) Lockwood 1973; (6) Galehouse et al. 1980; (7) Pearse & Gaydon 1965; (8) Pearse & Gaydon 1976; (9) Herzberg & Phillips 1948; (10) Brocklehurst et al. 1971; (11) Phillips et al. 1987; (12) Wallace & Hinkle 2001; (13) Auman 1967; (14) Phillips et al. 1979; (15) Lagerqvist & Selin (1957); (16) Cheung et al. (1982); (17) Ballik & Ramsay 1963; (18) Goorvitch 1994; (19) Hinkle et al. 1995; (20) Beer et al. (1974).

Download table as:  ASCIITypeset images: 1 2 3

3.3.1. TiO

Absorption bands of TiO that arise from the γ (A3Φ − X3Δ), epsilon (E3Π − X3Δ), δ (b1Π − a1Δ), and ϕ (b1Π − d1Σ) systems are conspicuous in the spectra of late-type stars over the 0.8–1.5 μm wavelength range (see Figures 79, 12, 2830). The γ and epsilon systems involve triplet electronic states and thus exhibit triple-headed bands, while the δ and ϕ systems involve singlet electronic states and thus exhibit only single-headed bands.

The Δν = −2 bands of the γ system (0.82–0.86 μm) are often identified in both low and high resolution spectra of late-type stars (e.g., Kirkpatrick et al. 1991; Tinney & Reid 1998; Reiners et al. 2007). In particular, four TiO band heads (R2, Q2, R1, Q1) are identified between 0.849 and 0.860 μm (see Figures 12 and 36). However, as can be seen in both our data and the high-resolution spectra of late-type M and early-type L dwarfs, (Tinney & Reid 1998; Reiners et al. 2007), two additional band heads of similar depths exist at 0.8508 and 0.8582 μm. Together, the six-band heads appear to form two sets of triplet band heads. The 1–1 and 2–2 bands of the epsilon system exhibit band heads at these wavelengths and therefore it is likely that these features arise from the epsilon system alone or are a combination of the γ and epsilon systems. We also note that three of the Δν = −2 band head classifications listed in Gatterer et al. (1957) were marked as uncertain so we have confirmed these using the theoretical line list of Schwenke (1998).

Figure 36.

Figure 36. Spectrum of Gl 406 (M6 V) and Gl 644C (vB 8, M7 V) centered on the Δν = 0 epsilon system of TiO. The 0–0, 1–1, and 2–2 bands are indicated. Also indicated are the Δν = −2 band heads of the γ system. The set of band heads at ∼0.853 μm and ∼0.858 μm are most likely a combination of both the epsilon and γ systems even though only the γ heads are indicated in the literature.

Standard image High-resolution image

It has been known for some time that absorption bands of TiO are present in the spectra of M giant stars near 0.93 μm (Spinrad & Newburn 1965). However, to our knowledge, these bands were not detected in the spectra of M dwarfs until the work of Cushing & Vacca (2006). These band heads arise from the Δν = −1 band of the epsilon system. Although telluric and intrinsic H2O absorptions make identifications in this region difficult, we nevertheless are able to identify the triplet band heads of the 0–1 (0.9211, 0.9221, 0.9233 μm), 1–2 (0.9279, 0.9289, 0.9300 μm), and 2–3 (0.9345, 0.9356, 0.9368 μm) transitions (see Figures 12 and 28). Finally, we note that while the wavelengths of the 2–3 and 3–4 band heads measured by Linton & Broida (1977) agree with our observations, they do not match the positions of the band heads predicted by Schwenke (1998).

3.3.2. VO

Absorption bands that arise from the B4Π − X4Σ+ 9 and A4Π −X4Σ systems of VO are present in the spectra of M stars over the 0.8–1.3 μm wavelength range. We identify only the 0–0 (∼1.06 μm) and 0–1 (∼1.18 μm) bands of the A4Π −X4Σ system (see Figures 8, 13, and 29). Although there are certainly absorption features arising from the 0–1 band of B4Π − X4Σ+ system centered near ∼0.85 μm in the spectra of late-type stars (Keenan & Schroeder 1952; Tinney & Reid 1998), they are simply too weak to be detected in our data.

3.3.3. ZrO

A series of four ZrO band heads arising from the 0–0 band of the system b3Π − a3Δ of ZrO (Phillips et al. 1979) are found in the spectra of M giant stars and carbon stars (see Figures 9, 21, 28, 34). Three additional band heads are also present at 0.932060, 0.934417, and 0.935860 μm but their corresponding transitions are unknown. Only three of the band heads (R1(c), R1(d), and 0.932060 μm) can be conclusively identified in the spectra given the complexity of the spectra at these wavelengths, but we include the other band heads for completeness. Additional ZrO band heads (Hammer & Davis 1981; Joyce et al. 1998) in the 1.0–1.2 μm wavelength range are not seen in our spectra.

3.4. Variations of Spectral Features with Spectral Type and Luminosity

In the following sections, we describe the variations of spectral features with spectral type and luminosity of the stars in our sample. These changes are illustrated with the representative spectra given in Figures 734, which include feature identifications. Technically, these identifications are only correct for Arcturus and the Sun, so we have identified the features over only Arcturus and a solar analog HD 76151 (G2 V). We caution against assuming that the same lines are present at much earlier and later spectral types than K1.5 III and G2 V.

Many of the features and variations in their strengths have been previously recognized: Joyce et al. (1998) and Wallace et al. (2000) at J; Meyer et al. (1998) at H; Kleinmann & Hall (1986), Wallace & Hinkle (1996, 1997) at K; Wallace & Hinkle (2002) and Vandenbussche et al. (2002) at L; Lançon & Rocca-Volmerange (1992) at 1.4–2.5 μm for normal stars; Lançon & Wood (2000) at 0.5–2.5 μm for luminous cool stars; and Loidl et al. (2001, 0.5–2.5 μm) and Aoki et al. (1998, 3–8 μm) for carbon stars.

The spectra are also used to compute synthetic photometric colors (see Section 4.2). Synthesized JH versus HK color–color diagrams are given in Figures 37 and 38. Figure 39 shows the spectral behavior of several late-type M giant stars plotted in Figures 37 and 38. A synthesized YJ versus JH color–color diagram is given in Figure 40. More complete spectral sequences are plotted in the Appendix (Figures 41112) but without feature identifications.

Figure 37.

Figure 37. Left: synthesized WFCAM JH versus HK diagram for our sample of cool stars (see Table 11), plus additional L and T dwarfs from Cushing et al. (2005) and T dwarfs from Burgasser et al. (2006). Several objects with extreme colors fall outside the plotted range and are plotted in Figure 38. Note the bifurcation between dwarfs and stars of higher luminosity beyond spectral type M0 V. Stars with odd spectra are circled (see Section 4.3). HD 69243 (M6e–M9e III, Mira variable) was observed at two epochs and the change in color is indicated (see also Figure 39). The + sign indicates the accuracy of the photometry, and the arrow indicates the direction and magnitude of the reddening vector for AV = 3. Right: the same plot but now with the correction for reddening included (the 66 dereddened stars are given in Table 5). Note how most M supergiant stars move closer to the main sequence.

Standard image High-resolution image
Figure 38.

Figure 38. Same as Figure 37 except all stars are plotted. The additional stars include some very red Mira and OH/IR stars, plus several blue T dwarfs. The colors of the Mira and OH/IR stars follow the linear locus (dashed line) expected from models of circumstellar dust shells in TPAGB stars (e.g., Lewis 2006).

Standard image High-resolution image
Figure 39.

Figure 39. Spectral behavior of M giant stars along the locus of decreasing JH and increasing HK in Figure 37 (plotted from the top). Strong water absorption at 1.4 μm and 1.9 μm reduces the flux emitted at H relative to J and K. As a result, the locus of M giant stars in the JH versus HK diagram appears to turn down toward late-M and early-L dwarfs (see Section 4.2 and Figure 37). The spectra plotted (black) are HD 39045 (M3 III), HD 94705 (M5.5 III:), HD 108849 (M7− III:), HD 69243 (M6e–M9e III) on 2008 December 6, HD 69243 (M6e–M9e III) on 2007 January 18, and IRAS 14303 − 1042 (M8–9 III). Also plotted is the spectrum (gray) of 2MASS J00361617+1821104 (L3.5; Cushing et al. 2005) which has very similar JHK colors to HD 69243 (M6e–M9e III).

Standard image High-resolution image
Figure 40.

Figure 40. Left: synthesized WFCAM YJ versus JH diagram for our sample of cool stars (see Table 11), plus additional L and T dwarfs from Cushing et al. (2005) and T dwarfs from Burgasser et al. (2006). The plot illustrates the advantage of using a Y filter when trying to identify T dwarfs compared to using JHK colors (see Figure 37) and is an example of using the library to experiment with other photometric systems. Note the bifurcation between dwarfs and stars of higher luminosity beyond the spectral type M0 V. Several late-type M giants have similar colors to late-type dwarfs since both have water absorption in the NIR. Right: the same plot but now with the correction for reddening included (the 66 dereddened stars are given in Table 5). Note how most M supergiant stars move closer to the main sequence.

Standard image High-resolution image

3.4.1. F Stars

Representative F star spectra are shown in Figures 79, 1218, and 2227. The NIR spectra of F stars are dominated by the neutral hydrogen (H i) absorption lines of the Paschen (n = 3), Brackett (n = 4), Pfund (n = 5), and Humphreys (n = 6) series, in order of increasing wavelength and decreasing strength. The Brackett series (H band) is a good luminosity indicator, smoothly decreasing in strength from supergiants through giants to dwarfs (Figures 15, 18, and 25). The Pfund series (K band, series limit 2.33 μm) can also be strong in early F supergiants (Figure 9). Between the H i lines, spectra are dominated by features due to neutral metal species (e.g., Si i at 1.06–1.09 μm and 1.16–1.21 μm; Figures 23 and 24). The strongest feature in the spectra is the Ca ii triplet at 0.86 μm (Figure 22). The only indication of molecular absorption is the very weak CN feature at 1.09 μm in the latest-type F stars (Figure 9).

3.4.2. G Stars

Representative G star spectra are shown in Figures 79, 1217, 19, and 2227. H i absorption weakens significantly toward late-type G stars while the neutral metals are stronger than seen in F stars, although the strongest feature is again the Ca ii triplet at 0.86 μm (Figures 79). The strongest neutral metal lines are those due to Mg (in the H band at about 1.50 μm, 1.58 μm, and 1.71 μm; Figure 25). Molecular absorption due to CO and CN strengthens with decreasing effective temperature in G stars and these also provide the best luminosity indicators. The first CO overtone bands in the K band (∼2.29–2.5 μm) are strongest in supergiants and become progressively weaker with decreasing luminosity (Figure 26). The CN band head at 1.09 μm weakens with decreasing luminosity in mid- to late-type G stars (Figure 23).

3.4.3. K Stars

Representative K star spectra are shown in Figures 79, 1217, 20, and 2833. H i absorption becomes very weak in K stars and is effectively absent by late K (e.g., Brackett γ in Figure 16, with a slight dependence on luminosity). Neutral metal absorption features reach a maximum depth in the spectra of K and M stars and lines due to Al i at 1.31 μm, Mg i at about 1.50 μm and 1.53 μm, Al i at 1.67 μm, and Mg i at 1.71 μm are particularly strong in the spectra of K dwarfs and early-M dwarfs (Figures 14 and 15). Lines from ionized metals weaken with progressively later spectral types (e.g., Ca ii triplet at 0.86 μm; Figures 79). Molecular absorption continues to strengthen in K stars as effective temperature falls. The broad H-band bump due to the H opacity minimum at 1.6 μm first becomes evident in early-type K stars and strengthens with decreasing effective temperature (Figure 8). This feature was first observed in the pioneering balloon observations of Woolf et al. (1964). Molecular features present in the spectra of K stars are the second CO overtone vibration–rotation bands in the H band (Figure 31), the CN band head at 1.40 μm (Figures 8 and 9), OH (1–0 and 2–1) in the L band (Figure 33), the SiO first overtone vibration–rotation band at 4.00–4.18 μm (Figure 33), as well as the first overtone CO (K band; Figure 32) and CN bands (band heads at 0.91 μm and 0.94 μm; Figure 9) that are also visible in the spectra of G stars. Molecular features weaken with decreasing luminosity class and provide some of the best surface gravity indicators in K stars; the CO, CN, and SiO features are particularly sensitive to surface gravity. Other luminosity class indicators include Mg i at 1.49 μm and 1.71 μm; Figure 31). These lines are significantly stronger in dwarfs than in giants and supergiants of the same spectral type (see Figure 35).

3.4.4. M Stars

Representative M star spectra are shown in Figures 79, 1217, 21, and 2833. Molecular absorption features dominate the spectra of M stars. The CO (H band and band heads in the K band starting at 2.3 μm; Figure 9), OH (band heads starting at 3.4 μm, Figures 33 and 112), and SiO absorption bands (band heads starting at 4.0 μm; Figures 33 and 112) are strongest in early-type M supergiant stars (see Table 10). TiO (several band heads starting at 0.82 μm) and ZrO (band head at 0.93 μm) absorption also increases from mid-M to later spectral types in supergiants (Figures 21 and 97). Similar trends are seen in M giants with the addition of significant broad H2O absorption at about 1.4 μm, 1.9 μm, and 2.7 μm, starting at about M6 III (Figures 8 and 39), and with ZrO replaced by VO (band heads at 1.03 μm and 1.17 μm; Figure 8) in late-type M giants (TPAGB stars). The H-band bump first seen in the spectra of early-type K stars is strongest in mid-type M giants and supergiants (Figures 8 and 9). The H-band spectra of M dwarfs are dominated by numerous FeH absorption features (Figure 15, and Figure 7 of Cushing et al. 2003). In M stars the best luminosity class indicators are the FeH band head at 0.99 μm (Figure 29; Wing & Ford 1969), the second CO overtone bands in the H band (strong in M supergiants and giants; Figure 31), the first CO overtone bands in the K band (strong in M supergiants and giants; Figure 32), and the first SiO overtone bands at about 4.0 μm (strong in M supergiants and giants; Figure 33). Most neutral metal features weaken in the late-M spectral types (e.g., Ca i triplet at 2.26 μm; Figures 16 and 108). The exceptions are the alkali lines, namely the Na i doublets at 0.82 μm, 1.14 μm, and 2.20 μm, and the K i doublets at 1.17 μm and 1.25 μm (Figures 28, 30, and 32). These lines are strong in mid- to late-type M dwarfs and weak in corresponding supergiants and giants, and are consequently excellent luminosity class or surface gravity indicators. The Ca ii triplet at 0.86 μm is significantly weaker in M stars relative to earlier spectral types where it blends with TiO absorption (Figure 12) and is absent by mid- to late-type M stars (slightly dependent upon luminosity; Figures 9597).

3.4.5. Carbon and S Stars

The sequence M–MS–S–SC–C is thought to be one of increasing carbon-to-oxygen ratio as well as increasing s-process element abundance during AGB evolution (Ake 1979). Our sample contains one MS, four S, five C–N, one C-R, and two C-J stars (see Table 2). In normal (oxygen-rich, C < O) M giants, some of the oxygen is used up to make CO but most of it goes into making metal oxides such as TiO. In typical carbon stars (C > O) all the oxygen is used up in the production of CO and the remaining carbon goes into carbon compounds such as C2, CH, CN, and C3. The TiO so characteristic of M stars is replaced by these carbon compounds. The so-called S stars (C ∼ O) are intermediate between C stars and M giants. Zirconium has a stronger affinity for oxygen than for titanium, but is much less abundant, so in normal M stars, ZrO features are weak or absent. With increasing Zr abundance due to the s-process, any oxygen remaining from CO formation goes into ZrO and so in S stars ZrO predominates and TiO is weakened.

In the optical, the continuum of most carbon stars is largely obscured by absorption features from carbon compounds. Consequently, it is very difficult to use the standard atomic lines to sort spectra into types that can be calibrated in terms of effective temperature, luminosity, and composition (i.e., a three-dimensional MK system). Nevertheless, improved optical spectra have led to a revised MK classification scheme for C stars due to Keenan (1993) and Barnbaum et al. (1996). In this scheme, the notation C-Rx, C-Jx, C–Nx, C-Lx, and C-Hx corresponds to different spectral types, where increasing digit x represents decreasing effective temperature. Although the spectral types probably represent different stellar populations, the types are defined entirely by features in the observed spectra (see Table 2; Barnbaum et al. 1996). Due to differences in mass, original composition, and environment, not all carbon stars are enriched in the same way. In terms of evolutionary status, the spectral types C-R, C-J, C–N, C-L, and C-H are thought to characterize red giants, giants, TPAGB stars, PAGB stars, and binary stars undergoing mass transfer, respectively. Further symbols can be added to the notation to indicate luminosity class and composition (for details of the notation, see Barnbaum et al. 1996).

The spectral classification scheme as developed by Keenan & McNeil (1976) and revised by Ake (1979) for S stars is similar to that of C stars. The notation Sx indicates S-star effective temperature, where increasing x digit represents decreasing effective temperature. Additional symbols can be added to indicate composition. However, the effective temperature sequence of S stars relative to C stars is uncertain.

Figure 34 shows a sequence of M, S, and C–N giants, all of approximately the same effective temperature, illustrating the effects of increasing carbon enrichment and presumed AGB evolution. The M0 IIIb star shows features typical of late giant stars—strong CO absorption features in the H and K bands, the Ca ii triplet and a TiO band head at about 0.85 μm, a CN band head at about 1.1 μm, and the SiO absorption series at about 4 μm. The S star (S4.5 Zr 2 Ti 4) is similar except for a strong ZrO band head at about 0.93 μm. The two carbon stars (both C–N 4.5) display the effects of increasing carbon enrichment (C2 4.5 and C2 5.5, respectively). In addition to the first overtone CO band at about 2.29 μm, which is present in the M giant and S star, strong CN band heads are observed at 0.9 μm, 1.1 μm, and 1.4 μm, together with C2 absorption at about 1.2 μm and 1.75 μm, and C2H2 and HCN features at about 3.1 μm. The very cool carbon star R Lep (HD 31996, C7,6e (N4)) shows additional absorption features due to HCN and C2H2 at 1.65 μm and 2.5 μm, the HCN υ1 + υ2 bands at 3.56 μm, and the broad blend of the CS first overtone and HCN υ1 − υ2 bands at ∼3.9 μm. The HCN, C2H2, and CS features are identified by Goebel et al. (1980) and Aoki et al. (1998) (but are not given in Table 10).

4. EXAMPLE APPLICATIONS OF THE LIBRARY

Potential applications of the IRTF Spectral Library can take advantage of the 0.8–5 μm wavelength range at R ∼ 2000, preserved spectral continuum shape and absolute flux calibration. For example, the library has been used to model the atmospheres of cool dwarfs (Cushing et al. 2008), confirm the presence of a gapped primordial disk around LkCa15 (Espaillat et al. 2008), and investigate the stellar populations and activity in the nuclei of Seyfert galaxies (Ramos Almeida et al. 2009). Technical applications include using the spectra to design filters and to calibrate different photometric systems. This is made possible because the system response and telluric effects are carefully removed from our spectra. Of the many potential applications, in this section we discuss just two: the measurement of equivalent widths for spectral typing, and synthetic photometry.

4.1. Equivalent Widths

As an example of the quantitative analysis that can be carried out with the spectra in our library, we have calculated the EWs of several prominent features seen in the data (Ca ii, Na i, Al i, and Mg i) following the technique described by Cushing et al. (2005). The wavelength ranges used to define the continuum and the features are given in Table 8 and the EW values are given in Table 9. As Figure 35 clearly demonstrates, the Ca ii EW provides a fairly good discriminator of luminosity class between spectral types F and early M; the observed ranges of Ca ii EW values are seen to be remarkably narrow, particularly for the dwarfs, with little overlap among the luminosity classes. Similarly, the Na i 2.20 μm feature increases monotonically with spectral type (temperature) between early F and mid M and therefore provides an approximate means of estimating a stellar spectral type, although the uncertainty in the classification can be fairly large (± few spectral subtypes). The remarkably large, sudden, and monotonic increase in the Na i 1.14 μm doublet EW beginning at early M implies that this line can be used as a clear indicator of the very latest spectral subtypes. There are many other features in NIR spectra, in addition to what we have presented here, that can be used to determine spectral classes (e.g., Kleinmann & Hall 1986; Meyer et al. 1998; Wallace et al. 2000; Förster Schreiber 2000; Ivanov et al. 2004; Lançon et al. 2007; Davies et al. 2007).

4.2. Synthetic Colors

Because our spectra are flux calibrated and the spectra slopes are reliable, the IRTF Spectral Library can also be used to compute synthetic magnitudes and colors as well as transformations between various photometric systems. Table 11 gives the synthetic ZY, YJ, JH, HK, and KL' colors of the cool stars in the library derived using Equation (5). Synthesized JH versus HK color–color diagrams for our sample of cool stars are given in Figure 37 (0.0 < JH < 1.2) and Figure 38 (−0.5 < JH < 2.5). Figure 39 shows the spectral behavior of several late-type M giant stars that are plotted in Figures 37 and 38. A synthesized YJ versus JH diagram of the same stars is given in Figure 40 (all stars except two very red OH/IR stars). The sample of 13 L and two T dwarfs from Cushing et al. (2005) and the eight T dwarf spectral standards from Burgasser et al. (2006) are also included in these figures and table. In addition, Figures 37 and 40 also include color–color diagrams with the corrections for reddening discussed in Section 2.3 incorporated.

Table 11. Synthetic WFCAM Colors

Object Spectral Type ZY (mag) YJ (mag) JH (mag) HK (mag) KL' (mag)
(1) (2) (3) (4) (5) (6) (7)
HD 7927 F0 Ia +0.161 +0.211 +0.257 +0.152 +0.208
HD 135153 F0 Ib−II +0.113 +0.153 +0.186 +0.087 +0.044
HD 6130 F0 II +0.147 +0.193 +0.225 +0.090 +0.128
HD 89025 F0 IIIa +0.052 +0.147 +0.161 +0.033 +0.058
HD 13174 F0 III−IVn +0.066 +0.155 +0.153 +0.018 +0.053
HD 27397 F0 IV +0.058 +0.115 +0.107 −0.011 −0.018
HD 108519 F0 V(n) +0.043 +0.116 +0.144 +0.044 +0.018
HD 173638 F1 II +0.187 +0.200 +0.222 +0.083 +0.088
HD 213135 F1 V +0.045 +0.162 +0.175 +0.021 +0.028
BD +38 2803 F2−F5 Ib +0.106 +0.257 +0.304 +0.085 +0.096
HD 182835 F2 Ib +0.158 +0.196 +0.214 +0.073 ...
HD 40535 F2 III−IV +0.079 +0.173 +0.185 +0.046 +0.065
HD 164136 kA9hF2mF2 (IV) +0.080 +0.197 +0.210 +0.031 +0.110
HD 113139 F2 V +0.084 +0.187 +0.184 +0.026 −0.092
HD 26015 F3 V +0.061 +0.144 +0.119 −0.014 −0.045
HD 21770 F4 III +0.050 +0.168 +0.181 +0.030 +0.068
HD 87822 F4 V +0.065 +0.182 +0.182 +0.038 +0.052
HD 16232 F4 V +0.050 +0.175 +0.207 +0.035 +0.113
HD 213306 F5 Ib − G1 Ib +0.181 +0.295 +0.363 +0.084 +0.029
HD 186155 F5 II−III +0.047 +0.159 +0.158 +0.039 −0.007
HD 17918 F5 III +0.082 +0.184 +0.190 +0.013 +0.019
HD 218804 F5 V +0.082 +0.206 +0.242 +0.058 +0.073
HD 27524 F5 V +0.036 +0.173 +0.183 +0.028 +0.045
HD 75555 F5.5 III−IV +0.088 +0.210 +0.212 +0.046 ...
HD 160365 F6 III−IV +0.033 +0.159 +0.174 −0.028 +0.012
HD 11443 F6 IV +0.065 +0.184 +0.243 +0.088 −0.009
HD 215648 F6 V +0.072 +0.212 +0.230 +0.037 ...
HD 201078 F7 II– +0.099 +0.201 +0.231 +0.081 ...
HD 124850 F7 III +0.093 +0.222 +0.241 +0.032 ...
HD 126660 F7 V +0.055 +0.194 +0.217 +0.061 +0.042
HD 190323 F8 Ia +0.174 +0.262 +0.278 +0.074 +0.067
HD 51956 F8 Ib +0.144 +0.280 +0.312 +0.083 +0.003
HD 220657 F8 III +0.119 +0.278 +0.328 +0.111 +0.122
HD 111844 F8 IV +0.044 +0.119 +0.105 +0.009 ...
HD 219623 F8 V +0.103 +0.222 +0.258 +0.056 −0.012
HD 27383 F8 V +0.086 +0.194 +0.213 +0.021 −0.017
HD 102870 F8.5 IV−V +0.076 +0.220 +0.251 +0.043 +0.033
HD 6903 F9 IIIa +0.127 +0.268 +0.320 +0.072 +0.043
HD 176051 F9 V +0.089 +0.254 +0.324 +0.054 −0.037
HD 165908 F9 V metal weak +0.036 +0.189 +0.235 +0.062 +0.058
HD 114710 F9.5 V +0.060 +0.194 +0.198 −0.006 +0.025
HD 185018 G0 Ib−II +0.173 +0.303 +0.364 +0.085 +0.007
HD 109358 G0 V +0.079 +0.235 +0.294 +0.034 +0.010
HD 74395 G1 Ib +0.175 +0.298 +0.348 +0.086 +0.062
HD 216219 G1 II−III: Fe−1 CH0.5 +0.096 +0.232 +0.274 +0.054 +0.061
HD 21018 G1 III: CH−1: +0.175 +0.305 +0.353 +0.102 +0.066
HD 10307 G1 V +0.092 +0.233 +0.281 +0.037 +0.029
HD 95128 G1− V Fe−0.5 +0.110 +0.253 +0.273 +0.045 ...
HD 20619 G1.5 V +0.122 +0.278 +0.344 +0.077 +0.053
HD 42454 G2 Ib +0.264 +0.369 +0.415 +0.122 ...
HD 39949 G2 Ib +0.250 +0.361 +0.424 +0.118 ...
HD 3421 G2 Ib−II +0.175 +0.289 +0.370 +0.075 +0.076
HD 219477 G2 II−III +0.125 +0.269 +0.320 +0.065 ...
HD 126868 G2 IV +0.107 +0.246 +0.318 +0.074 +0.090
HD 76151 G2 V +0.100 +0.250 +0.304 +0.083 +0.044
HD 192713 G3 Ib−II Wk H&K comp? +0.226 +0.345 +0.422 +0.108 +0.085
HD 176123 G3 II +0.211 +0.345 +0.410 +0.089 +0.098
HD 88639 G3 IIIb Fe−1 +0.169 +0.318 +0.394 +0.069 +0.112
HD 10697 G3 Va +0.140 +0.279 +0.331 +0.088 +0.082
HD 179821 G4 O−Ia +0.301 +0.368 +0.394 +0.249 +0.239
HD 6474 G4 Ia +0.408 +0.472 +0.492 +0.235 +0.217
HD 94481 G4 III−IIIb +0.163 +0.311 +0.402 +0.083 ...
HD 108477 G4 III +0.181 +0.319 +0.399 +0.099 +0.096
HD 214850 G4 V +0.103 +0.273 +0.395 +0.108 +0.059
HD 190113 G5 Ib +0.300 +0.428 +0.531 +0.150 +0.133
HD 18474 G5: III: CN−3 CH−2 Hδ−1 +0.162 +0.313 +0.420 +0.045 +0.074
HD 193896 G5 IIIa +0.229 +0.363 +0.449 +0.124 ...
HD 165185 G5 V +0.056 +0.218 +0.259 +0.055 −0.014
HD 161664 G6 Ib Hδ1 +0.397 +0.490 +0.565 +0.179 +0.185
HD 202314 G6 Ib−IIa Ca1 Ba0.5 +0.239 +0.357 +0.451 +0.162 +0.161
HD 58367 G6 IIb +0.203 +0.335 +0.434 +0.099 +0.131
HD 27277 G6 III +0.238 +0.354 +0.420 +0.094 +0.093
HD 115617 G6.5 V +0.086 +0.232 +0.285 +0.020 −0.031
HD 333385 G7 Ia +0.557 +0.562 +0.545 +0.306 +0.594
HD 25877 G7 II +0.206 +0.328 +0.400 +0.076 +0.081
HD 182694 G7 IIIa +0.157 +0.318 +0.408 +0.107 +0.044
HD 20618 G7 IV +0.181 +0.331 +0.439 +0.098 +0.093
HD 114946 G7 IV +0.165 +0.328 +0.451 +0.094 +0.120
HD 16139 G7.5 IIIa +0.226 +0.357 +0.458 +0.130 +0.078
HD 208606 G8 Ib +0.411 +0.494 +0.596 +0.202 +0.099
HD 122563 G8: III: Fe−5 +0.204 +0.374 +0.532 +0.112 +0.051
HD 104979 G8 III Ba1 CN0.5 CH1 +0.184 +0.337 +0.486 +0.098 +0.132
HD 135722 G8 III Fe−1 +0.185 +0.343 +0.495 +0.120 −0.006
HD 101501 G8 V +0.133 +0.270 +0.332 +0.062 +0.012
HD 75732 G8 V +0.148 +0.290 +0.364 +0.103 +0.071
HD 170820 G9 II CN1 Hδ1 +0.455 +0.541 +0.613 +0.221 +0.157
HD 222093 G9 III +0.202 +0.367 +0.503 +0.102 +0.070
HD 165782 K0 Ia +0.584 +0.579 +0.551 +0.289 ...
HD 44391 K0 Ib +0.303 +0.429 +0.540 +0.168 +0.117
HD 179870 K0 II +0.274 +0.386 +0.439 +0.048 −0.016
HD 100006 K0 III +0.235 +0.380 +0.531 +0.104 +0.109
HD 145675 K0 V +0.140 +0.290 +0.340 +0.058 −0.017
HD 164349 K0.5 IIb +0.250 +0.371 +0.470 +0.074 ...
HD 9852 K0.5 III CN1 +0.348 +0.472 +0.601 +0.153 +0.092
HD 63302 K1 Ia−Iab +0.383 +0.486 +0.584 +0.215 +0.205
HD 36134 K1− III Fe−0.5 +0.229 +0.390 +0.538 +0.097 +0.097
HD 91810 K1− IIIb CN1.5 Ca1 +0.263 +0.401 +0.528 +0.134 +0.138
HD 25975 K1 III +0.149 +0.312 +0.424 +0.075 +0.042
HD 165438 K1 IV +0.194 +0.350 +0.454 +0.098 ...
HD 142091 K1 IVa +0.199 +0.341 +0.454 +0.084 ...
HD 10476 K1 V +0.147 +0.317 +0.405 +0.095 +0.031
HD 124897 K1.5 III Fe−0.5 +0.246 +0.420 +0.651 +0.127 +0.076
HD 212466 K2 O−Ia +0.635 +0.619 +0.623 +0.399 +0.302
HD 2901 K2 III Fe−1 +0.284 +0.436 +0.605 +0.096 +0.125
HD 132935 K2 III +0.298 +0.462 +0.661 +0.164 +0.127
HD 137759 K2 III +0.264 +0.420 +0.564 +0.140 ...
HD 3765 K2 V +0.166 +0.330 +0.420 +0.080 +0.049
HD 23082 K2.5 II +0.457 +0.550 +0.699 +0.204 +0.199
HD 187238 K3 Iab−Ib +0.553 +0.597 +0.729 +0.227 +0.254
HD 16068 K3 II−III +0.440 +0.538 +0.706 +0.173 +0.223
HD 221246 K3 III +0.332 +0.472 +0.658 +0.144 +0.178
HD 178208 K3 III +0.315 +0.453 +0.589 +0.142 ...
HD 35620 K3 III Fe1 +0.326 +0.459 +0.618 +0.170 +0.061
HD 99998 K3+ III Fe−0.5 +0.347 +0.526 +0.744 +0.195 +0.144
HD 114960 K3.5 IIIb CN0.5 CH0.5 +0.314 +0.443 +0.616 +0.153 +0.072
HD 219134 K3 V +0.245 +0.384 +0.512 +0.117 +0.086
HD 185622 K4 Ib +0.546 +0.622 +0.810 +0.298 ...
HD 201065 K4 Ib−II +0.444 +0.563 +0.753 +0.223 +0.181
HD 207991 K4− III +0.384 +0.533 +0.771 +0.202 +0.058
HD 45977 K4 V +0.192 +0.351 +0.480 +0.105 ...
HD 216946 K5 Ib +0.562 +0.660 +0.862 +0.318 +0.211
HD 181596 K5 III +0.385 +0.525 +0.727 +0.196 +0.154
HD 36003 K5 V +0.221 +0.388 +0.559 +0.125 +0.021
HD 120477 K5.5 III +0.372 +0.521 +0.736 +0.211 +0.164
HD 3346 K6 IIIa +0.364 +0.529 +0.772 +0.230 ...
HD 181475 K7 IIa +0.574 +0.660 +0.853 +0.308 ...
HD 194193 K7 III +0.401 +0.549 +0.811 +0.225 +0.106
HD 237903 K7 V +0.271 +0.430 +0.608 +0.134 +0.112
HD 201092 K7 V +0.212 +0.374 +0.554 +0.151 ...
HD 213893 M0 IIIb +0.390 +0.526 +0.759 +0.200 +0.086
HD 19305 M0 V +0.287 +0.437 +0.632 +0.182 +0.074
HD 236697 M0.5 Ib +0.579 +0.673 +0.839 +0.304 +0.273
HD 209290 M0.5 V +0.336 +0.476 +0.629 +0.217 +0.195
HD 339034 M1 Ia +0.983 +0.906 +0.922 +0.491 +0.516
HD 14404 M1− Iab−Ib +0.613 +0.666 +0.804 +0.303 +0.337
HD 39801 M1−M2 Ia−Iab +0.474 +0.523 +0.658 +0.111 +0.616
HD 204724 M1+ III +0.394 +0.491 +0.713 +0.253 +0.085
HD 42581 M1 V +0.332 +0.456 +0.606 +0.210 +0.199
HD 35601 M1.5 Iab−Ib +0.638 +0.717 +0.863 +0.362 +0.253
BD +60 265 M1.5 Ib +0.655 +0.727 +0.870 +0.388 +0.355
HD 36395 M1.5 V +0.360 +0.487 +0.675 +0.203 +0.104
HD 206936 M2− Ia +0.603 +0.643 +0.755 +0.409 +0.462
HD 10465 M2 Ib +0.528 +0.599 +0.756 +0.278 +0.163
HD 23475 M2 II +0.473 +0.571 +0.813 +0.256 ...
HD 120052 M2 III +0.427 +0.589 +0.841 +0.271 +0.087
HD 95735 M2 V +0.339 +0.460 +0.512 +0.216 +0.310
Gl 806 M2 V +0.340 +0.458 +0.562 +0.187 ...
HD 219734 M2.5 III Ba0.5 +0.446 +0.570 +0.809 +0.245 +0.084
Gl 381 M2.5 V +0.398 +0.500 +0.550 +0.242 +0.263
Gl 581 M2.5 V +0.406 +0.486 +0.523 +0.280 +0.301
RW Cyg M3 to M4 Ia−Iab +0.839 +0.820 +0.982 +0.448 +0.356
CD −31 4916 M3 Iab−Ia +0.637 +0.700 +0.851 +0.342 +0.395
HD 14469 M3−M4 Iab +0.705 +0.679 +0.805 +0.367 +0.284
HD 40239 M3 IIb +0.530 +0.626 +0.862 +0.300 +0.212
HD 39045 M3 III +0.466 +0.593 +0.829 +0.267 +0.172
Gl 388 M3 V +0.421 +0.504 +0.559 +0.237 +0.249
HD 14488 M3.5 Iab Fe−1 var? +0.727 +0.724 +0.949 +0.495 +0.331
HD 28487 M3.5 III Ca−0.5 +0.550 +0.623 +0.875 +0.292 +0.165
Gl 273 M3.5 V +0.476 +0.526 +0.515 +0.284 +0.311
HD 19058 M4+ IIIa +0.551 +0.603 +0.878 +0.297 +0.075
HD 214665 M4+ III +0.694 +0.726 +0.954 +0.335 +0.031
HD 4408 M4 III +0.521 +0.598 +0.856 +0.297 +0.027
HD 27598 M4− III +0.500 +0.572 +0.820 +0.272 +0.165
Gl 213 M4 V +0.500 +0.523 +0.464 +0.281 +0.368
Gl 299 M4 V +0.485 +0.525 +0.411 +0.310 +0.464
HD 204585 M4.5 IIIa +0.621 +0.590 +0.780 +0.234 ...
Gl 268AB M4.5 V +0.552 +0.570 +0.535 +0.311 +0.392
HD 156014 M5 Ib−II +0.647 +0.517 +0.614 +0.097 +0.188
HD 175865 M5 III +0.648 +0.601 +0.798 +0.229 ...
Gl 51 M5 V +0.601 +0.612 +0.538 +0.331 +0.335
Gl 866ABC M5 V +0.727 +0.677 +0.556 +0.370 +0.457
HD 94705 M5.5 III: +0.755 +0.643 +0.827 +0.333 +0.175
HD 196610 M6 III +0.851 +0.629 +0.789 +0.284 −0.091
HD 18191 M6− III: +0.794 +0.669 +0.870 +0.319 −0.012
Gl 406 M6 V +0.824 +0.719 +0.563 +0.415 +0.513
GJ 1111 M6.5 V +0.841 +0.726 +0.524 +0.422 +0.516
HD 14386 M5e−M9e III +1.213 +0.654 +0.519 +0.519 +0.600
HD 108849 M7− III: +1.151 +0.811 +0.814 +0.414 +0.204
HD 207076 M7− III: +1.007 +0.649 +0.697 +0.282 +0.498
Gl 644C M7 V +0.861 +0.745 +0.505 +0.438 +0.544
MY Cep M7−M7.5 I +1.469 +1.246 +1.315 +0.814 +0.919
HD 69243 M6e−M9e III +1.533 +1.258 +0.738 +0.611 +0.707
BRI B2339 − 0447 M7 − 8 III +0.701 +0.589 +0.819 +0.498 +0.590
IRAS 01037+1219 M8 III +2.767 +2.545 +2.244 +1.787 +2.288
Gl 752B M8 V +1.039 +0.824 +0.543 +0.487 +0.590
LP 412 − 31 M8 V +1.030 +0.893 +0.630 +0.486 +0.612
IRAS 21284 − 0747 M8 − 9 III +1.536 +1.092 +0.693 +0.673 +0.822
IRAS 14436 − 0703 M8 − 9 III +1.437 +0.925 +0.575 +0.601 ...
IRAS 14303 − 1042 M8 − 9 III +1.251 +0.761 +0.586 +0.657 ...
IRAS 15060+0947 M9 III +1.350 +1.011 +1.162 +1.206 ...
BRI B1219 − 1336 M9 III +1.273 +0.843 +0.602 +0.577 ...
DENIS−P J104814.7 − 395606.1 M9 V +1.101 +0.879 +0.505 +0.481 +0.681
LP 944 − 20 M9 V +1.253 +0.994 +0.592 +0.536 +0.750
LHS 2065 M9 V +1.209 +1.004 +0.698 +0.569 ...
LHS 2924 M9 V +1.209 +0.999 +0.657 +0.536 ...
BRI B0021 − 0214 M9.5 V +1.244 +1.085 +0.698 +0.591 +0.661
IRAS 14086 − 0703 M10+ III +2.219 +2.128 +1.885 +2.054 ...
HD 142143 M6.5S to M7S III: +0.975 +0.787 +0.876 +0.431 +0.256
BD +44 2267 S2.5 Zr 2 +0.456 +0.566 +0.762 +0.242 +0.245
HD 64332 S4.5 Zr 2 Ti 4 +0.488 +0.596 +0.817 +0.285 +0.219
HD 44544 SC5.5 Zr 0.5 +0.812 +0.823 +1.031 +0.414 +0.494
HD 62164 S5−S6 Zr 3 to 4 Ti 0 +0.661 +0.742 +0.972 +0.409 +0.315
HD 76846 C−R2+ IIIa: C2 2.5 +0.374 +0.370 +0.475 +0.175 +0.240
HD 31996 C7,6e(N4) +0.649 +0.947 +1.279 +1.187 +1.152
HD 44984 C−N4 C2 3.5 +0.638 +0.580 +0.901 +0.437 +0.403
HD 76221 C−N 4.5 C2 5.5 MS 3 +0.620 +0.657 +1.008 +0.645 +0.593
HD 92055 C−N4.5 C2 4.5 +0.651 +0.655 +0.989 +0.480 +0.493
HD 70138 C−J4.5 IIIa: C2 6 j 6 +0.657 +0.482 +0.893 +0.491 +0.622
HD 48664 C−N5 C2 6 +0.745 +0.725 +1.067 +0.646 +0.643
HD 57160 C−J5− C2 5− j 4 +0.627 +0.646 +0.999 +0.582 +0.625

Download table as:  ASCIITypeset images: 1 2 3 4

The trends in the colors of the stars as a function of spectral type in the JH versus HK diagram are very similar to those presented by Bessell & Brett (1988, Figure 5) and Reid & Hawley (2005, Figure 2.22), with the slight difference that our photometry is in the NIR-MKO system. Since our photometric errors are small (at most a few percent, see Section 2.3), the scatter in these plots is due to real differences in stellar colors produced by variations in metallicity, reddening, etc. The most noticeable feature of the JHK color–color diagram is the bifurcation between M dwarfs and stars of higher luminosity classes. Stars of all luminosity classes initially show a steep rise in JH with later spectral type but starting at a spectral type of ∼M0, the JH colors of the dwarfs become bluer while that of the M giants and supergiants continue to become redder (Lee 1970; Glass 1975; Frogel et al. 1978). The J and H bands probe different layers (and thus different temperatures) in an atmosphere because H, the dominant continuum opacity source at these wavelengths, has a minimum at ∼1.6 μm. The turnover in the JH colors of the M dwarfs is therefore due to a change in the adiabatic temperature gradient as hydrogen is increasingly converted into H2 in the high pressure (relative to giants) atmospheres of M dwarfs (Mould 1976). The JH colors of the M dwarfs continue to become bluer with the onset of H2O absorption that suppresses the H- and K-band fluxes but eventually flatten out before becoming redder again for late-type M dwarfs and L dwarfs as the peak of the Planck function shifts farther into the NIR.

We note that the locus of late-M giants (Lb, SRb, and M variables; see Table 2) in the JHK color–color diagram appears to turn back down toward the location of late-type M and L dwarfs (see Figure 37). Figure 39 shows the spectral behavior of a selection of late-type M giants along the locus of decreasing JH and increasing HK color. The most distinctive features in these spectra are the broad H2O absorption features centered at 1.4 μm and 1.9 μm. H2O absorption is observed no earlier than M6 III (see also Figure 8) and then increases in strength with later spectral types, in agreement with the trends first observed by Frogel (1971) and Hyland (1974). The turnover in JH is therefore a result of increasing H2O line absorption which suppresses the H- and K-band fluxes more than the J-band flux. Models of Mira variables (Bessell et al. 1989, 1996) can reproduce the observed turnover in JH. In these models pulsation produces extended atmospheres in which water can form in dense cool (⩽103 K) layers formed behind periodically outward-running shocks.

Other intrinsically red stars include late-type supergiants, carbon and S stars. The red colors are due to the cool continuum temperatures, together with molecular line blanketing from CO and CN in supergiants and from CN and C2 in carbon stars.

One of the observable consequences of mass loss in TPAGB stars is an approximately linear locus in the JHK color–color diagram reflecting the effects of differential extinction and dust temperature in models of circumstellar shells (e.g., Lewis 2006). Less dusty Mira variables are located at the blue end of this locus at JH ∼ 0.8, HK ∼ 0.6, while the more deeply embedded OH/IR stars (optically obscured stars with 1612 MHz OH line emission) are located at the red end. The two OH/IR stars observed in our sample are located at JH ∼ 2, HK ∼ 2 (see Figure 38).

Library spectra can be used to synthesize other colors and experiment with other photometric systems. As an example, the YJ versus JH color–color diagram shown in Figure 40 illustrates the advantage of using the Y band in combination with the standard JHK bands when trying to identify T dwarfs (see also Hillenbrand et al. 2002; Hewett et al. 2006) compared to using JHK colors alone (see Figure 37). The JH color can be used as an indicator of T dwarf spectral types and is accurate to within about one subtype. For example, the UKIRT Infrared Deep Sky Survey (UKIDSS) is using YJH photometry in a wide area survey for T dwarfs and cooler objects (Pinfield et al. 2008). Note also the bifurcation between M dwarfs and stars of higher luminosity, which is also seen in the JHK plot. Starting at M0 V, dwarfs initially become bluer in JH with constant YJ constant, due to the change in adiabatic temperature gradient (Figure 40). This trend ends at about M4 V at which point dwarfs become redder in YJ and JH with decreasing effective temperature. The effect of increasing H2O absorption in these late-type dwarfs is to decrease the amount of JH reddening compared with the locus of higher luminosity stars. Late-type M giants have similar colors to late-type dwarfs since both have H2O absorption in the NIR.

4.3. Notes on Individual Objects

Ten of the 212 stars in the library have spectra and/or JH versus HK colors that are different from those expected based on their spectral type. Five of these stars are supergiants displaying emission lines and with redder than normal continua that cannot be explained by standard interstellar reddening (reddening not in the direction of the extinction vector). As explained below, most of these stars are probably PAGB stars. Three of the unusual stars are emission-line Mira variables (TPAGB stars). Of the two remaining unusual stars, one is an M subdwarf misclassified as an M dwarf and the other is an F dwarf with weak emission in some metal lines.

Unusual objects are circled in the JH versus HK diagram (see Figure 37):

HD 26015 is classified as F3 V by Gray et al. (2001). The spectrum is normal up to 2.22 μm but at longer wavelengths some metal lines go into weak emission (Ca i doublet at 2.263 and 2.267 μm, Mg i at 2.280 μm, Na i at 2.339 μm, and Mg i at 3.867 μm). The continuum is also slightly bluer than normal for a spectral type of F3V. The star is classified as variable (of unspecified type) in the GCVS and is slightly metal rich ([Fe/H] = 0.2, average from SIMBAD).

HD 179821 is classified as G4 O–Ia by Keenan & McNeil (1989). Strong emission in the Na i doublet at 2.205 and 2.209 μm is seen together with very strong Pfund series absorption longward of the series limit at about 2.33 μm. The expected first CO overtone bands in the K band are absent. From its location in the JHK color–color diagram, the star has a significant NIR excess. The star is classified as a semiregular variable giant or supergiant (type SRd) in the GCVS. Optical Hubble Space Telescope (HST) images of HD 179821 reveal a bright star embedded in faint extended nebulosity (Ueta et al. 2000). Kipper (2008) reviews observations of HD 179821 some of which are consistent with an intermediate-mass PAGB star, while others point to a high-mass post-red-supergiant star.

HD 6474 is classified as G4 Ia by Keenan & McNeil (1989). The spectral continuum is redder than normal, and the JHK colors indicate a NIR excess. Spectral features in the K band appear subdued probably due to veiling and Si i at 3.745 μm is in emission. The star is classified as a semiregular variable (type SRd) in the GCVS and as a UU Her-type variable by Zsoldos (1993). Szczerba et al. (2007) classify UU Her-type variables with NIR excess due to circumstellar dust as probable PAGB stars.

HD 333385 (BD + 29° 3865) is classified as G7 Ia by Keenan & McNeil (1989). The star is classified as a slow irregular variable (type L) in the GCVS. The spectrum is clearly unusual showing a number of metal lines in emission, particularly in the K band, where the Na i doublet at 2.205 and 2.209 μm is strong. The first CO overtone bands in the K band appear sharper than those in other late-type G supergiants. Si i at 3.745 μm is in emission. The JHK colors indicate a large NIR excess. Using high-dispersion optical echelle spectra, Klochkova et al. (2000) conclude that HD 333385 is probably a PAGB star.

HD 165782 is classified as K0 Ia by Keenan & McNeil (1989). The spectrum shows weak absorption features in the K band probably due to veiling, and the Na i doublet at 2.205 and 2.209 μm is in emission. The first CO overtone bands in the K band appear sharp and Si i at 3.745 μm is in emission. The JHK colors indicate a NIR excess. The star is classified as a semiregular variable (type SRd) in the GCVS. An OH maser is reported by Nyman et al. (1998), and Omont et al. (1993) classify HD 165782 as a PAGB star.

HD 212466 is classified as K2 O–Ia by Keenan & McNeil (1989). The spectrum shows SiO in emission at 4.00, 4.04, and 4.08 μm, and the first CO overtone bands in the K band appear sharp. The JHK colors indicate a large NIR excess. The star is classified as a semiregular variable (type SRd) in the GCVS. A Si emission feature at 10 μm is cited as evidence of mass loss by Sylvester et al. (1998).

Gl 299 is classified as M4 V by Henry et al. (1994). However, its location below the locus of M dwarfs in the JH versus HK plot is more consistent with an M subdwarf (Bessell & Brett 1988, Figure A3). This is confirmed by its spectrum that shows weak CO overtone absorption at 2.29 μm, a weak Na i doublet at 2.205 and 2.209 μm, and weak K i at 1.516 μm, compared with a normal M4 V (e.g., Cushing & Vacca 2006).

HD 14386 (Mira) is classified as M5e-M9e III and as a Mira variable (type M) in the GCVS. This archetypal variable star was observed on three occasions. On 2003 January 14 the emission line due to Paβ (1.28 μm, EW −0.4 Å) was detected, on 2003 September 20 emission lines due to Paγ (1.094 μm, EW −0.9 Å) and Paβ (1.282 μm, EW −0.7 Å) were detected, and on 2003 November 6 the emission line due to Na i (1.269 μm, EW −1.0 Å) was detected. (Nondetections of these lines are roughly EW >−0.2 Å.) Mira-type variables can emit in a variety of metal and hydrogen lines, probably originating in atmospheric shock waves resulting from pulsation (e.g., Richter & Wood 2001). The lines are known to come and go depending upon cycle and phase (e.g., Lançon & Wood 2000, in the NIR).

BRI B2339 − 0447 is classified as M7-8 III by Kirkpatrick et al. (1997) and as a Mira variable (type M) in the GCVS. The spectrum shows Paγ (1.0944 μm, EW 1.2 Å), Paβ (1.282 μm, EW 0.8 Å), and Brγ (2.166 μm, EW 0.5 Å) in emission. Paδ (1.005 μm) in emission was also detected but blended with a TiO band head.

IRAS 1403 − 1042 is classified as M8–9 III by Kirkpatrick et al. (1997) and as a Mira variable (type M) in the GCVS. The spectrum shows Paγ (1.094 μm, EW 1.9 Å) and Paβ (1.282 μm, EW 4.8 Å) in emission (see Figure 37). Paδ (1.005 μm) in emission was also detected but blended with a TiO band head.

5. SUMMARY

We have constructed a medium resolution (R ∼ 2000) near-infrared (0.8–5 μm) spectral library of 210 cool stars. The stars all have well established MK classifications and have near-solar metallicities. The sample covers F, G, K, and M stars with luminosity classes between I and V, and includes some AGB, carbon, and S stars. Sample selection, data reduction, and data calibration are carefully described. The continuum shape of the spectra is measured to an accuracy of a few percent, and the spectra are absolutely flux calibrated using 2MASS photometry. Synthesized color–color diagrams are constructed from the spectra and their use demonstrated. Spectral features are described and detailed lists of atomic and molecular features are tabulated. Several unusual stars in the sample are identified and described. The library is available in digital form from the IRTF Web site.

Observations for the IRTF Spectral Library required a significant investment in telescope time and the authors would like to thank IRTF Director, Alan Tokunaga, and the IRTF TAC for their support. Observing was ably assisted by telescope operators Bill Golisch, Dave Griep, and Paul Sears. We would also like to thank the IRTF day crew and engineering staff for excellent maintenance of the telescope and instrumentation. Natasha Förster-Schreiber helped us with sample selection during the early stages of the project. J.T.R. would like to thank Katelyn Allers for providing observations of five late-type M giants. M.C.C. acknowledges financial support from the IRTF and by the National Aeronautics and Space Administration through the Spitzer Space Telescope Fellowship Program through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. W.D.V. and M.C.C acknowledge financial support from IRTF during several trips to Honolulu. This publication makes use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center and is funded by NASA and the National Science Foundation. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France; NASA's Astrophysics Data System Bibliographic Services; and the SpeX Prism Spectral Libraries, maintained by Adam Burgasser.10 We thank the anonymous referee for a thorough reading of the manuscript and insightful suggestions for improving it.

Facilities: IRTF (SpeX)

APPENDIX: SPECTRAL SEQUENCES

More complete spectral sequences are plotted in this section: F stars (bands I, Y, J, H, K, and L') in Figures 4158; G stars (bands I, Y, J, H, K, and L') in Figures 5976; K stars (bands I, Y, J, H, K, and L') in Figures 7794; and M stars (bands I, Y, J, H, K, and L') in Figures 95112. For feature identifications see the partial spectral sequences plotted in Figures 734.

Figure 41.

Figure 41. Sequence of F dwarf stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 108519 F0 V(n), HD 113139 (F2 V), HD 26015 (F3 V), HD 87822 (F4 V), HD 218804 (F5 V), HD 126660 (F7 V), HD 27393 (F8 V), and HD 176051 (F9 V). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 42.

Figure 42. Sequence of F giant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 89025 (F0 IIIa), HD 40535 (F2 III–IV), HD 21770 (F4 III), HD 17918 (F5 III), HD 160365 (F6 III–IV), HD 124850 (F7 III), HD 220657 (F8 III), and HD 6903 (F9 IIIa). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 43.

Figure 43. Sequence of F supergiant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 7927 (F0 Ia), HD 173638 (F1 II), BD +38 2803 (F2–F5 Ib), HD 201078 (F7 II−), HD 51956 (F8 Ib) and HD 190323 (F8 Ia). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 44.

Figure 44. Sequence of F dwarf stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 108519 F0 V(n), HD 113139 (F2 V), HD 26015 (F3 V), HD 87822 (F4 V), HD 218804 (F5 V), HD 126660 (F7 V), HD 27393 (F8 V), and HD 176051 (F9 V). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 45.

Figure 45. Sequence of F giant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 89025 (F0 IIIa), HD 40535 (F2 III–IV), HD 21770 (F4 III), HD 17918 (F5 III), HD 160365 (F6 III–IV), HD 124850 (F7 III), HD 220657 (F8 III), and HD 6903 (F9 IIIa). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 46.

Figure 46. Sequence of F supergiant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 7927 (F0 Ia), HD 173638 (F1 II), BD +38 2803 (F2–F5 Ib), HD 51956 (F6 IbII), HD 201078 (F7 II–), and HD 190323 (F8 Ia). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 47.

Figure 47. Sequence of F dwarf stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 108519 F0 V(n), HD 113139 (F2 V), HD 26015 (F3 V), HD 87822 (F4 V), HD 218804 (F5 V), HD 126660 (F7 V), HD 27393 (F8 V), and HD 176051 (F9 V). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 48.

Figure 48. Sequence of F giant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 89025 (F0 IIIa), HD 40535 (F2 III–IV), HD 21770 (F4 III), HD 17918 (F5 III), HD 160365 (F6 III–IV), HD 124850 (F7 III), HD 220657 (F8 III), HD 6903 (F9 IIIa). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 49.

Figure 49. Sequence of F supergiant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 7927 (F0 Ia), HD 173638 (F1 II), BD +38 2803 (F2–F5 Ib), HD 201078 (F7 II−), HD 51956 (F8 Ib) and HD 190323 (F8 Ia). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 50.

Figure 50. Sequence of F dwarf stars plotted over the H band (1.78–1.78 μm). The spectra are of HD 108519 F0 V(n), HD 113139 (F2 V), HD 26015 (F3 V), HD 87822 (F4 V), HD 218804 (F5 V), HD 126660 (F7 V), HD 27393 (F8 V), and HD 176051 (F9 V). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 51.

Figure 51. Sequence of F giant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 89025 (F0 IIIa), HD 40535 (F2 III–IV), HD 21770 (F4 III), HD 17918 (F5 III), HD 160365 (F6 III–IV), HD 124850 (F7 III), HD 220657 (F8 III), HD 6903 (F9 IIIa). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 52.

Figure 52. Sequence of F supergiant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 7927 (F0 Ia), HD 173638 (F1 II), BD +38 2803 (F2–F5 Ib), HD 51956 (F6 IbII), HD 201078 (F7 II–), and HD 190323 (F8 Ia). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 53.

Figure 53. Sequence of F dwarf stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 108519 F0 V(n), HD 113139 (F2 V), HD 26015 (F3 V), HD 87822 (F4 V), HD 218804 (F5 V), HD 126660 (F7 V), HD 27393 (F8 V), and HD 176051 (F9 V). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 54.

Figure 54. Sequence of F giant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 89025 (F0 IIIa), HD 40535 (F2 III–IV), HD 21770 (F4 III), HD 17918 (F5 III), HD 160365 (F6 III–IV), HD 124850 (F7 III), HD 220657 (F8 III), HD 6903 (F9 IIIa). The spectra have been normalized to unity at 2.20 μm and offset by constants. Note the relatively poor correction of telluric CO2 at ∼2.02 μm in the F7 III and F8 III stars (see Section 2.2).

Standard image High-resolution image
Figure 55.

Figure 55. Sequence of F supergiant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 7927 (F0 Ia), HD 173638 (F1 II), BD +38 2803 (F2–F5 Ib), HD 51956 (F6 IbII), HD 201078 (F7 II–), and HD 190323 (F8 Ia). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 56.

Figure 56. Sequence of F dwarf stars plotted over the L' band (3.3–4.1 μm). The spectra are of HD 108519 F0 V(n), HD 113139 (F2 V), HD 26015 (F3 V), HD 87822 (F4 V), HD 218804 (F5 V), HD 126660 (F7 V), HD 27393 (F8 V), and HD 176051 (F9 V). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 57.

Figure 57. Sequence of F giant stars plotted over the L' band (3.3–4.1 μm). The spectra are of HD 89025 (F0 IIIa), HD 40535 (F2 III–IV), HD 21770 (F4 III), HD 17918 (F5 III), HD 160365 (F6 III–IV), HD 124850 (F7 III), HD 220657 (F8 III), and HD 6903 (F9 IIIa). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 58.

Figure 58. Sequence of F supergiant stars plotted over the L' band (1.92–2.5 μm). The spectra are of HD 7927 (F0 Ia), HD 173638 (F1 II), BD +38 2803 (F2–F5 Ib), HD 51956 (F6 IbII), HD 201078 (F7 II–), and HD 190323 (F8 Ia). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 59.

Figure 59. Sequence of G dwarf stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 109358 (G0 V), HD 10307 (G1 V), HD 76151 (G2 V), HD 10697 (G3 Va), HD 214850 (G4 V), HD 165185 (G5 V), HD 115617 (G6.5 V), and HD 101501 (G8 V). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 60.

Figure 60. Sequence of G giant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 21018 (G1 III:CH–1:), HD 219477 (G2 II–III), HD 88639 (G3 IIIb Fe–1), HD 108477 (G4 III), HD 193896 (G5 IIIa), HD 27277 (G6 III), HD 182694 (G7 IIIa), and HD 135722 (G8 III Fe–1). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 61.

Figure 61. Sequence of G supergiant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 185018 (G0 Ib–II), HD 74395 (G1 Ib), HD 3421 (G2 Ib–II), HD 192713 (G3 Ib–II Wk H&K comp?), HD 190113 (G5 Ib), HD 202314 (G6 Ib–IIa Ca1 B0.5), and HD 208606 (G8 Ib). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 62.

Figure 62. Sequence of G dwarf stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 109358 (G0 V), HD 10307 (G1 V), HD 76151 (G2 V), HD 10697 (G3 Va), HD 214850 (G4 V), HD 165185 (G5 V), HD 115617 (G6.5 V), and HD 101501 (G8 V). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 63.

Figure 63. Sequence of G giant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 21018 (G1 III:CH–1:), HD 219477 (G2 II–III), HD 88639 (G3b III Fe–1), HD 108477 (G4 III), HD 193896 (G5 IIIa), HD 27277 (G6 III), HD 182694 (G7 IIIa), and HD 135722 (G8 III Fe–1). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 64.

Figure 64. Sequence of G supergiant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 185018 (G0 Ib–II), HD 74395 (G1 Ib), HD 3421 (G2 Ib–II), HD 192713 (G3 Ib–II Wk H&K comp?), HD 190113 (G5 Ib), HD 202314 (G6 Ib–IIa Ca1 B0.5), and HD 208606 (G8 Ib). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 65.

Figure 65. Sequence of G dwarf stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 109358 (G0 V), HD 10307 (G1 V), HD 76151 (G2 V), HD 10697 (G3 Va), HD 214850 (G4 V), HD 165185 (G5 V), HD 115617 (G6.5 V), and HD 101501 (G8 V). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 66.

Figure 66. Sequence of G giant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 21018 (G1 III:CH–1:), HD 219477 (G2 II–III), HD 88639 (G3b III Fe–1), HD 108477 (G4 III), HD 193896 (G5 IIIa), HD 27277 (G6 III), HD 182694 (G7 IIIa), and HD 135722 (G8 III Fe–1). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 67.

Figure 67. Sequence of G supergiant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 185018 (G0 Ib–II), HD 74395 (G1 Ib), HD 3421 (G2 Ib–II), HD 192713 (G3 Ib–II Wk H&K comp?), HD 190113 (G5 Ib), HD 202314 (G6 Ib–IIa Ca1 B0.5), and HD 208606 (G8 Ib). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 68.

Figure 68. Sequence of G dwarf stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 109358 (G0 V), HD 10307 (G1 V), HD 76151 (G2 V), HD 10697 (G3 Va), HD 214850 (G4 V), HD 165185 (G5 V), HD 115617 (G6.5 V), and HD 101501 (G8 V). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 69.

Figure 69. Sequence of G giant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 21018 (G1 III:CH–1:), HD 219477 (G2 II–III), HD 88639 (G3b III Fe–1), HD 108477 (G4 III), HD 193896 (G5 IIIa), HD 27277 (G6 III), HD 182694 (G7 IIIa), and HD 135722 (G8 III Fe–1). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 70.

Figure 70. Sequence of G supergiant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 185018 (G0 Ib–II), HD 74395 (G1 Ib), HD 3421 (G2 Ib–II), HD 192713 (G3 Ib–II Wk H&K comp?), HD 190113 (G5 Ib), HD 202314 (G6 Ib–IIa Ca1 B0.5), and HD 208606 (G8 Ib). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 71.

Figure 71. Sequence of G dwarf stars plotted over the K band (1.92–2.58 μm). The spectra are of HD 109358 (G0 V), HD 10307 (G1 V), HD 76151 (G2 V), HD 10697 (G3 Va), HD 214850 (G4 V), HD 165185 (G5 V), HD 115617 (G6.5 V), and HD 101501 (G8 V). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 72.

Figure 72. Sequence of G giant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 21018 (G1 III:CH–1:), HD 219477 (G2 II–III), HD 88639 (G3b III Fe–1), HD 108477 (G4 III), HD 193896 (G5 IIIa), HD 27277 (G6 III), HD 182694 (G7 IIIa), and HD 135722 (G8 III Fe–1). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 73.

Figure 73. Sequence of G supergiant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 185018 (G0 Ib–II), HD 74395 (G1 Ib), HD 3421 (G2 Ib–II), HD 192713 (G3 Ib–II Wk H&K comp?), HD 190113 (G5 Ib), HD 202314 (G6 Ib–IIa Ca1 B0.5), and HD 208606 (G8 Ib). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 74.

Figure 74. Sequence of G dwarf stars plotted over the L' band (3.3–4.1 μm). The spectra are of HD 109358 (G0 V), HD 10307 (G1 V), HD 76151 (G2 V), HD 10697 (G3 Va), HD 214850 (G4 V), HD 165185 (G5 V), HD 115617 (G6.5 V), and HD 101501 (G8 V). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 75.

Figure 75. Sequence of G giant stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 21018 (G1 III:CH–1:), HD 219477 (G2 II–III), HD 88639 (G3b III Fe–1), HD 108477 (G4 III), HD 193896 (G5 IIIa), HD 27277 (G6 III), HD 182694 (G7 IIIa), and HD 135722 (G8 III Fe–1). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 76.

Figure 76. Sequence of G supergiant stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 185018 (G0 Ib–II), HD 74395 (G1 Ib), HD 3421 (G2 Ib–II), HD 192713 (G3 Ib–II Wk H&K comp?), HD 190113 (G5 Ib), HD 202314 (G6 Ib–IIa Ca1 B0.5), and HD 208606 (G8 Ib). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 77.

Figure 77. Sequence of K dwarf stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 145675 (K0 V), HD 10476 (K1 V), HD 3765 (K2 V), HD 219134 (K3 V), HD 45977 (K4 V), HD 36003 (K5 V), and HD 237903 (K7 V). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 78.

Figure 78. Sequence of K giant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 100006 (K0 III), HD 25975 (K1 III), HD 137759 (K2 III), HD 221246 (K3 III), HD 207991 (K4− III), HD 181596 (K5 III), HD 3346 (K6 IIIa), and HD 194193 (K7 III). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 79.

Figure 79. Sequence of K supergiant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 44391 (K0 Ib), HD 63302 (K1 Ia–Iab), HD 212466 (K2 O–Ia), HD 187238 (K3 Iab–Ib), HD 201065 (K4 Ib–II), HD 216946 (K5 Ib), and HD 181475 (K7 IIa). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 80.

Figure 80. Sequence of K dwarf stars plotted over the Y band (0.95–0.10 μm). The spectra are of HD 145675 (K0 V), HD 10476 (K1 V), HD 3765 (K2 V), HD 219134 (K3 V), HD 45977 (K4 V), HD 36003 (K5 V), and HD 237903 (K7 V). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 81.

Figure 81. Sequence of K giant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 100006 (K0 III), HD 25975 (K1 III), HD 137759 (K2 III), HD 221246 (K3 III), HD 207991 (K4− III), HD 181596 (K5 III), HD 3346 (K6 IIIa), and HD 194193 (K7 III). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 82.

Figure 82. Sequence of K supergiant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 44391 (K0 Ib), HD 63302 (K1 Ia–Iab), HD 212466 (K2 O–Ia), HD 187238 (K3 Iab–Ib), HD 201065 (K4 Ib–II), HD 216946 (K5 Ib), and HD 181475 (K7 IIa). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 83.

Figure 83. Sequence of K dwarf stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 145675 (K0 V), HD 10476 (K1 V), HD 3765 (K2 V), HD 219134 (K3 V), HD 45977 (K4 V), HD 36003 (K5 V), and HD 237903 (K7 V). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 84.

Figure 84. Sequence of K giant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 100006 (K0 III), HD 25975 (K1 III), HD 137759 (K2 III), HD 221246 (K3 III), HD 207991 (K4− III), HD 181596 (K5 III), HD 3346 (K6 IIIa), and HD 194193 (K7 III). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 85.

Figure 85. Sequence of K supergiant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 44391 (K0 Ib), HD 63302 (K1 Ia–Iab), HD 212466 (K2 O–Ia), HD 187238 (K3 Iab–Ib), HD 201065 (K4 Ib–II), HD 216946 (K5 Ib), and HD 181475 (K7 IIa). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 86.

Figure 86. Sequence of K dwarf stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 145675 (K0 V), HD 10476 (K1 V), HD 3765 (K2 V), HD 219134 (K3 V), HD 45977 (K4 V), HD 36003 (K5 V), and HD 237903 (K7 V). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 87.

Figure 87. Sequence of K giant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 100006 (K0 III), HD 25975 (K1 III), HD 137759 (K2 III), HD 221246 (K3 III), HD 207991 (K4− III), HD 181596 (K5 III), HD 3346 (K6 IIIa), and HD 194193 (K7 III). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 88.

Figure 88. Sequence of K supergiant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 44391 (K0 Ib), HD 63302 (K1 Ia–Iab), HD 212466 (K2 O–Ia), HD 187238 (K3 Iab–Ib), HD 201065 (K4 Ib–II), HD 216946 (K5 Ib), and HD 181475 (K7 IIa). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 89.

Figure 89. Sequence of K dwarf stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 145675 (K0 V), HD 10476 (K1 V), HD 3765 (K2 V), HD 219134 (K3 V), HD 45977 (K4 V), HD 36003 (K5 V), and HD 237903 (K7 V). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 90.

Figure 90. Sequence of K giant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 100006 (K0 III), HD 25975 (K1 III), HD 137759 (K2 III), HD 221246 (K3 III), HD 207991 (K4− III), HD 181596 (K5 III), HD 3346 (K6 IIIa), and HD 194193 (K7 III). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 91.

Figure 91. Sequence of K supergiant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 44391 (K0 Ib), HD 63302 (K1 Ia–Iab), HD 212466 (K2 O–Ia), HD 187238 (K3 Iab–Ib), HD 201065 (K4 Ib–II), HD 216946 (K5 Ib), and HD 181475 (K7 IIa). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 92.

Figure 92. Sequence of K dwarf stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 145675 (K0 V), HD 10476 (K1 V), HD 3765 (K2 V), HD 219134 (K3 V), HD 36003 (K5 V), and HD 237903 (K7 V). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 93.

Figure 93. Sequence of K giant stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 100006 (K0 III), HD 25975 (K1 III), HD 137759 (K2 III), HD 221246 (K3 III), HD 207991 (K4− III), HD 181596 (K5 III), and HD 194193 (K7 III). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 94.

Figure 94. Sequence of K supergiant stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 44391 (K0 Ib), HD 63302 (K1 Ia–Iab), HD 212466 (K2 O–Ia), HD 187238 (K3 Iab–Ib), HD 201065 (K4 Ib–II), and HD 216946 (K5 Ib). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 95.

Figure 95. Sequence of M dwarf stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 19305 (M0 V), HD 42581 (M1 V), HD 95735 (M2 V), Gl 388 (M3 V), Gl 213 (M4 V), Gl 51 (M5 V), Gl 406 (M6 V), Gl 644C (M7 V), Gl 752B (M8 V), and LP944-20 (M9 V). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 96.

Figure 96. Sequence of M giant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 213893 (M0 IIIb), HD 204724 (M1+ III), HD 120052 (M2 III), HD 39045 (M3 III), HD 4408 (M4 III), HD 175865 (M5 III), HD 18191 (M6− III), HD 108849 (M7− III), IRAS 21284 − 0747 (M8–M9 III), and HD 69243 (M6e–M9e III). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 97.

Figure 97. Sequence of M supergiant stars plotted over the I band (0.82–0.95 μm). The spectra are of HD 236697 (M0.5 Ib), HD 14404 (M1− Iab–Ib), HD 10465 (M2 Ib), CD −31 4916 (M3 Iab–Ia), and HD 156014 (M5 Ib–II). The spectra have been normalized to unity at 0.88 μm and offset by constants.

Standard image High-resolution image
Figure 98.

Figure 98. Sequence of M dwarf stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 19305 (M0 V), HD 42581 (M1 V), HD 95735 (M2 V), Gl 388 (M3 V), Gl 213 (M4 V), Gl 51 (M5 V), Gl 406 (M6 V), Gl 644C (M7 V), Gl 752B (M8 V), and LP944 − 20 (M9 V). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 99.

Figure 99. Sequence of M giant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 213893 (M0 IIIb), HD 204724 (M1+ III), HD 120052 (M2 III), HD 39045 (M3 III), HD 4408 (M4 III), HD 175865 (M5 III), HD 18191 (M6− III), HD 108849 (M7− III), IRAS 21284 − 0747 (M8–M9 III), and HD 69243 (M6e–M9e III). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 100.

Figure 100. Sequence of M supergiant stars plotted over the Y band (0.95–1.10 μm). The spectra are of HD 236697 (M0.5 Ib), HD 14404 (M1− Iab–Ib), HD 10465 (M2 Ib), CD −31 4916 (M3 Iab–Ia), and HD 156014 (M5 Ib–II). The spectra have been normalized to unity at 1.08 μm and offset by constants.

Standard image High-resolution image
Figure 101.

Figure 101. Sequence of M dwarf stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 19305 (M0 V), HD 42581 (M1 V), HD 95735 (M2 V), Gl 388 (M3 V), Gl 213 (M4 V), Gl 51 (M5 V), Gl 406 (M6 V), Gl 644C (M7 V), Gl 752B (M8 V), and LP944 − 20 (M9 V). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 102.

Figure 102. Sequence of M giant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 213893 (M0 IIIb), HD 204724 (M1+ III), HD 120052 (M2 III), HD 39045 (M3 III), HD 4408 (M4 III), HD 175865 (M5 III), HD 18191 (M6− III), HD 108849 (M7− III), IRAS 21284 − 0747 (M8–M9 III), and HD HD 69243 (M6e–M9e III). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 103.

Figure 103. Sequence of M supergiant stars plotted over the J band (1.12–1.34 μm). The spectra are of HD 236697 (M0.5 Ib), HD 14404 (M1− Iab–Ib), HD 10465 (M2 Ib), CD −31 4916 (M3 Iab–Ia), and HD 156014 (M5 Ib–II). The spectra have been normalized to unity at 1.30 μm and offset by constants.

Standard image High-resolution image
Figure 104.

Figure 104. Sequence of M dwarf stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 19305 (M0 V), HD 42581 (M1 V), HD 95735 (M2 V), Gl 388 (M3 V), Gl 213 (M4 V), Gl 51 (M5 V), Gl 406 (M6 V), Gl 644C (M7 V), Gl 752B (M8 V), and LP944 − 20 (M9 V). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 105.

Figure 105. Sequence of M giant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 213893 (M0 IIIb), HD 204724 (M1+ III), HD 120052 (M2 III), HD 39045 (M3 III), HD 4408 (M4 III), HD 175865 (M5 III), HD 18191 (M6− III), HD 108849 (M7− III), IRAS 21284 − 0747 (M8–M9 III), and HD 69243 (M6e–M9e III). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 106.

Figure 106. Sequence of M supergiant stars plotted over the H band (1.48–1.78 μm). The spectra are of HD 236697 (M0.5 Ib), HD 14404 (M1− Iab–Ib), HD 10465 (M2 Ib), CD −31 4916 (M3 Iab–Ia), and HD 156014 (M5 Ib–II). The spectra have been normalized to unity at 1.60 μm and offset by constants.

Standard image High-resolution image
Figure 107.

Figure 107. Sequence of M dwarf stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 19305 (M0 V), HD 42581 (M1 V), HD 95735 (M2 V), Gl 388 (M3 V), Gl 213 (M4 V), Gl 51 (M5 V), Gl 406 (M6 V), Gl 644C (M7 V), Gl 752B (M8 V), and LP944 − 20 (M9 V). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 108.

Figure 108. Sequence of M giant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 213893 (M0 IIIb), HD 204724 (M1+ III), HD 120052 (M2 III), HD 39045 (M3 III), HD 4408 (M4 III), HD 175865 (M5 III), HD 18191 (M6− III), HD 108849 (M7− III), IRAS 21284 − 0747 (M8–M9 III), and HD 69243 (M6e–M9e III). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 109.

Figure 109. Sequence of M supergiant stars plotted over the K band (1.92–2.5 μm). The spectra are of HD 236697 (M0.5 Ib), HD 14404 (M1− Iab–Ib), HD 10465 (M2 Ib), CD −31 4916 (M3 Iab–Ia), and HD 156014 (M5 Ib–II). The spectra have been normalized to unity at 2.20 μm and offset by constants.

Standard image High-resolution image
Figure 110.

Figure 110. Sequence of M dwarf stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 19305 (M0 V), HD 42581 (M1 V), HD 95735 (M2 V), Gl 388 (M3 V), Gl 213 (M4 V), Gl 51 (M5 V), Gl 406 (M6 V), Gl 644C (M7 V), Gl 752B (M8 V), and LP944 − 20 (M9 V). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 111.

Figure 111. Sequence of M giant stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 213893 (M0 IIIb), HD 204724 (M1+ III), HD 120052 (M2 III), HD 39045 (M3 III), HD 4408 (M4 III), HD 18191 (M6− III), HD 108849 (M7− III), IRAS 21284 − 0747 (M8–M9 III), and HD 69243 (M6e–M9e III). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image
Figure 112.

Figure 112. Sequence of M supergiant stars plotted over the L' band (3.6–4.1 μm). The spectra are of HD 236697 (M0.5 Ib), HD 14404 (M1− Iab–Ib), HD 10465 (M2 Ib), CD −31 4916 (M3 Iab–Ia), and HD 156014 (M5 Ib–II). The spectra have been normalized to unity at 3.6 μm and offset by constants.

Standard image High-resolution image

Footnotes

Please wait… references are loading.
10.1088/0067-0049/185/2/289