蒸気機関車 特徴

蒸気機関車

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/28 09:35 UTC 版)

特徴

長所

  • 多種類の燃料が使える。高熱量のものが望ましいが、石炭に限らずおよそ可燃物なら何でも使用可能。石炭以外の例として、石油の豊富なインドネシアなどでは重油、東京ディズニーランドのウエスタンリバー鉄道などでは灯油、軽便鉄道などでは、海外ではバガスなどの例がある。第二次大戦中、燃料が高騰する一方で電力は水力発電で確保できていたスイスでは、蒸気機関車を電気加熱できるよう改造した例もある。わが国にも昭和20年代に重油を混燒するものがあった。
  • 構造が簡単で修理が容易なために耐用寿命が長い。通常約30年程度。それ以降の運転は大規模な修繕や部品交換(オーバーホール)が必要とされるが、電気機関車やディーゼル機関車に比べて、延命が容易。世界遺産でもあるインドダージリン・ヒマラヤ鉄道で使用されるイギリス製の蒸気機関車は、最古のもので110年にわたり使用されている。車籍を有し営業運転することのできる機関車として、日本JR九州が保有する58654(8620形)があり、これは1988年(昭和63年)の復活運転以降ボイラーや台枠など多くの部品が交換されているものの、1922年(大正11年)の製造から約90年を経過してなお運行を続けている。さらに正式な鉄道路線ではないものの、博物館明治村で動態保存され施設内で実際に乗車できる客車を牽引する旧名古屋鉄道12号(元国鉄160形蒸気機関車165号)に至っては、ボイラーは1985年(昭和60年)に新製されたものと交換されているが、1874年(明治7年)の製造から130年以上が経過している。
  • 一時的な過負荷では故障しない。戦場における軍用鉄道などではこの利点がある。

短所

煙突から火の粉が飛んで山火事や火事をおこさせない機構が取り付けられた武利意森林鉄道18号形蒸気機関車
煤煙に注意するよう促す看板。(大井川鉄道門出駅、2021年2月撮影)
  • 機構が簡単だが調整が難しく、雑な調整ではうまく走れない。修理作業に熟練を要するが、工作精度の点では内燃機関よりも低くとも問題ない[注釈 16][注釈 17]
  • 電気機関車やディーゼル機関車より燃費効率が悪く、牽引力も弱い。蒸気機関車の熱効率は10%程度といわれ、ディーゼル機関車の熱効率35%程度に比べてかなり劣る
  • 高速運転できない。一般的な構造を備える蒸気機関車の速度は、動輪の直径とシリンダーの往復速度に比例するため、シリンダーの往復速度を速く、また動輪径を大きくするほど高速運転が可能となる。しかしシリンダーの往復速度の上限は、シリンダーとそれを支える台枠の剛性や強度、それにシリンダーやロッドなどの慣性質量に依存することから、ホイールベースが長く高速走行をする機関車ほど振動が激しくなり[注釈 18]、通常の構造では一定の速度以上への引き上げは難しい[注釈 19]。また動輪径についても、動輪の後方で従輪で火室を支えたり、ボイラー下に火室や動輪がこないガーラット式などの構造である程度カバーはできるものの、大径化に伴いボイラーや火室の邪魔になる他、軌間(レールの幅)を大幅に越えると一般に重心が高くなるため走行が不安定になり、危険である。このため標準軌でも実用になったのは7 - 8フィート(2135 - 2440mm)付近(20世紀に入ってからは7フィート以下が普通)であり[15]、これ以上に大径の動輪は実験的なものである。
    蒸気機関車の最高速度は、狭軌 (1067mm) では1954年に日本のC62形17号機が129km/hを記録し、標準軌 (1435mm) では1936年にドイツの05形が、1938年にイギリスのLNER A4がそれぞれ時速200kmをわずかに超えた速度を記録している。しかしLNER A4はページにある通り無理に速度を出した場合の数値である。C62はまだまだ余力を残しており10‰勾配と曲線を超え木曽川橋梁から岐阜へ向かえば140km/hは出せていた[16]。C62の営業列車で120㎞/h以上(速度計の数値は120㎞/hまでしか書かれていない)の速度を出す機関士もおり[17]、他の機種でも戦時中の若い機関士を中心に客車を引っ張って129km/h以上を出すこともあった[18]
営業最高速度は日本と同じ1067mm軌間ではインドネシア(1000形=C53形)やニュージーランド(Ka形(en:NZR KA class)の時速120km前後が最高(日本は前述のとおり130km/hほどの速度を出すこともあったが600メートル条項の建前上時速100km程度)である[19]。なお インドネシア(1000形=C53形)は90kmほどで機関車が手に負えないほど振動が激しくなり、1931年に試験目的で100kmを出してみたところ更に激しく揺れたため最高速度は90kmに制限されており[20][21]、120kmの営業運転がされていたという記述は信憑性が全く無い。インドネシアの最速機関車は110㎞の記録を出したC28タンク機関車で短距離高速列車を90kmから95kmの営業最高速度で運転していた[22][23]。さらにニュージーランドKa形についても 同国のJA形が120kmを超えた逸話[24]と混同しており、蒸気機関車時代の営業運転速度は120kmどころか50マイル(80.5 km/ h)である。またニュージーランド最速記録は英国から輸入したレールバスの125.5kmであり[25]、それに迫る速度で営業運転をしていたことになる。標準軌でも、前述の最高速度記録を持つイギリスのLNER A4は、通常運行では安全面から時速90マイル(145km)ほどである(ドイツの05形に至っては車両自体が高速性特化で牽引力が低いため4から5両程度の客車しか引けずに量産されてない)[26]。一方こういった問題のない電気運転の場合は、1903年にすでに時速200kmを突破した記録がある。(高速鉄道の最高速度記録の歴史も参照)
  • 低速においても、鉱物などの大量輸送で見かけるような時速20-40km程度では、本来の力を発揮できない[注釈 20]。これは構造にもよるが、蒸気機関車は通常時速50kmから100kmで最高出力となるためでなので、時速15kmほどから強力な牽引力が発揮できるうえ、トルクの変動(空転の原因になる)もなく、機関車重量すべてを粘着重量にとれる電気式ディーゼルの方が圧倒的に有利[27]
  • 始動に時間がかかる。煙管式ボイラーが完全に冷え切った状態の場合、火入れ・蒸気の発生に数時間前から作業開始する必要がある。また走行終了後も石炭ガラの廃棄などの作業が必要。
  • 電気機関車やディーゼル機関車の場合1人でも運転可能であるが、蒸気機関車の運転には、走行操作をする機関士とボイラーに水や石炭を送る操作をする機関助士の2人が必要となるため、2倍の人員を必要とする。後年自動給炭が可能なものも登場したが、機関助士の乗務を不要とするには至っていない。また、電気機関車やディーゼル機関車は重連運転の場合先頭車にだけ運転士が乗っていればよいが、蒸気機関車の場合は重連で四人、三重連だと六人の人員が必要になる[28]。なお、燃料を石油だけにすれば1人でも運転可能ということにはなるが[注釈 21]、他の欠点を補えるわけではないので、そのような時代が来る前に電気機関車・ディーゼル機関車の時代になった。
  • 高温を発するボイラーを稼動させるために、運転士(機関士、機関助士)が過酷な労働を強いられる[29]。とりわけ夏季の高温環境における石炭投入などの重労働、冬季の寒気や雪の吹きさらしによる肉体的負担が挙げられる。
  • 前方視界が悪い。構造上大型のボイラーを前方に配置せざるを得ず、結果線路上の障害物や軌道の損傷の発見も遅れて、大事故に結びつきやすい。
  • 性能が条件により変化し、一定しない(燃料の発熱量、タンク機関車の場合は燃料と水の使用に伴う軸重の変化も影響する[注釈 22])。
  • 大量の煤煙ばいえん・ガスを排出するのでトンネルでは窓を開けられない(この関係で山国では早くから電化が進んでいることが多い)[30]。日本国内では急勾配と長大なトンネルが多く、統計によると1931年(昭和6年)から1941年(昭和16年)までにトンネル内での乗務員事故36名、犠牲者2名を出している。狩勝トンネルでは9600形の乗務で事故や犠牲者が出ており安全衛生の改善を発端に争議が発生した[31]。1928年には、急勾配のため従来から立ち往生や逆行を起こしていた[32]D50形二両が牽引する貨物列車がトンネルで空転を起こし、救援に向かった列車も立ち往生してしまい全員が窒息による危篤状態に陥り、3名(5名説もあり)が死亡、12名が昏倒する悲惨な事故が起きている[33]
  • 煙の火の粉が線路周囲の森林や草・家屋などに燃え移ることにより、時として山火事や火事が起きる[34][35]。藁葺きや木の屋根が普通であった時代には火災が多発し、これによる鉄道忌避伝説もある。
  • 保守に手がかかる[注釈 17]
    • 摩耗部分が多く、日本の場合約39万km走るとオーバーホールしていた(同時期の電車や電気機関車は80万kmほどでオーバーホール)[29]
    • ボイラー部などの熱・高圧疲労・耐用年数による老朽化。
    • 水垢の蓄積。
  • 燃料と水を補給する必要があり、大型機では約100kmごとに補給が必要。そのため、駅や機関区などに水・石炭などの補給や、使用済みの石炭ガラ処理用の大型設備が必要となる。また、電気機関車などのように1000km程度の長距離を乗務員の交代のみで運転することはできず、機関車の所要数が増える。
  • 機関車そのもので蒸気を発生させて走るため性能の発揮に熟練が必要。とりわけ特急列車のような「計算上の最大出力を出さねばダイヤが維持できない」列車の場合、石炭や水の使用効率のことも考えると特に技量の高い機関士・機関助士を必要とする[36]
  • 設計上逆向き運転が考慮されておらず、転車台デルタ線ループ線など方向転換のための設備を必要とする。ただし、後年にはC11形C56形など逆向き運転が容易な形式も出現した。また、石油だけを燃料とするなら必ずしも運転席をボイラーと炭水車との間に設ける必要はないので、理論的には逆向き運転も容易になる。

こうした理由で、ディーゼル機関車の発展が早かった米国では1930年代頃から蒸気機関車に挑戦するようになり、1946年の調査では、蒸気機関車が得意な特急牽引(蒸気機関車は低速だと全力が出せない)の仕事でさえ、NYCのナイヤガラ特急牽引機で比較した結果、初期コストと運用コストのいずれにおいても蒸気機関車と(電気式)ディーゼル機関車がほぼ同じ経済性とされるほどになっていた。1950年代に至っては、大半の鉄道会社がゼネラルモーターズ(GM)やゼネラルエレクトリック(GE)のディーゼル機関車に置き替えていた[27]

フランスではディーゼル機関車だけでなく、1952年にパリ‐リヨン間の電化区間で主力になる予定だった電気機関車(パリ・オルレアン鉄道から引き継いだ機関車の改良型、3900馬力)よりも大馬力の蒸気機関車まで存在した。しかし電化の方が将来性があるとして、1948年から蒸気機関車新造を打ち切っており、これ以後は改造機もほとんどない[37]

日本でも新造は1948年のE10か改造名義だが実質新規製造のC62(1949年)までで、1950年代は従輪の付け替え程度の改造にとどめていた。その後国鉄は「動力近代化計画」として1960年(昭和35年)の会計年度より蒸気機関車を15年で全廃する計画を立て、電化やディーゼル化を推進した。そして梅小路蒸気機関車館に保存された車両を除き、予定通り1975年(昭和50年)の年度末となる1976年(昭和51年)3月に完了させた[38]

ドイツでも戦後量産されたのは、3000両以上あるプロイセンP8型の置き換え用として戦前に計画された、2-6-2プレイリーの23形だけであり、1959年末の製造終了をもって、ドイツ国鉄(DB)における蒸気機関車の新造は打ち切られた(東ドイツのDRでは改造機も含めるともう少し製造を行っており、ベルリンの壁崩壊まで残存の機関車もいた。)[39]

イギリスは、先進国の中では最も長く蒸気機関車の製造を続けており、1950年代にも完全新設計の機関車が新造されていたが、イギリス国鉄(BR)は1960年の貨物用2-10-0イブニングスターを最後に蒸気機関車の製造を打ち切り、1968年には蒸気機関車の商業運行を打ち切った[40]


注釈

  1. ^ なお中国語では汽車は「自動車」を意味する。日本語で言う「汽車」は「火車」と表記する。
  2. ^ ただし、地域や世代によっては、電気で動く物も含めて全ての列車のことを「汽車」と呼んだり、国鉄JRを「汽車」、路面電車私鉄を「電車」と呼んで区別したりする場合がある(このような「汽車」の用法については「汽車」を参照のこと)。
  3. ^ 旧字体汽罐車
  4. ^ たとえばen:Derby Canal Railwayなどは1792年から使われていた
  5. ^ en:Killingworth locomotivesも参照可
  6. ^ a b ポニー台車とは先輪(原文は「前従輪」)が1軸の場合(2軸以上の場合は「ボギー台車」)に使用され、釣合梁(equalizer)を介して先輪と第1動輪それぞれの板ばねで支えられるもの、製作者の名前をとって「ビッセル台車」とも呼ばれる(日本の鉄道省は「心向台車」と呼称)[1]
  7. ^ D51形に先立ち1925年にアメリカから輸入された単式3シリンダー機の8200形(C52形)では手焚きのままで火格子面積を3.8m2としたが、これは当時の日本人の一般的な体格・体力では投炭を担当する機関助士に過大な負担を強いたため、のちの改造で火格子面積を縮小している。
  8. ^ キャブの大きさの都合で機関車では船のように二人同時に投炭をやった国はなく、二人機関助手がいる場合は投炭を交代して休んでいる方がタブレットの受け渡しなどをやる。(齋藤2007) p.256
  9. ^ 例として満鉄のデカイ型では元になったミカイ型と同じ牽引力で軌道の弱い区域を走行させるため、ミカイの従輪部分にも動輪をつけて5軸にして動輪上軸重を分散させて対処した際、本来小さな従輪で支えていた広火室を動輪のうえにのせた影響で火床面積はさほど変わらないのに火室がかなり浅くなり、不完全燃焼が起きやすくなったとされる。
    『満洲鉄道発達史』高木宏之 著、株式会社潮書房光人社、2012年、ISBN 978-4-7698-1524-2、P113。
  10. ^ 1925年にロンドン・アンド・ノース・イースタン鉄道 (LNER) との間で同社最新のA1形(軸配置2C1、過熱式単式3気筒、広火室。火格子面積3.83m2)とを交換し、互いの鉄道線において同条件下で実施された比較試験では、キャッスル型の方がコンパクトでボイラーの火格子面積もA1形の約70パーセント強しかなかったにもかかわらず、使用炭の品質が本来想定されるより低下するLNER社線上においてさえ、出力・燃費の双方で勝利を収めている。これは弁装置設計などでGWR側に一日の長があったことによる部分が大きいが、この例が示すように狭火室と広火室の違いは必ずしも性能に決定的な差をもたらすとは限らない。
  11. ^ 例えば、ドイツでは良質な石炭の入手が容易であったプロイセンをはじめとする北部の各邦国が保有する鉄道は狭火室を常用し、良質炭の入手が難しかった南部のバーデン大公国バイエルン王国などが保有した各鉄道は広火室を早い時期から導入していた。また、アメリカで広火室積極導入の端緒の一つとなったウーテン式火室を備えるキャメルバック式蒸気機関車は廉価だが着火しにくい無煙炭を燃料とすることを前提に研究開発されており、通常の石炭以外の異種燃料を燃やす手段として通常より大きめの火室を備えた機関車を製作するケースはアメリカ製機関車を中心に各国で見られた。
  12. ^ ただし、日本でも陸軍の鉄道大隊・鉄道連隊向けに1901年より製作が開始された双合機関車では軸配置Cの8t級機関車を背中合わせに組み合わせた小型機関車であったが、既に15.5kg/cm2を標準採用していた。
  13. ^ レギュレータとも呼ばれている。
  14. ^ スピード記録などのための無理をして出した記録としては毎分500回転近くまで出したものもあり、イギリスではロンドン&ミッドランド鉄道ダッチェスクラス(4シリンダー)の480回転(1937年、(齋藤2018) p.55)、ロンドン&ノースイースタン鉄道A4クラス(3シリンダー)の530回転(1938年、(齋藤2018) p.61。ただし中央クランクが損傷した)、アメリカのノーフォーク&ウェスタン鉄道のJ型(2シリンダー)の540回転((齋藤2018) p.81)などがある。
    フランスは最高時速120km制限の関係でここまで極端なのはなくパリ・オルレアン鉄道240.700形(4シリンダー)の430回転((齋藤2018) p.52。なおこれは試験時の特例で151km/hの速度限界超過の値。)、ドイツは高速回転化が進まず0110型の375回転程度((齋藤2018) p.71)でそれを習った日本も回転数増加の流れには至ってない。なお回転数増加は走行装置の摩耗損傷の増加も招く上に(H.C.B. Rogers, Riddles and the 9Fs (Ian Allan, 1982))、内側にシリンダーがある場合は過熱による不具合まで起こしてしまう。リビオ・ダンテ・ポルタと21世紀の技術で作られたA1 60163トルネードも過熱による呪縛から逃れられていない。
  15. ^ 黎明期の機関車ではこれを危惧して通常の車輪は車体を支えるのみで動輪をギア状にしたブレキンソップや、足をつけて馬のように動かして走らせようとしたブラントン(どちらもイギリス人)といった例がある。(萩原1977) p.178-179
  16. ^ 第二次世界大戦中、南方戦線で日本軍が蒸気機関車を運用していた際に、鉄道車両に関する知識のない自動車技師出身の整備兵が内燃機関と同じ精度で蒸気機関車の各部品の整備・組み立てを行ったところ全く動作せず、精度を落として(各可動部に意図的に遊びを設けて)再組み立てしてようやく動作した、という逸話が残っている。
  17. ^ a b 電車・電気機関車は制御器の接点の調整に熟練を要し、調整が悪いとノッチ進段時の衝動が大きくなったり、高速度遮断器が作動して運転不可能になる事例もあった。また気動車・ディーゼル機関車はディーゼルエンジンそのものが蒸気機関に比べてはるかに複雑で部品点数が多く整備には熟練と専門知識を要した。これらが劇的に解消されるのは、電気車ではVVVFインバータ制御が一般化し、内燃機関車では部品の精度が向上したことと電子制御により大型高速ディーゼル機関のメンテナンスフリー化が進んでからである。
  18. ^ 極端な例だが、ソ連のAA20形は直径1600mmの動輪が7軸もあり、非常にホイールベースが長かった結果、時速70kmで振動が激しくなったのでこれが最高速度とされた。(齋藤2018) p.75
  19. ^ なお、この振動は前後と上下の2つの方向があるのでウェイトをつけてもどちらか片方しか修正できず(ハンマーブロー参照)、多気筒にすることである程度抑えられる。(齋藤2018) 「第4章 回転数アップ」P.48-65。)
    もっとも電気機関車や電気式ディーゼル機関車の場合もモーター重量を直接動輪軸にかける形式(吊りかけ式など)でモーターが重い時代の頃は(ばね下重量が蒸気機関車以上に重いので)結局高速走行時には堅固な軌道が求められた(ウェストウッド2010) p.192
    (注:ウェストウッド著『世界の鉄道の歴史図鑑』の原文では「ディーゼル機関車」の項でこの説明があるが、電気式の足回りは電気機関車と同じな上、直後に「スイスの電気機関車で車体側でモーターを支えてこの問題を解決した話」があるので電気機関車も含んでの話と判断した。)
  20. ^ 低速で動く出発時や加速時にこそ大出力が欲しいのに、その時蒸気機関車は全力の半分ほどしか出せない。参考までにいうとアメリカのユニオンパシフィック鉄道4000型(ビッグボーイ)は時速70マイル(112km)時に1万馬力の出力を出せたが、時速35マイル(56km)では6200馬力、時速20マイルでは5200馬力しか出せなかった。(ロス2007) p.193
  21. ^ 王立バイエルン邦有鉄道PtL2/2型蒸気機関車は石炭焚きでの数少ない1人乗務形の形式である。
  22. ^ ディーゼル機関車も燃料消費で軽くはなるが、水を大量に消費する蒸気機関車ほどは大きく変動はしない。
  23. ^ 振動の問題の少ない船舶では軍艦を中心に1910年代以降急速に普及した。そのため、船舶用として安定した性能を発揮していた機種を機関車用として転用することが再三に渡って試みられた。日本でも、帝国海軍の艦船用艦本式ボイラーの原型となった宮原式水管缶を機関車に搭載する事例が、1910年代中盤にいくつか存在した。しかし、レシプロ駆動系を備える鉄道車両用動力源としての水管式ボイラーは、コンパクト化が強く求められ、また軽負荷でもあった蒸気動車用を除くと、この宮原式の事例を含むほぼ全てが量産・実用段階に到達せずに終わっている。
  24. ^ 外国では入替機関車(英語: USRA 0-6-0など)などに使われたことがある。
  25. ^ この時代は火室のレンガアーチもまだなく、炎はそのまま煙管に向かって伸びていた。
  26. ^ [1]リンク先も参照。ナイジェル・グレズリーはこれに反論しているが、持論ではなくフランスの友人がこうしているからと語っただけであった。
  27. ^ インドネシア国鉄C53(4気筒)のように先輪と動輪の間を離して、ピットがなくてもこの間に入って内側シリンダーを整備できるようにしたものもある。(齋藤2018) p.81-83
  28. ^ なお、このグレズリー連動弁装置は左右のシリンダーからてこで中央シリンダーの吸排気を操作するので下にもぐらなくても前方から整備できたうえ、ロッド・クランク横のバルブギアを省略できる(普通は個々のシリンダーに1つずつつけるが、この方式はレバーで左右のバルブが中央シリンダーを操作する。)のでこまめな整備をしていれば狭軌でも理論上は使いやすい物だった((齋藤2007) p.168-169・253)。実際は理論上通りにはいかず、アメリカのウォーバッシュ鉄道クラスK5やニュージーランドのNZR 98などは使いにくく不評で短命に終わっている。日本で3気筒がはやらなかった理由について「狭軌だから」という文献が多いが、標準機で軌道の強度も大きい満鉄でもクランク軸の折損事故を起こしていた(『満洲鉄道発達史』高木宏之 著、株式会社潮書房光人社、2012年、ISBN 978-4-7698-1524-2、P139)他、イギリスでもグレズリー弁式の3シリンダー機では戦時中は整備が行き届かずにレバーのボールベアリングが擦り減り、ガタが生じた結果中央シリンダーが触れすぎてクランク車軸を痛めることがあった。(齋藤2007) p.258
  29. ^ 特に4気筒の場合は左右の動輪を挟んだシリンダーを2基ずつペアとした複式として設計することで、蒸気を有効に利用できる。そのため、ドイツ国鉄18.6形のようにボイラー性能さえ十分ならば、自重やサイズが1ランク上の単式2気筒機(01形)に匹敵するかこれを上回る性能を実現することも不可能ではない。
  30. ^ 例えば車両限界の制約が大きく単式のまま左右のシリンダーを大直径とすると各駅のホームに抵触する恐れがあったイギリスでは単式3・4気筒機の導入例が多く、自国の石炭資源産出量やその品質などの問題から特に燃費に神経質であったフランスでは複雑精緻な複式4気筒機が積極的に導入されている。
  31. ^ 3気筒でもグレズリーバルブギアが外側のバルブで内側を駆動するが、こちらはかなり神経質な機構だった。
  32. ^ 前述の振動を抑える3・4気筒はどちらも内側と外側のシリンダーで動きをずらしてロッドが逆の位置で動くことで重心移動による振動が小さくなるだけで、気筒を増やしても一斉に同じ方向に動いているのでは重心が動き、振動は減衰しない。

出典

  1. ^ (近藤2007) p.177
  2. ^ (齋藤2007) p.357(齋藤2018) p.86
  3. ^ 横堀 進 (PDF). 技術ダイジェスト 重油燃嶢機関車 . 日本国有鉄道鉄道技術研究所. https://www.jstage.jst.go.jp/article/jie1922/32/2/32_2_103/_pdf/-char/ja. 
  4. ^ (齋藤2007) p.255・359-360(齋藤2018) p.89
  5. ^ (齋藤2018) p.94-95
  6. ^ (萩原1977) p.102
  7. ^ (齋藤2007) p.306
  8. ^ (齋藤2018) p.101-102
  9. ^ (齋藤2018) p.24-25
  10. ^ (齋藤2007) p.299・430
  11. ^ a b (萩原1977) p.99
  12. ^ 日本の鉄道史セミナー』p.136
  13. ^ (齋藤2018) p.133-116
  14. ^ (萩原1977) p.102-103
  15. ^ (齋藤2018) 「第3章 より速く走るために」P.40-47
  16. ^ 蒸気機関車EX Vol.4 P71
  17. ^ 蒸気機関車EX Vol.4 PP68-69
  18. ^ 蒸気機関車EX Vol.4 P70
  19. ^ (齋藤2018) P83・194-195
  20. ^ C28 dan C53, Loko Uap Tercepat di IndonesiaKereta Api
  21. ^ Lokomotif C53Heritage - Kereta Api Indonesia
  22. ^ Lokomotif C28”. 2021年12月14日閲覧。
  23. ^ WORLD ENCYCLOPEDIY C28”. 2021年12月14日閲覧。
  24. ^ Engine Pass - New Zealand Railways P169 David Bruce Leitch 著 A.H.&A.W. Reed 発行 1967年
  25. ^ Vulcan Railcars in New Zealand P7 Neill J. Cooper 著 New Zealand Railway and Locomotive SocietyIncorporated 発行 1981年
  26. ^ (齋藤2007) p.288-289・327
  27. ^ a b (齋藤2007) p.436-437
  28. ^ 石井幸孝DD51物語」P95、JTBパブリッシング、2004年
  29. ^ a b (萩原1977) p.173
  30. ^ (萩原1977) p.172
  31. ^ 高桑 榮松 蒸気機関車運転室(キャブ)内労働衛生調査と事故防止対策 狩勝トンネル争議
  32. ^ 続・滋賀の技術小史
  33. ^ 杉山淳一の時事日想 鉄道のトンネルは、安全なのか
  34. ^ Service, Tribune News. “Steam engine causes forest fire, villagers enraged” (英語). Tribuneindia News Service. 2022年10月30日閲覧。
  35. ^ 茗荷, 傑「浅間山麓六里ヶ原周辺の土地機能回復過程に関する考察」、公益社団法人 日本地理学会、2009年、doi:10.14866/ajg.2009s.0.9.0 
  36. ^ 「鉄道ファン」2003年12月号P108 、西村勇夫の寄稿。「特急乗りには望みもないが、せめてなりたや局長に」ということまで当時の国鉄内部では言われていたという。
  37. ^ (齋藤2007) p.370・374-375
  38. ^ (齋藤2007) p.274-275
  39. ^ (齋藤2007) p.299-304
  40. ^ (齋藤2007) p.338-342
  41. ^ (齋藤2007) p.357
  42. ^ (齋藤2007) p.67
  43. ^ (齋藤2007) p.108-109
  44. ^ 多賀祐重「機関車鮭の煙管の長さに就て」『業務研究資料』第15巻第7. 号,1927年
  45. ^ 幻の国鉄車両 P32
  46. ^ 鉄道技術発達史 第4篇P.331
  47. ^ USATC steam locomotives
  48. ^ Cox, Stewart, Locomotive Panorama : P125
  49. ^ Locomotive type 141 P
  50. ^ https://min.news/history/9a9a6f07750cb49af547944415e1e76a.html
  51. ^ (齋藤2007) p.204-205
  52. ^ (齋藤2007) p.383
  53. ^ (齋藤2007) p.252-259・383・394-395
  54. ^ (齋藤2007) p.279-291
  55. ^ (齋藤2007) 「第4章 回転数アップ」P.50-56・60-62
  56. ^ (齋藤2007) P.72-74
  57. ^ (ロス2007) p.187
  58. ^ Report on "2 to 1" Gresley valve gear on L.N.E.R. 3-cylinder locomotives
  59. ^ What were the investment dilemmas of the LNER in the inter-war years and did they successfully overcome them? P35The Railway & Canal Historical Society
  60. ^ What were the investment dilemmas of the LNER in the inter-war years and did they successfully overcome them? P34The Railway & Canal Historical Society
  61. ^ PEPPERCORN A1 PACIFICSDon Ashton
  62. ^ A1 Tornado – repair updateSteam Locomotive Trust
  63. ^ What were the investment dilemmas of the LNER in the inter-war years and did they successfully overcome them? P44The Railway & Canal Historical Society
  64. ^ Institut de la gestion publique et du développement économique La SNCF au temps du Plan Marshall
  65. ^ 日本国有鉄道、1958、『鉄道技術発達史. 第5篇』、日本国有鉄道〈鉄道技術発達史〉 pp. 190
  66. ^ Revue générale des chemins de fer 1950年1月号 P21
  67. ^ Les locomotives légendaires La locomotive a vapeur 141 R de la SNCFAntiquités brocante de la tour
  68. ^ La 141R420Train à vapeur d'Auvergne / Association de la 141R420
  69. ^ 日本が、1台の機関車に専属の乗員を割り当てず、それぞれ別々の運用としたやり方に完全移行したのは戦前の昭和14年である。『鉄道技術発達史 第5篇 運転』出版者: 日本国有鉄道 P17.P188.P193
  70. ^ (近藤2007) p.206-207
  71. ^ (近藤2007) p.207-208
  72. ^ 岩本太郎「続・滋賀の技術小史」(PDF)『龍谷理工ジャーナル』第24巻第1号、龍谷大学理工学会、2012年、11-19,図巻頭1p、NAID 40019238069 
  73. ^ 鉄道辞典 上巻
  74. ^ 横堀進「重油燃焼機関車」『燃料協会誌』第32巻第2号、日本エネルギー学会、1953年、103-105頁、doi:10.3775/jie.32.103ISSN 0369-3775NAID 130003823552 
  75. ^ 鉄道技術発達史 第4篇 車両と機械 1-4章P321
  76. ^ 鉄道技術発達史 第4篇 車両と機械 1-4章P326
  77. ^ ボイラ研究 (83):出版者 日本ボイラ協会:出版年月日 1964-02 機関車用ボイラの2本バーナ式C重油併燃装置の試作について 日本国有鉄道長野工場 青木松雄/p18~25
  78. ^ 交通年鑑 昭和44年版:出版者交通協力会:出版年月日 1969 P222
  79. ^ 「SL甲組」の肖像1、椎橋俊之、ネコ・パブリッシング、2007年、 ISBN 978-4-7770-0427-0、p.57・103。
  80. ^ NHK BS プレミアムアーカイブス ハイビジョンスペシャル「煙はるかに 世界SL紀行 魔女の森に汽笛が響く〜ドイツ・ハルツ地方〜」5月22日放送
  81. ^ 火夫. コトバンクより。
  82. ^ 日本放送協会. “SL銀河 支えた検修員の“愛”と“情熱””. NHK盛岡放送局. 2023年12月24日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「蒸気機関車」の関連用語

蒸気機関車のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



蒸気機関車のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの蒸気機関車 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS