炭素 名称

炭素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/09 12:08 UTC 版)

名称

フランス語の「carbone」は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語carboから[12]名づけた。英語のcarbonは、これが転じたものである[1]

ドイツ語の「Kohlenstoff」も「炭の物質」を意味する[1]

日本語の「炭素」という語は、宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。

特徴

単体化合物両方においてきわめて多様な形状をとることができる。

非金属の炭素には、4つの外殻電子と4つの空席がある。そのため、価電子数4[13]と元素の中でももっとも多い4組の共有結合を持つことが可能であり、この特徴から多様な分子をつくる骨格となる[14][15]。炭素がほかの元素と結びついて作る化合物の種類は約5,400万種にのぼる[13]

融点昇華を起こす温度は全元素の中でもっとも高い。常圧下では融点を持たず、三重点は10.8±0.2MPa、4,600±300Kであり[3][4]、昇華は約3,900Kで起こる[16][17]

炭素原子同士の共有結合は非常に堅牢であり[13]、それがつくる単体において、自然物としてはもっとも硬いことで知られるダイヤモンドからもっとも柔らかい部類に入るグラファイトまで、幅広い形態や同素体を持つ。

歴史

炭素の単体は有機物を不完全燃焼すれば簡単に取り出せるため、有史以前から知られていた[1][18]ダイヤモンドの存在も紀元前2500年ごろの古代中国では知られており、古代ローマでは今日と同様に木から木炭を得ていた。古代エジプトでも、粘土で密封したピラミッドの中から空気を抜くために木を熱する方法が用いられた[19][20]。そのため、特定の元素発見者はいない[1]

カール・ヴィルヘルム・シェーレ

1722年、ルネ・レオミュールは鉄がとなるには何かしらの物質を吸収することを示したが、現在ではそれは炭素であることが明らかとなった[21]。1772年にはアントワーヌ・ラヴォアジエが燃焼によって水が生じず、重量あたり同じ比率の二酸化炭素を生じることを確かめ、ダイヤモンドが炭素の単体であることを証明した[22]。1779年にカール・ヴィルヘルム・シェーレは、グラファイトが従来考えられていたようにの一形態ではないと示し[22]、1786年にクロード・ルイ・ベルトレーガスパール・モンジュ、C.A.ヴァンデスモンドが炭素であることを明らかにした[23]。彼らがこれを知らしめた際、この元素にcarboneという名をつけ、ラヴォアジエが1789年にまとめた元素のテキストに採録された[22]

同素体フラーレンが発見されたのは1985年であり[24]、同じくナノ構造体としてはバッキーボールカーボンナノチューブも見つかった[25]。これらの発見は1996年ノーベル化学賞の授与対象となった[26][27]。これらに触発された更なる同素体探査の結果、「ガラス状炭素」や、厳密には無定形ではないが名づけられた「無定形炭素」等の発見へつながった[28]

生成

炭素原子の生成にはヘリウムの原子核であるアルファ粒子の3重衝突が必要となる。これには約1億度の熱が必要となるが、ビッグバンでは宇宙がはじめに大きく膨張してすぐに急速に冷え、炭素は生成されなかったと考えられている[29]。しかし、その後形成された恒星内でトリプルアルファ反応によるヘリウム燃焼過程でエネルギーを放出しながら炭素が生成される[30]。こうして作られた炭素は、主系列星の内部で水素がヘリウムになるCNOサイクルを媒介し、星のエネルギー放射に一役買っている[31]


  1. ^ a b c d e f g h i j 桜井 1997, p. 49.
  2. ^ Chemical Rubber Company Handbook of Chemistry and Physics, 59th Edition, CRC Press, Inc, 1979
  3. ^ a b Haaland, D (1976). “Graphite-liquid-vapor triple point pressure and the density of liquid carbon☆☆☆”. Carbon 14: 357. doi:10.1016/0008-6223(76)90010-5. 
  4. ^ a b Savvatimskiy, A (2005). “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003)”. Carbon 43: 1115. doi:10.1016/j.carbon.2004.12.027. 
  5. ^ Fourier Transform Spectroscopy of the System of CP” (PDF) (英語). 2011年3月27日閲覧。
  6. ^ Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical” (PDF) (英語). 2011年3月27日閲覧。
  7. ^ Carbon: Binary compounds” (英語). WebElements. 2011年3月27日閲覧。
  8. ^ a b c d e 化学工業日報 1996, pp. 102–103, 【炭素化合物】.
  9. ^ Magnetic susceptibility of the elements and inorganic compounds” (PDF) (英語). Handbook of Chemistry and Physics 81st edition, CRC press. 2011年3月27日閲覧。
  10. ^ a b c d e C-Diamond” (英語). 2011年3月27日閲覧。
  11. ^ a b c d 佐藤健太郎『炭素文明論』新潮社、2013年、15頁。 
  12. ^ Shorter Oxford English Dictionary, Oxford University Press
  13. ^ a b c d e f 編集長:水谷仁『ニュートン別冊周期表第2冊』ニュートンプレス東京都、2010年、92-93頁。ISBN 978-4-315-51876-4 
  14. ^ a b Chemistry Operations (2003年12月15日). “Carbon” (英語). Los Alamos National Laboratory. 2011年3月27日閲覧。
  15. ^ 桜井 1997, p. 54.
  16. ^ Greenville Whittaker, A. (1978). “The controversial carbon solid−liquid−vapour triple point”. Nature 276: 695. doi:10.1038/276695a0. 
  17. ^ J.M. Zazula (1997年). “On Graphite Transformations at High Temperature and Pressure Induced by Absorption of the LHC Beam” (英語) (PDF). CERN. http://lbruno.home.cern.ch/lbruno/documents/Bibliography/LHC_Note_78.pdf 2011年3月27日閲覧。 
  18. ^ Timeline of Element Discovery” (英語). 2011年3月27日閲覧。
  19. ^ “Chinese made first use of diamond” (英語). BBC News. (2005年5月17日). http://news.bbc.co.uk/2/hi/science/nature/4555235.stm 2011年3月27日閲覧。 
  20. ^ van der Krogt, Peter. “Carbonium/Carbon at Elementymology & Elements Multidict” (英語). 2011年3月27日閲覧。
  21. ^ Ferchault de Réaumur, R-A (1722). L'art de convertir le fer forgé en acier, et l'art d'adoucir le fer fondu, ou de faire des ouvrages de fer fondu aussi finis que le fer forgé (English translation from 1956). Paris, Chicago 
  22. ^ a b c Senese,Fred (200-09-09). “Who discovered carbon?” (英語). Frostburg State University. 2011年3月27日閲覧。
  23. ^ Federico Giolitti (1914). The Cementation of Iron and Steel. McGraw-Hill Book Company, inc. 
  24. ^ H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley (1985). “C60: Buckminsterfullerene”. Nature 318: 162–163. doi:10.1038/318162a0. 
  25. ^ a b c Peter Unwin. “Fullerenes(An Overview)” (英語). 2011年3月27日閲覧。
  26. ^ 桜井 1997, pp. 51–52.
  27. ^ The Nobel Prize in Chemistry 1996 "for their discovery of fullerenes"” (英語). 2011年3月27日閲覧。
  28. ^ a b Harris, PJF; Gallagher, J. G.; Hargreaves, J. S. J.; Harris, P. J. F. (2004). “Fullerene-related structure of commercial glassy carbons”. Philosophical Magazine, 84, 3159–3167 116: 122. doi:10.1007/s10562-007-9125-6. 
  29. ^ 青木 2004, pp. 35–37, 第2章 ビッグバンと元素合成.
  30. ^ 青木 2004, pp. 53–79, 第3章 星の中での元素合成.
  31. ^ 尾崎 2010, pp. 20–33, 第2章 太陽と太陽系、4-5節.
  32. ^ a b Biological Abundance of Elements” (英語). The Internet Encyclopedia of Science. 2011年3月27日閲覧。
  33. ^ Mark (1987). Meteorite Craters. University of Arizona Press. ISBN 0816509026 
  34. ^ 佐藤健太郎『炭素文明論』新潮社、2013年、15-16頁。 
  35. ^ a b c d e f 佐藤健太郎『炭素文明論』新潮社、2013年、16頁。 
  36. ^ Helen Knight (2010年6月12日). “Wonderfuel: Welcome to the age of unconventional gas, pp. 44–7” (英語). New Scientist. 2011年3月27日閲覧。
  37. ^ N. Shakhova, I. Semiletov, A. Salyuk, D. Kosmach (2008年). “Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? 10” (PDF) (英語). European Geosciences Union, General Assembly 2008, Geophysical Research Abstracts EGU2008-A-01526. 2011年3月27日閲覧。
  38. ^ P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Högberg, S. Linder, F. T. Mackenzie, B. Moore III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen. (2000). “The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System”. Science 290 (5490): 291–296. doi:10.1126/science.290.5490.291. PMID 11030643. 
  39. ^ R. Stefanenko (1983). Coal Mining Technology: Theory and Practice. Society for Mining Metallurgy. ISBN 0895204045 
  40. ^ Kasting, James (1998). “The Carbon Cycle, Climate, and the Long-Term Effects of Fossil Fuel Burning”. Consequences: the Nature and Implication of Environmental Change 4 (1). http://gcrio.org/CONSEQUENCES/vol4no1/carbcycle.html. 
  41. ^ Minerals Yearbook: Graphite, 2006” (PDF) (英語). USGS. 2011年3月27日閲覧。
  42. ^ Catelle, W.R. (1911). The Diamond. John Lane Company  Page 159 discussion on Alluvial diamonds in India and elsewhere as well as earliest finds
  43. ^ J. W. Hershey (1940). The Book Of Diamonds: Their Curious Lore, Properties, Tests And Synthetic Manufacture. Kessinger Pub Co. p. 28. ISBN 1417977159 
  44. ^ a b Janse, A. J. A. (2007). “Global Rough Diamond Production Since 1870”. Gems and Gemology (GIA) XLIII (Summer 2007): 98–119. 
  45. ^ Marshall, Stephen; Shore, Josh (2004年10月22日). “The Diamond Life” (英語). Guerrilla News Network. 2008年10月10日時点のオリジナルよりアーカイブ。2011年3月27日閲覧。
  46. ^ Lorenz, V. (2007). “Argyle in Western Australia: The world's richest diamantiferous pipe; its past and future”. Gemmologie, Zeitschrift der Deutschen Gemmologischen Gesellschaft (DGemG) 56 (1/2): 35–40. 
  47. ^ a b Carbon – Naturally occurring isotopes” (英語). WebElements Periodic Table. 2011年3月27日閲覧。
  48. ^ Official SI Unit definitions” (英語). 2011年3月27日閲覧。
  49. ^ a b Brown, Tom (2006年3月1日). “Carbon Goes Full Circle in the Amazon” (英語). Lawrence Livermore National Laboratory. 2011年3月27日閲覧。
  50. ^ a b c 早川由紀夫. “放射性炭素年代測定の原理と暦年代への換算”. 群馬大学教育学部. 2011年3月27日閲覧。
  51. ^ a b c d e f 桜井 1997, p. 50.
  52. ^ a b Bowman, S. (1990). Interpreting the past: Radiocarbon dating. British Museum Press. ISBN 0-7141-2047-2 
  53. ^ Libby, WF (1952). Radiocarbon dating. Chicago University Press and references therein 
  54. ^ Westgren, A. (1960年). “The Nobel Prize in Chemistry 1960” (英語). Nobel Foundation. 2011年3月27日閲覧。
  55. ^ 増田公明. “放射性炭素(C14)による過去の宇宙線強度と太陽活動の研究”. 名古屋大学太陽地球観測研究所. 2011年3月27日閲覧。[リンク切れ]
  56. ^ 植村福七「ラジオ・アイソトープの産業利用とその影響-主として工業利用-」『香川大学経済論叢』第31巻第3号、香川大学経済研究所、1958年9月、1-44頁、ISSN 0389-3030NAID 120007011245 
  57. ^ Use query for carbon-8”. 2007年12月21日閲覧。
  58. ^ Beaming Into the Dark Corners of the Nuclear Kitchen” (英語). 2011年3月27日閲覧。
  59. ^ World of Carbon – Interactive Nano-visulisation in Science &Engineering Edukation (IN-VSEE)” (英語). 2011年3月27日閲覧。
  60. ^ C. Lee; Wei, X; Kysar, JW; Hone, J (2008). “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”. Science 321 (5887): 385. doi:10.1126/science.1157996. PMID 18635798. http://www.sciencemag.org/cgi/content/abstract/321/5887/385. 非専門家向けの内容要旨. 
  61. ^ Sanderson, Bill (2008年8月25日). “Toughest Stuff Known to Man : Discovery Opens Door to Space Elevator” (英語). nypost.com. 2011年3月27日閲覧。
  62. ^ a b c 桜井 1997, p. 52.
  63. ^ a b Ebbesen, TW, ed (1997). Carbon nanotubes—preparation and properties. Boca Raton, Florida: CRC Press. ISBN 0849396026 
  64. ^ a b MS Dresselhaus, G Dresselhaus, Ph Avouris, ed (2001). “Carbon nanotubes: synthesis, structures, properties and applications”. Topics in Applied Physics (Berlin: Springer) 80. ISBN 3540410864. 
  65. ^ Nasibulin, Albert G.; Pikhitsa, PV; Jiang, H; Brown, DP; Krasheninnikov, AV; Anisimov, AS; Queipo, P; Moisala, A et al. (2007). “A novel hybrid carbon material”. Nature Nanotechnology 2 (3): 156–161. doi:10.1038/nnano.2007.37. PMID 18654245. 
  66. ^ Nasibulin, A; Anisimov, Anton S.; Pikhitsa, Peter V.; Jiang, Hua; Brown, David P.; Choi, Mansoo; Kauppinen, Esko I. (2007). “Investigations of NanoBud formation”. Chemical Physics Letters 446: 109–114. doi:10.1016/j.cplett.2007.08.050. 
  67. ^ Vieira, R (2004). “Synthesis and characterisation of carbon nanofibers with macroscopic shaping formed by catalytic decomposition of C2H6/H2 over nickel catalyst”. Applied Catalysis A 274: 1–8. doi:10.1016/j.apcata.2004.04.008. 
  68. ^ a b Clifford, Frondel; Marvin, Ursula B. (1967). “Lonsdaleite, a new hexagonal polymorph of diamond”. Nature 214: 587–589. doi:10.1038/214587a0. 
  69. ^ Rode, A.V.; Hyde, S.T.; Gamaly, E.G.; Elliman, R.G.; McKenzie, D.R.; Bulcock, S. (1999). “Structural analysis of a carbon foam formed by high pulse-rate laser ablation”. Applied Physics A-Materials Science & Processing 69: S755–S758. doi:10.1007/s003390051522. 
  70. ^ Carbyne and Carbynoid Structures Series: Physics and Chemistry of Materials with Low-Dimensional Structures, Vol. 21 Heimann, R.B.; Evsyukov, S.E.; Kavan, L. (Eds.) 1999, 452 p., ISBN 0-7923-5323-4
  71. ^ (日本語) 2010年生産量3年ぶりプラスに カーボンブラック. 化学工業日報. (2011-02-15). http://www.kagakukogyonippo.com/headline/2011/02/15-533.html 2011年3月27日閲覧。. 
  72. ^ 化学工業日報 1996, p. 1592, 【黒鉛・人造黒鉛】.
  73. ^ 【黒鉛】 原子力用語集 カ行”. 経済産業省資源エネルギー庁. 2011年3月27日閲覧。
  74. ^ 各国原子炉開発の動向”. 内閣府原子力委員会. 2011年3月27日閲覧。
  75. ^ 桜井 1997, pp. 50–51.
  76. ^ 大串秀世. “「夢」ではなくなったダイヤモンド半導体”. 独立行政法人科学技術振興機構. 2011年3月27日閲覧。
  77. ^ 統計データ 第5章 鉱工業9 工業生産量‐化学・石油・セメント[統計表]”. 総務省. 2011年3月27日閲覧。[リンク切れ]
  78. ^ 化学工業日報 1996, pp. 1067–1069, 【カーボンブラック】.
  79. ^ Dorfer, Leopold; Moser, M; Spindler, K; Bahr, F; Egarter-Vigl, E; Dohr, G (1998). “5200-year old acupuncture in Central Europe?”. Science 282 (5387): 242–243. doi:10.1126/science.282.5387.239f. PMID 9841386. 
  80. ^ Donaldson, K; Stone, V; Clouter, A; Renwick, L; MacNee, W (2001). “Ultrafine particles”. Occupational and Environmental Medicine 58 (3): 211–216. doi:10.1136/oem.58.3.211. PMC 1740105. PMID 11171936. http://oem.bmj.com/cgi/content/extract/58/3/211. 
  81. ^ Carbon Nanoparticles Toxic To Adult Fruit Flies But Benign To Young” (英語). ScienceDaily (2009年8月17日). 2011年3月27日閲覧。






炭素と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「炭素」の関連用語

炭素のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



炭素のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの炭素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS