理想気体 統計力学による再現

理想気体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/09 12:14 UTC 版)

統計力学による再現

理想気体の手短な解説[16]において

  • 理想気体の体積中では気体分子の占める体積は存在しない(分子の体積がゼロ)。
  • 理想気体では分子間力がいっさい作用しない(相互作用がゼロ)。
  • 理想気体は分子同士[17]や容器内壁と衝突してもその衝突前と衝突後で運動エネルギーの和は変わらない(完全弾性衝突)。

という説明がなされることがある。しかし、分子の体積と相互作用の両方が厳密にゼロだったなら、分子同士が衝突することはありえない。そのため気体が熱平衡に達するには、容器内壁を介して間接的に分子がエネルギーを互いにやり取りしなければならない。ところが容器内壁と分子の衝突が完全弾性衝突だったなら、それも不可能である。したがって、分子の体積がゼロ、相互作用がゼロ、完全弾性衝突だったなら、どれだけ時間が経っても気体が熱平衡に達することはない。

上の3条件のいずれかを適当に緩めると、気体を熱平衡状態にすることができる。例えば、容器内壁と分子の間にエネルギーのやり取りを許せばよい。そうすると壁を温度 T の熱浴とみなせるので、カノニカル分布の方法が使える[18]

あるいは、完全弾性衝突の条件をそのままにして

  • 理想気体の体積中で構成粒子の占める体積はきわめて小さいがゼロではない(微小剛体球)。
  • 理想気体では粒子間に引力が働かない(引力がゼロ)。
  • 理想気体は粒子同士や容器内壁と衝突してもその衝突前と衝突後で運動エネルギーの和は変わらない(完全弾性衝突)。

としてもよい[19]。ここで微小剛体球の半径は、実際の分子の大きさよりもずっと小さい値、例えば 1 fm核子くらいの大きさ)を仮定する。剛体球なので、粒子間距離が球の直径より小さくなろうとしたときには強い斥力が働いて粒子同士の衝突は完全弾性衝突となるが、粒子間距離が球の直径より少しでも大きいときには粒子間に相互作用が働かない。理想気体の体積中で構成粒子の占める体積が十分に小さければ、この系はほとんど独立な粒子の集まりとなるので理想系[注 7][20][21]である。容器内壁との衝突が完全弾性衝突ということは、この壁が断熱壁であるということなので、体積 V と 粒子数 N が一定であれば、この系は孤立系である。よってボルツマンの公式によりエントロピーを求めることができる(ミクロカノニカルアンサンブル)。

内部自由度のない粒子からなる理想気体

単原子理想気体の性質は、粒子の並進運動の分配関数から計算できる。すなわち、容器内壁以外でポテンシャルがゼロであるようなハミルトニアンを用いることで、単原子理想気体の性質が統計力学により再現される。

剛体回転子からなる理想気体

狭義の理想気体の性質は、分子の並進と回転の分配関数から計算できる。分子を古典力学に従う剛体回転子とみなすと、理想気体の熱容量が温度に依存しないことが統計力学により再現される。

振動する分子からなる理想気体

半理想気体の性質は、分子の並進と回転と振動の分配関数から計算できる。必要であれば分子の電子状態の分配関数も考える。調和振動子のハミルトニアンを用いることで、理想気体の熱容量が温度に依存することが統計力学により再現される。窒素 N2、酸素 O2、水蒸気 H2O の熱容量が比較的広い温度範囲で一定とみなせるのは、これらの分子の分子振動を励起するのに必要なエネルギーが kBT よりもずっと大きいためである。


注釈

  1. ^ 分子原子など。
  2. ^ 気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。
  3. ^ specific gas constant。単に気体定数と呼ぶことが多い。
  4. ^ molar gas constant。単に気体定数と呼ぶことが多い。
  5. ^ 粒子の回転や変形などの自由度のこと。
  6. ^ 基準とする温度 T0 には依存する。
  7. ^ わずかな相互作用により粒子が互いにエネルギーを交換するが、相互作用エネルギーの全系のエネルギーへの寄与は無視できるほど小さく、全系のエネルギーが個々の粒子のエネルギーの和として与えられる系のこと。
  8. ^ ただしファンデルワールス気体では、固体への相転移は起こらない。
  9. ^ ある極限状態に近づくにつれて近似が良くなり、極限状態では厳密に成り立つ法則のこと。

出典

  1. ^ 理化学辞典』「理想気体」.
  2. ^ アトキンス物理化学』 p. 9.
  3. ^ 伏見 1942, p. 9.
  4. ^ グリーンブック』 p. 167.
  5. ^ 理化学辞典』「気体定数」.
  6. ^ 松尾 1994, p. 9.
  7. ^ キャレン 1999, p. 12.
  8. ^ 田崎 2000, p. 52.
  9. ^ 松尾 1994, p. 15.
  10. ^ キャレン 1998, p. 87.
  11. ^ これらの c の値は『アトキンス物理化学』 表2・7 より算出した。
  12. ^ 松尾 1994, p. 14.
  13. ^ 清水 2007, p. 115.
  14. ^ 田崎 2000, p. 175.
  15. ^ 清水 2007, p. 264,401.
  16. ^ 石川 2016, p. 76; 卜部 2005, p. 116など。
  17. ^ 石川 2016, pp. 76–84. には理想気体の分子同士の衝突に関する記述はない。
  18. ^ 香取 2007, pp. 10, 20.
  19. ^ 松尾 1994, p. 10.
  20. ^ 中村 1993, p. 92.
  21. ^ 阿部 1992, p. 3.
  22. ^ 香取 2007, p. 13.
  23. ^ 松尾 1994, p. 21.
  24. ^ アトキンス物理化学要論』 p. 12.
  25. ^ アトキンス物理化学』 p. 14.
  26. ^ a b ダンネマン 1979, p. 100.
  27. ^ 高林 1999, p. 100.
  28. ^ ダンネマン 1979, pp. 100–101.
  29. ^ 高林 1999, pp. 100–101.
  30. ^ a b 山本2巻 2009, p. 48.
  31. ^ ダンネマン 1979, pp. 101–102, 107–108.
  32. ^ ダンネマン 1979, p. 103.
  33. ^ ダンネマン 1979, pp. 103, 109.
  34. ^ a b ダンネマン 1979, p. 104.
  35. ^ キャレン 1999, p. 97.
  36. ^ ダンネマン 1979, pp. 113–114.
  37. ^ 高林 1999, p. 102.
  38. ^ 山本3巻 2009, p. 74.
  39. ^ 山本3巻 2009, p. 75.
  40. ^ 山本3巻 2009, pp. 78–79.
  41. ^ 山本3巻 2009, pp. 49, 74.
  42. ^ 山本3巻 2009, p. 50.
  43. ^ 山本3巻 2009, pp. 45–46.
  44. ^ a b 山本3巻 2009, p. 108.
  45. ^ 山本3巻 2009, p. 105.
  46. ^ 山本3巻 2009, pp. 135–136.






理想気体と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「理想気体」の関連用語

理想気体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



理想気体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの理想気体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS