船舶工学 舵

船舶工学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/03/04 07:55 UTC 版)

船体構造

単胴船での船体構造について説明する。

構造材

多くの場合、外から見える船体のほとんどは外板(Shell Plate)であるが、大型船でも外板は薄く最も厚いものでも3cmでありほとんどのものはせいぜい数ミリメートルしかない。中大型船で主に船体を支えているのは構造材と呼ばれる骨組みであり、外板は強度の支えとしては補助的なものでしかない。

船体を支える構造材を組み合わせ配置する形式には、横式構造(Transverse Framing System)、縦式構造(Longitudinal framing System)、縦横混合方式の3種類がある。

横式構造
横式構造船体断面
1.梁(ビーム) 2.肋骨(フレーム)3.ビルジ 4.内底板 5.竜骨(キール) 6.フロア板 7.外板 8.甲板 9.隔壁
昔から用いられている構造で、今でも中小型船舶では横式構造で作られているものが多いが、大型船舶では船体が長いので折り曲げようとする力(曲げモーメント)に対して十分な縦強度が確保できないために採用されない。メイン・フレーム、リバース・フレーム、フレーム、デッキ・ビーム等が主な構造材であり、この支えが船の内部に竹の節のように間隔をあけて取り付けられる。例えば1万トン級の船では、船首から船尾までびっしりと60-80cm間隔で200ほどのフレームが船体を支える。


縦式構造
縦式構造船体断面
1.梁(ビーム, Box trans.) 2.肋骨(フレーム)3.ビルジ 4.内底板 5.竜骨(キール) 6.フロア板 7.外板 8.甲板 9.隔壁 10.内壁(Inner hull plating) 11.横縦通材(Side stringer) 12.中央桁(Center girder)[14]
船首船尾方向に走る多数の縦通材(Longitudinal)によって強度を確保する構造である。船体外板(甲板、側面、船底)と内部を仕切るいくつかの縦隔壁(Longitudinal Bulkhead)の内側表面に多数の縦方向の構造部材が張り付き内部から船体を支える。一般貨物を積むには適さない船倉となるが、横式構造よりは軽く出来る。


縦横混合方式
横式構造と縦式構造の両方式を取り入れた方式である。

船体を支える構造部材は強力部材とも呼ばれ、以下のような部分が各船でほとんど共通の強力部材である。船底部のキールも太い強力部材であるが、木造船の竜骨と異なり現代の鉄鋼船では他の外板より分厚いだけの板になっている。

  • 強力部材
    • 縦強力材:外板、甲板、船底、ガーダー(ロンジ)、竜骨(キール)
    • 横強力材:デッキビーム、フレーム、メインフレーム、横隔壁[5]

縦強度

サギングとホギング

船体構造でいえば縦強度が重要である。

曲げモーメント
細長い一本の船体である船舶は大波によって縦方向に折り曲げられる力(曲げモーメント)が働くため、縦方向での強度が十分に確保されていないと船体が真っ二つに折れて大事故になる。
大波の波長が船の長さと同じ時に最悪の条件になり、船首と船尾が波の頂上に持ち上がられ船体中央が波の谷間に浮かぶ「サギング」と呼ばれる状態と、これとは逆の船体中央だけが持ち上げられる「ホギング」という状態をひと波ごとに繰り返すことになる。
また、船体が波乗りのような状態で波の山から谷に向けて加速しながら滑り降りて、そのまま船首が波の谷に突っ込んだまま、谷から船首が持ち上がる前に次の波の山に襲われる「バウダイビング」(後述)と呼ばれる状態も、船体の、特に船首部を下方へ折り曲げもぎ取る大きな力がかかるため、縦強度が求められる要素である。
船底中央を縦貫する太い構造部材であるキール(Keel、竜骨)や多数の縦隔壁によってかなりの強度が確保される設計がなされているが、船体が折れ曲がる事故は船体の一部が金属疲労や建造時の欠陥、就役後の腐食によって、部分的に強度を失い、やがて変形が全体へと波及することで起こることが知られている。
このため、構造部材の一部に応力が集中することで起こる金属疲労を排除するために、設計・建造時に応力の分散に配慮するようになっており、腐食にもメンテナンスで対応するようになっている。
船体横方向の断面を示した「中央横断面図」という設計図の合格検査によって縦強度の確保が担保されている。
船体側壁は比較的薄い金属板から作られているため、フレームや横隔壁が存在する船体側部の場所がタグボートで押して良いポイント「プッシュライン」として示されている。
剪断力(せんだんりょく)
船にかかる剪断力の例
物体にある面に平行に加わった力によって、面に沿って滑り断つように働く力。貨物がいっぱい入っている船倉と空の船倉の間に浮力と貨物の重量などが働き、船体を断つような力が生じる。剪断力は設計時に考慮されていなければならない。


局部加重
波が船首に当る場合や船底に当る場合。船倉内の石油やバラスト水が船体の揺れによって内壁を打つ場合、などの船体の一部に働く力。

1960年後半に船体の鋼材を減らした経済的な船型の船が争って多数作られ、その後に船体各部に亀裂が多数生じてからは、経済性と安全性に対する最適化が慎重に考えられている。 リベットから溶接へ船体を構成する技術が大きく変更された当初はさまざまな問題が生じたが、その後は解決された。鋼鉄についても低温脆性(ていおんぜいせい)についての知見が得られてからは、安全になっている。

船体の材料

船体を構成する材料には、木材、鉄船、鋼鉄繊維強化プラスチックFRP)、アルミニウムセメント、フェロセメントがある。

鋼鉄
軟鋼
20世紀後半からはほとんどの大型船が鋼鉄である軟鋼で作られている。軟鋼は炭素含有率が0.13-0.20%であり鋼鉄の中では比較的低含有なため、名前の通り柔らかいので加工が容易であり、座礁や衝突等の外力によっても破断までに変形する量が多く、被害程度の軽減が期待できる。
高張力鋼(High-Tensile Steel)
軟鋼に比べて価格が高いが、船の重心を低くするために、強度を保ちながら出来るだけ重量を軽くすることが求められる上部構造物には以前から炭素とマンガンを多く含む高張力鋼が使われてきたが、21世紀初頭の現在、超大型コンテナ船をはじめとして船体の主要部に使われ始めている。一般的には1センチ前後の厚みの鋼材が使用されるが、超大型タンカーでは主要部分に5センチ厚の鋼材が使用される。
FRP
FRP船に使われている繊維強化プラスチック(FRP、Fiber Reinforced Plastics)が「鋼鉄より強い」というのは、引張強さを比重で割った比引張強さだけが鉄よりも勝っているだけであり、その他の機械的な強度は鋼や耐腐食アルミ合金の方が優れている。ただ、FRPは腐食に強いので保守の手間が掛からない点で金属材料より優れている。FRPはガラス繊維などのマットをポリエステルなどのプラスチックで固めて作る。船の形をかたどった木製のオス型より一度FRP製のメス型を作り、これを元に目的のFRP製船体を造る工程となる。ポリエステルなどはよく燃え、一度火事になると簡単には消せないため、火の気には特に注意を要する。また、製作中は火気厳禁であるだけでなく、臭いがきつく作業環境を選ぶ。
海外ではファイバーのFではなくガラス繊維のGを使ってGRPと呼ばれることもある。滑走艇や小型漁船、ヨットなどの小型船の多くに使われている。
アルミニウム
鋼鉄の比重は7.85であるのに対してアルミニウムは2.7と軽いため、錆びにくい長所と共に軽量化が求められる高速船に使用されている。鋼鉄同様に溶接によって接続するが、薄い場合には外板が波打つのでパテで修正する必要がある。
セメント
広島県呉市安浦漁港の防波堤に転用されたコンクリート船第二武智丸。左側に見えるのは第一武智丸。
セメント船は鉄筋コンクリートの一種のプレストレス・コンクリートで作られ、1920年前後には荒天にも十分耐えて航洋性があるため多数が作られ、7,200重量トンのタンカーも出現した。最近でも海上作業用の浮体構造物やはしけとして建造されており、アメリカ合衆国では排水量68,000トンのLPG貯蔵船が建造されている。フェロセメント船は金網を補強材にセメント・モルタルで船体が構成されている。貨物船から、漁船、はしけ、作業船、上陸用舟艇、タグボート、ヨットが作られている[15]


スラミングへの対策

ディープブイ型の船型
バウダイビングとは逆に船首船底が水中から躍り出てしまい、一瞬の後に水面に叩きつけられる「スラミング」と呼ばれる現象がある。スラミングの直後には「ホイッピング」と呼ばれる船体全体が大きく振動する現象も起きることがある。

スラミングによってバウダイビングと同様に船首部が折れる大事故が過去に発生している。

この対策として、船首部船底をV字型にして水面から受ける衝撃を斜め方向に受け流すようにする設計が高速船に行なわれている。

船体設計に関わる特殊な例

6種類の専用船の横断面図
1.鉱石専用船 2.穀物専用船 3.フルコンテナ船 4.純自動車専用船 5.LNGタンカー(モス式) 6.LNGタンカー(自立角型タンク式)[16]
純自動車運搬船
PCC(Pure car carrier)やPCTC(Pure car & truck carrier)とも呼ばれる純自動車運搬船では船内が日本の自動車用の立体駐車場のように何層にも分けられており、出来るだけ多くの車輌を搭載出来るように上部構造物も目一杯高く、船幅と前後にも一杯に作られ、各階毎の高さも低く抑えられている。この状態で他の貨物船のように分厚い甲板を設けると重心が高くなりすぎてたちまち転覆するので、甲板は薄く作られており、普通の貨物船では2-3ton/m2であるのにPCCでは150-200kg/m2しかない。
大型のPCCでは9-13層にもなる各階ごとの高さは最も多い乗用車に合わせて1.7-2.1m程度となっているが、トラックやバスなどの搭載スペースとして一部は高さが可動式のリフタブル・デッキ(Liftable Deck)またはホイスタブル・デッキ(Hoistable Deck)とよばれる構造になっていて、車輌の重量に合わせて甲板も強化されている。船内での車輌の上下移動は過去にはエレベータも使われたが、21世紀初頭の現在は、船倉内のスロープを自走によって上り下りしている。
たとえば世界最大の総トン数2万トン級PCCでも搭載できる自動車は6,000台で、満載しても約6,000トンが増えるにすぎない。このままではスクリューが水面に近くになりすぎるため、他の貨物船より水面下の形状を細くしてスクリューの位置をわざわざ深くしている。
大きな上部構造物によって水線上の面積が大きいため、風の影響を強く受ける。自動車専用岸壁への接岸時の利便性と安全性に配慮して、大きな舵を備え、大型PCCではバウ・スラスターを搭載している。大型のPCCでは上部船体がほとんど矩形の鋼鉄製構造物によって付けられているのにたいして、21世紀になってからの特に大型のPCCでは、風の影響を出来るだけ避けるために船の前後が丸く曲線や曲面で構成される船が現れている。
自走による積み下ろし時の排ガスや搭載車のガソリンタンクからのわずかな蒸発による火災のリスクを考慮して強力な換気装置が備わっている。車輌デッキは水密隔壁で細かく区切るという事が出来ないので、比較的小さな損傷による浸水でも沈没に至りやすい。過去には、波浪によってランプウェーが破損し、そのための浸水によって極めて短時間に沈没した船が多数存在するが、現在の新造船では内部に防水ドアを設けるなどの対策が施されている。


フェリー
小型カーフェリーの接岸図
1.フェリー本体 2.バウバイザー 3.船首と船尾のランプ 4.2つに分かれたエンジン 5.並列2本煙管 6.L型岸壁
図のような小型で比較的穏やかな内海等を航行するフェリーは、波の打ち込みを考慮する必要が無いため、船体側面に開口部が多く開いている。
カーフェリーの最も特徴的な他船との構造上の違いは、船体内部に1層から3層程度の広い車輌甲板を持ち、大きなランプウェイ(斜路)を備えることである。運搬される車輌は、船の前後部や左舷に1-3つ程度の備えられたランプウェイを自走して車輌甲板内に搭載される。
こういった構造は純自動車運搬船(PCC)も似た状況であるが、いずれも、船体の喫水線近くに大きなランプウェイによるドアを持ち、荒天状況下で万が一ドアが破損すればこの開口部より波浪が大量に侵入して、広く平坦でなければならないために余裕を持って水密区画を設けることが出来ない船内に大量の水の浸入を招く恐れがある。このため、中大型のカーフェリーで船首ランプウェイを持つものは、波浪が直接、ランプウェイに当って破損されるの防ぐために、バウバイザー(Bow visor)と呼ばれる装置が船首部に備わっている船が多い。船首ランプウェイを持つ場合でも小型で航路が短いものではバウバイザーを備えず、荒天時には運休することで対応する船もある。
多くのカーフェリーでは、船首と船尾、または船首近くと船尾近くの左舷側にランプウェイを持つことで、車輌甲板内での自動車の前後方向を転換するという時間と手間の掛かる方法を避けて、車輌用の入口と出口を両方備えることで車輌甲板内では一方通行で済むようにしている。さらに、小型で航路長が極めて短いルートの船では、ランプウェイを船首と船尾の両方備えるだけでなく、スクリュー・プロペラを船の前後に備え、さらに操船用のブリッジも2箇所に持つことで、接岸時の船の転回の必要をなくしているものがあり、このような船は「両頭カーフェリー」と呼ばれる[17]
大型のカーフェリーでは上部構造物がクルーズ客船並みに大きい船もあり、そういった船はサイドスラスターを備えることで強風に流されることを防ぐ必要がある。


タンカー(油槽船)
LNG船
貨物船一般
貨物船の船倉ハッチはその多くが、レールにそって左右のいずれか片側に、または中央から左右2つに分かれて、電動モーターによって開閉するようになっている。
FOFO船
FOFO船
1.船体中央の乾舷が低い 2.上甲板を水面下に沈めて、重量物を浮かべて搭載位置へ移動させる。3.船を浮かべ直して運ぶ。
FOFO船(Float on Float off Ship)では重量物が搭載されるため、特に高強度な船体が要求される。船を水面下に沈めるための大きなバラスト・タンクを備える点でも特殊であり、平たく低い中央甲板を備える。


砕氷船

船体設計での重要事項

復原性

復原力
転覆させる力

単胴船での船体設計時に最も重要な要素に「復原性」(Stability) がある。復原性とはたとえ一度は船体が傾いても、転覆せずに正常位置に復帰出来る性能である。

搭載物を含めた船体重心の位置が浮力の中心より低いことで復原性が生じる。大きな帆を備えるヨットでは船底の最も下部に重い重りとなるキールを持つために横風を受けて傾いてもすぐに元に戻ることが出来るのも重心が浮力中心に比べて十分に低い為である。 ヨットのような特殊な船型をしていない場合には、船の長さを幅に対してあまりに長細くすると容易に転覆してしまい復原する前に浸水する危険があるため、細長い船型には限界がある。

復原力曲線 縦軸(GZ):復原てこの長さ 横軸(θ):横傾斜角 A.青い面積が動復原力 B.角度Bまで船体を横に傾けるのに必要なエネルギー(動復原力)が面積Aである。C.復原力消失角 復原力曲線が GZ=0 となる角度以上では船は転覆へと向かう。

復原力曲線

設計した船体が復原する力は復原力曲線によって表される。復原力曲線は船体の復原てこ(GZ)が縦軸に傾斜角度が横軸になり、それぞれの傾斜ごとでの復原てこがいくらになるかが示され、船体の戻りやすさと転覆の危険度が読み取れるようになっている。

復原力曲線のグラフ上の面積が排水量当りの動復原力を示し、船を転覆させるには復原てこ(GZ)が正の値をとる面積分のエネルギー(動復原力)が波浪などから船体に加えられる必要がある。

復原性に対する自由水影響

浸水時などで船内に流動性のある水があると船体の傾きによって低いほうへとその水が流れるためにさらに復原性を失わせるため転覆する可能性が増すことになる。こういった現象を復原性に対する「自由水影響」と呼ぶ。タンカーでのスロッシング (Sloshing) もローリングを増幅することがあり危険であるため、油槽内はいくつかに仕切られている。


荷崩れによる危険性

船艙内での荷崩れ1.船体が傾く 2.船艙内の荷が崩れる 3.崩れたことによって片側の側壁面に力が掛かり、その後船体が傾きをとり取り戻しても、一方に寄った荷によって常に重心は片側によってしまい、その後の船体の傾きを助長する。

貨物船などでは、搭載物が船の揺れや傾きによって片舷に寄ると、設計時の意図しない形で重心が偏るため、搭載物の固定は復原性を確保するのに重要である。特に穀物や粉体等の擬似的に流動性を持つ貨物は、船艙内であまり自由な運動を許すと船が波浪などで傾いた時に突然流動性を帯びて荷崩れを起こし復原性に対する「自由水影響」と同様の効果によって船の安定を著しく損なう場合がある。

専用運搬船では設計段階から船艙上部の隅をあらかじめ三角形の壁面で構成して荷崩れでの影響をあまり受けないようにしているが、それも8-10割程度の積載時の場合にしか効果はなく、全船艙に半分ずつ均等に積載するようなことはなるべく避けて、満載と空虚を交互に配置するような方法をとるのが普通である。これにより安全と共に、積み卸しとその後の清掃の手間がいくぶん省けるが、船体に剪断力が加わることになる。

水密区画

21世紀現在、新たに建造されるすべての大型船では、船体内部は船底から上甲板へ達する水密隔壁により多数の水密区画に分割されていて、浸水時にも浸水範囲を限定することで浮力を大きく失わないようにしている。また、船底は「二重底」(Double Bottom)になっており、万が一、座礁などで浸水が始まっても沈没しないだけの必要な浮力を温存することや、たとえ多数の水密区画が浸水するような重大な事故においても出来るだけ長い避難時間を稼げるように考慮されている。
タンカーの二重船殻構造
二重底は鉄鋼船になって早くから取り入れられてきたが、大型タンカーに限っては一時期、二重底から「単底」(Single Bottom)に変更されていた時期があった。大型タンカーは他の船舶と比べても区画が多数に分割されているためや、油は水より軽く油で満たされた油槽に万が一、穴が空いても少しずつしか漏れ出さない事もあって浸水に対して比較的安全であることや、二重底にして油槽付近に空隙を放置すると石油や原油から発生したガスが二重底内部に溜まって危険であるなどがその理由であったが、1989年のエクソン・バルディーズ号が起こしたアラスカ沖での座礁による原油流出事故の後、環境保護の観点から船底と側壁を二重にする二重船殻構造(Double Hull)が国際条約(海洋汚染防止条約、MARPOL条約の改正)によって1992年以降、義務付けられている。

振動対策

船体に振動が起きると金属疲労による安全性の低下や居住性の悪化を招くため、船体起振力(Hull vibration)は出来るだけ抑えなければならない。

船体起振力は「プロペラ誘導起振力」と「機関誘導起振力」より成る。

プロペラ誘導起振力
プロペラ誘導起振力の内、サーフェスフォース(Surface force)はプロペラ翼面に起因する振動であり、プロペラ翼の圧力波が船体表面に伝わることで生じ、キャビテーションによって増大する。これは、プロペラ翼を船体表面や舵から離す、キャビテーションを抑制する、などで低減できる。
もう1つはベアリングフォース・モーメント(Bearing force and moment)で、船尾水流が不均一になることで発生する。これは、船尾部水流の動きがプロペラ翼、プロペラ軸からプロペラ軸軸受けなどを経由して船体に伝わる振動である。
船尾部の形状を整えて伴流を滑らかにすると共に、プロペラの枚数×プロペラ回転数 の整数倍で表される翼周波数(Blade frequency)を船体の固有振動数から出来るだけ離す設計が求められる。
機関誘導起振力
機関誘導起振力はディーゼル・エンジンのようなレシプロ・エンジンの気筒ごとのピストン運動によって生じる。気筒数とエンジン回転数の関係から起振周波数が求められる。
客船ではエンジンをゴム等の緩衝材で保持することで振動が船体に伝わるのを防ぐ工夫が行なわれている。

  1. ^ a b 泉江三著 『日本の戦艦 上』 グランプリ出版 2001年4月20日初版発行 ISBN 487687221X
  2. ^ a b c d e f g 池田良穂著 「図解雑学 船のしくみ」 ナツメ社 2006年5月10日初版発行 ISBN 4-8163-4090-4
  3. ^ 渡辺逸郎著 「コンテナ船の話」 成山堂書店 18年12月18日初版発行 ISBN 4425713710
  4. ^ 伊藤雅則著 「船はコンピュータで走る」 共立出版 1995年1月15日第一版発行 ISBN 4-320-02915-1
  5. ^ a b c 池田宗雄著 「船舶知識のABC」 成山堂書店 第2版 ISBN 4-425-91040-0
  6. ^ a b c d e f 仲之薗郁夫著 「海のパイロット物語」 成山堂書店 2002年1月28日初版発行 ISBN 4-425-94651-0
  7. ^ 小野寺幸一著 「地球90周の航跡」 東京経済 1995年4月20日第一刷発行 ISBN 4-8064-0419-5
  8. ^ 「船の省エネ技術開発」『海の環境革命~海事社会と地球温暖化問題~』(PDF) 日本海事センター、2010年3月、17頁。
  9. ^ ジャパン マリンユナイテッドホームページ TOP > 技術・研究開発 > 技術開発 > 流力技術 > 実海域性能
  10. ^ a b c 野沢和夫著 「船 この巨大で力強い輸送システム」 大阪大学出版会 2006年9月10日初版第一刷発行 ISBN 4-87259-155-0
  11. ^ 檜垣和夫著 「エンジンのABC」 ブルーバックス 講談社 1998年3月20日第6刷発行 ISBN 4-06-257129-3
  12. ^ 野沢和夫著 「氷海工学」 成山堂書店 2006年3月28日初版発行 ISBN 4-425-71351-6
  13. ^ a b 拓海広志著 「船と海運のはなし」 成山堂書店 平成19年11月8日改訂増補版発行 ISBN 978-4-425-911226
  14. ^ 恵美洋彦著 「Illustrations of Hull Structures」 成山堂書店 2006年11月28日初版発行 ISBN 4-425-71381-8
  15. ^ 佐藤忠著 「セメント船を造ろう」 パワー社 2001年9月25日発行 ISBN 4-8277-2277-3
  16. ^ 吉識恒夫著 「造船技術の進展」 成山堂書店 2007年10月8日初版発行 ISBN 978-4-425-30321-2
  17. ^ 池田良穂著 『内航客船とカーフェリー』 成山堂書店 平成20年7月18日新訂初版発行 ISBN 9784425770724
  18. ^ 満田豊他著 『海のなんでも小事典』 講談社ブルーバックス 2008年3月20日第1版発行 ISBN 9784062575935
  19. ^ 海上における船舶のための共通通信システムの在り方及び普及促進に関する検討会報告書p.14 (PDF) 「海上における船舶のための共通通信システムの在り方及び普及促進に関する検討会」報告書(案)に対する意見募集の結果及び最終報告書の公表 総務省報道資料別紙3 平成21年1月27日 (国立国会図書館のアーカイブ:2009年7月22日収集)
  20. ^ 船舶が任意に設置する安価な国際VHF機器の導入に伴う関係規定の整備 総務省報道資料 平成21年10月1日 (国立国会図書館のアーカイブ:2009年10月21日収集)





船舶工学と同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「船舶工学」の関連用語

船舶工学のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



船舶工学のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの船舶工学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2019 Weblio RSS