火星 物理的性質

火星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/19 00:25 UTC 版)

物理的性質

地球と火星の大きさ比較。

火星は地球型惑星に分類される、いわゆる硬い岩石の地表を持った惑星である。火星が赤く見えるのは、その表面に地球のような水のが無く、地表に酸化鉄(赤さび)が大量に含まれているためである。半径が地球の約2分の1、質量は地球の約10分の1に過ぎないため、火星の地表での重力の強さは地球の40パーセントほどしかない。火星の表面積は、地球の表面積の約4分の1であるが、これは地球の陸地の面積(約1.5億平方キロメートル)とほぼ等しい。火星の自転周期は地球のそれと非常に近く、火星の1日(1火星太陽日、1sol)は、24時間39分35.244秒である。また、地球と同じように太陽に対して自転軸を傾けたまま公転しているため、火星には季節が存在する。

質量

地球や金星と比べて火星の質量は小さい[3]。太陽系の惑星移動のモデルであるグランド・タック・モデルによると、木星は火星形成前に一度火星軌道程度まで太陽に近づき、のちに現在の軌道に落ち着いたとしている[3]。その際、火星軌道付近の微惑星がはじき飛ばされ枯渇してしまったため、火星が大きく成長できなかった可能性を示唆している[3]

大気

火星(この低軌道写真の中の地平線で見える)の薄い大気

火星の大気は希薄で、地表での大気圧は約750Paと地球での平均値の約0.75パーセントに過ぎない。逆に大気の厚さを示すスケールハイトは約11キロに達し、およそ6キロである地球よりも高い。これらはいずれも、火星の重力が地球よりも弱いことに起因している。大気が希薄なために熱を保持する作用が弱く、表面温度は最高でも約20℃である。大気の組成は二酸化炭素が95パーセント、窒素が3パーセント、アルゴンが1.6パーセントで、ほかに酸素水蒸気などの微量成分を含む。ただし、火星の大気の上層部は太陽風の影響を受けて宇宙空間へと流出していることが、ソビエト連邦の無人火星探査機のフォボス2号によって観測されている。したがって上記の火星の大気圧や大気組成は、長い目で見ると変化している可能性、そして今後も変化していく可能性が指摘されている。

2003年に地球からの望遠鏡による観測で大気にメタンが含まれている可能性が浮上し、2004年3月のマーズ・エクスプレス探査機の調査による大気の解析でメタンの存在が確認された。現在観測されているメタンの量の平均値は体積比で約11±4 ppbである。

火星の環境下では不安定な気体であるメタンの存在は、火星にメタンのガス源が存在する(または、少なくとも最近100年以内には存在していた)という興味深い事実を示唆している。ガスの生成源としては火山活動や彗星の衝突、あるいはメタン菌のような微生物の形で生命が存在するなどの可能性が考えられているが、いずれも未確認である。地球の海では、生物によってメタンが生成される際には同時にエタンも生成される傾向がある。一方、火山活動から放出されるメタンには二酸化硫黄が付随する。メタンは火星表面のところどころに局所的に存在しているように見えることから、発生したメタンは大気中に一様に分布するよりも短時間で分解されていることがうかがえる。それゆえ、おそらく持続的に大気中に放出されているとも推測される。発生源に関する仮説でどれがもっとも有力かを推定するために、メタンと同時に放出される別の気体を検出する計画も現在進められている。

火星大気には大きく変化する面もある。冬の数か月間に極地方で夜が続くと、地表は非常に低温になり、大気全体の25パーセントもが凝固して厚さ数メートルに達する二酸化炭素の氷(ドライアイス)の層をつくる。やがて、極に再び日光が当たる季節になると二酸化炭素の氷は昇華して、極地方に吹き付ける時速400キロに達する強い風が発生する。これらの季節的活動によって大量の塵や水蒸気が運ばれ、地球と似たや大規模な巻雲が生じる。このような水の氷からなる雲の写真が2004年にオポチュニティによって撮影されている(NASA撮影画像へのリンク)。また、南極で二酸化炭素が爆発的に噴出した跡がマーズ・オデッセイによって撮影されている[4]

火星は短い時間尺度では温暖化していることを示唆する証拠も発見されている[5]。しかし21世紀初頭の火星は1970年代よりは寒冷である[6]

温度

火星の有効温度は氷点下56℃であり、実際の温度の氷点下53℃とほとんど変わらないのは、二酸化炭素が0.006気圧であり水蒸気もほとんど存在せず温室効果が弱いからである[7]

地質

スピリットが抉った地表。明るいシリカ二酸化ケイ素)が剥き出しになっている。

火星の表面は主として玄武岩安山岩からなっている。いずれも地球上ではマグマが地表近くで固まって生成する岩石であり、含まれる二酸化ケイ素(SiO2)の量で区別される。火星では多くの場所が厚さ数メートルあるいはそれ以上の滑石粉のような細かい塵で覆われている。

マーズ・グローバル・サーベイヤー探査機による火星の磁場の観測から、火星の地殻が向きの反転を繰り返すバンド状に磁化されていることが分かっている。この磁化バンドは典型的には幅160キロ、長さ1,000キロにわたっている。このような磁化のパターンは地球の海底に見られるものと似ている。1999年に発表された興味深い説によると、これらのバンドは過去の火星のプレートテクトニクス作用の証拠かもしれないと考えられている。しかしそのようなプレート活動があった証拠はまだ確認されていない[8]2005年10月に発表された新たな発見は上記の説を支持するもので、地球で発見されている海底拡大によるテクトニクス活動と同様の活動が太古の火星にあったことを示している[9]。もしこれらが正しければ、これらの活動によって炭素の豊富な岩石が地表に運ばれることによって地球に近い大気が維持され、一方で磁場の存在によって火星表面が宇宙放射線から守られることになったかもしれない。またこれらとは別の理論的説明も提案されている。

オポチュニティによって撮影された火星の岩石の顕微鏡写真。過去に水の作用によって作られたと考えられている。

オポチュニティによる発見の中に、メリディアニ平原で採取した岩石から小さな球形の赤鉄鉱ヘマタイト)が発見された。この球体は直径わずか数ミリしかなく、数十億年前に水の多い環境の下で堆積岩として作られたものと考えられている。ほかにも鉄ミョウバン石など、硫黄臭素を含む鉱物が発見されている。これらを含む多くの証拠から、学術誌サイエンス2004年12月9日号において50名の研究者からなる研究グループは、「火星表面のメリディアニ平原では過去に液体の水が断続的に存在し、地表の下が水で満たされていた時代が何回かあった。液体の水は生命にとって鍵となる必要条件であるため、我々は火星の歴史の中でメリディアニでは生命の存在可能な環境が何度か作られていたと推測している」と結論している。メリディアニの反対側の火星表面では、コロンビア・ヒルズにおいてスピリット針鉄鉱を発見している。これは(赤鉄鉱とは異なり)水が存在する環境で「のみ」作られる鉱物である。スピリットはほかにも水の存在を示す証拠を発見している。

マーズ・グローバル・サーベイヤーが2006年に撮影した写真から、クレーター内壁の斜面を液体が流れた痕跡が見つかったが、1999年に同じ場所を撮影した写真には写っておらず、それ以降にできたものと思われる。

1996年、火星起源であると考えられている隕石ALH84001」を調査していた研究者が、火星の生命によって残されたと思われる微小化石がこの隕石に含まれていることを報告した。2005年現在、この解釈についてはいまだに議論があり、合意は得られていない。

地形

火星の地形図。特徴的な地形として、西部のタルシス火山群(オリンポス山を含む)、タルシスの東にあるマリネリス峡谷、南半球のヘラス盆地などがある

火星の地形は大きく2通りに分かれており、特徴的である。北半球は溶岩流によって平らに均された平原(北部平原の成因としては大量の水による侵食説もある)が広がっており、一方、南半球は太古の隕石衝突による窪地やクレーターが存在する高地が多い。地球から見た火星表面もこのために2種類の地域に分けられ、両者は光の反射率であるアルベドが異なっている。明るく見える平原は赤い酸化鉄を多く含む塵と砂に覆われており、かつては火星の大陸と見立てられてアラビア大陸(Arabia Terra)やアマゾニス平原(Amazonis Planitia)などと命名されている。暗い模様は海と考えられ、エリトリア海(Mare Erythraeum)、シレーヌス(セイレーンたち)の海(Mare Sirenum)、オーロラ湾(Aurorae Sinus)などと名づけられている。地球から見えるもっとも大きな暗い模様は大シルチス(Syrtis Major)である。

北極地の初夏極冠

火星には水と二酸化炭素の氷からなる極冠があり、火星の季節によって変化する。二酸化炭素の氷は夏には昇華して岩石からなる表面が現れ、冬には再び氷ができる。楯状火山であるオリンポス山は標高27キロの太陽系最高の山である[10]。この山はタルシス高地と呼ばれる広大な高地にあり、この地方にはいくつかの大きな火山がある。火星には太陽系最大の峡谷であるマリネリス峡谷も存在する。この峡谷は全長4,000キロ、深さ7キロに達する。火星には多くのクレーターも存在する。最大のものはヘラス盆地で、明るい赤色の砂で覆われている。

火星の最高地点と最低地点の標高差は約31キロである。オリンポス山の山頂 27キロがもっとも高く、ヘラス盆地の底部、標高基準面の約4キロ下がもっとも低い。これと比べて地球の最高点と最低点(エベレストマリアナ海溝)の差は19.7キロに過ぎない。両惑星の半径の差を考えると、火星が地球よりもおよそ3倍も凸凹であることを示している。

21世紀初頭現在では、国際天文学連合(IAU)の惑星系命名ワーキンググループが火星表面の地形名の命名を担当している。

座標の基準

火星には海がないため海抜という定義は使えない。したがって高度0の面、すなわち平均重力面を選ぶ必要がある。火星の基準測地系は4階4次の球面調和関数重力場で定義され、高度0は温度273.16Kでの大気圧が610.5Pa(地球の約0.6パーセント)となる面として定義されている。この圧力と温度は水の三重点に対応している。

火星の赤道はその自転から定義されているが、基準子午線の位置は地球の場合と同様に任意の点が選ばれ、後世の観測者によって受け入れられていった。ドイツの天文学者ヴィルヘルム・ベーアヨハン・ハインリッヒ・メドラー1830年から32年にかけて最初の火星の体系的な地図を作成した際に、ある小さな円形の模様を基準点とした。彼らの選択した基準点は1877年に、イタリアの天文学者ジョヴァンニ・スキアパレッリが有名な火星図の作成を始めた際に基準子午線として採用された。1972年に探査機マリナー9号が火星の広範囲の画像を撮影したあと、子午線の湾のベーアとメドラーの子午線上にある小さなクレーター(のちにエアリー0と呼ばれる)がアメリカ、RAND社のメルトン・デーヴィスによって、惑星撮影時の制御点ネットワークを決める際により正確な経度0.0度の定義として採用された。

「運河」

火星にはかつて生命が存在したという考えのために、火星は人類の想像の世界の中で重要な位置を占めている。こういった考えはおもに19世紀に多くの人々によって行われ、特にパーシヴァル・ローウェルジョヴァンニ・スキアパレッリによる火星観測から生まれ、一般に知られるようになった、スキアパレッリは観測された模様をイタリア語: canali(溝)という語で記述した。これが英語: canal運河)と誤訳され、ここから「火星の運河」という説が始まった[11]。これらの火星表面の模様は「人工的な」直線状の模様のように見えたために運河であると主張された。またある領域の明るさが季節によって変化するのは植物の成長によるものだと考えられた。

当初の観測時点でも自然地形とみなされたものが、翻訳(誤訳)によって「運河」と表現されたことで、人工物的な意味合いが付与されてしまった。そこから火星人に関連した多くの話が生まれた。だが火星探査が進むと、運河は無い(=人工物ではなく自然地形である・知的生命体はいない・火星人の文明はない)ことがわかる。先述の色の変化は塵の嵐のためであると考えられている。




  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad Williams, David R. (2018年9月27日). “Mars Fact Sheet”. NASA. 2020年3月12日閲覧。
  2. ^ 国立天文台 編集『理科年表』平成24年 机上版、丸善、2011年、ISBN 978-4-621-08439-7、p.78-79
  3. ^ a b c 木星の大移動が火星を小さくした?”. AstroArts Inc. (2011年6月9日). 2019年1月8日閲覧。
  4. ^ 地球では考えられない!極限的でダイナミックな火星の気候
  5. ^ Mars 'more active than suspected'”. BBC (2005年9月21日). 2008年5月24日閲覧。
  6. ^ Steinn (2005年9月21日). “Climate Science, Mars and Politics”. 2008年5月24日閲覧。
  7. ^ 田近英一、『地球環境46億年の大変動史』p28ほか、株式会社化学同人、2009年5月30日、ISBN 978-4-7598-1324-1
  8. ^ Magnetic Strips Preserve Record of Ancient Mars”. NASA (1999年5月3日). 2008年5月24日閲覧。
  9. ^ Tectonic implications of Mars crustal magnetism”. PNAS (2005年10月10日). 2008年5月24日閲覧。
  10. ^ What are the highest and lowest elevations on the surface on Mars?”. NASA (1997年1月24日). 2008年5月24日閲覧。
  11. ^ 東京大学総合研究博物館. “「火星―ウソカラデタマコト」”. 2011年5月20日閲覧。
  12. ^ 橘省吾『星くずたちの記憶』岩波書店、2016年、73頁。ISBN 978-4-00-029652-6
  13. ^ 火星の「地震」を観測、謎解明に前進 NASA探査機”. AFP (2020年2月26日). 2020年2月26日閲覧。
  14. ^ Raodate, Joe (2003年8月22日). “NightSky Friday - Mars and Earth: The Top 10 Close Passes Since 3000 B.C.”. Space.com. 2008年5月24日閲覧。
  15. ^ The Conjunction and ConjunctionEvents Functions”. Wolfram Research. 2008年5月24日閲覧。
  16. ^ 'Bounce' and Martian Meteorite of the Same Mold”. NASA (2004年4月14日). 2008年5月24日閲覧。
  17. ^ Ice lake found on the Red Planet”. BBC (2005年7月29日). 2008年5月24日閲覧。
  18. ^ Water ice in crater at Martian north pole”. ESA (2005年7月28日). 2008年5月24日閲覧。
  19. ^ ただし、2009年にNASAの火星無人周回探査機「マーズ・リコナサンス・オービター (MRO)」が赤道と北極の中間付近にある氷の撮影を行った。この氷は、火星が湿潤だった頃のもので、火星への隕石衝突によって地表が削られて露出した
  20. ^ 「徹底図解 宇宙のしくみ」、新星出版社、2006年、p58
  21. ^ 石川源晃『【実習】占星学入門』 ISBN 4-89203-153-4





火星と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「火星」の関連用語

火星のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



火星のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの火星 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2020 Weblio RSS