液体 相転移

液体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/30 04:15 UTC 版)

相転移

典型的な相図。緑の線は圧力による融点の変化を表す。青い線は圧力による沸点の変化を示す。赤い線は昇華の起きる温度と圧力の組み合わせを示している

沸点未満の温度では、どんな液相の物体も平衡状態になるまで蒸発する。平衡状態に達すると液体の蒸発と気体の凝縮が同じ速度で起きるようになる。したがって、蒸発した気体を継続的に取り去ると液体は最終的には全て蒸発してしまう。沸点に達すると液体はさらに急速に蒸発するようになる。沸点に達した液体は沸騰するのが普通だが、条件によっては過熱状態になる。

凝固点以下の温度では、液体は凝固し固体となる。蒸発と凝縮の場合とは異なり、常圧下では平衡状態にはならない。過冷却がおきない限り、液体は最終的には完全に固体となる。ただし常圧でない場合は必ずしもそうではなく、例えば水と氷を密閉された圧力容器に入れると、固相と液相が混在した平衡状態となることもある。

構造

古典的な単原子分子の液体の構造。原子は多数の原子に囲まれているが、原子間の距離の秩序は存在しない

液体では、原子は結晶格子を形成しておらず、いかなる長距離秩序も存在しない。そのためX線回折中性子回折ブラッグピークが現れない。通常条件下では回折パターンは点対称になるが、これは液体の等方性を示している。中心から径方向に見てみると、回折強度は滑らかに振動している。これはプローブ(光子や中性子)の波長 λブラッグ角度 θ で与えられる波数 q = (4π/λ)sin θ の関数である静的構造因子 S(q) で説明される。S(q) の振動は液体の近傍の原子間の相関関係を表している。

それらの相関関係のより直観的な指標として動径分布関数 g(r) があり、これは基本的には S(q) のフーリエ変換である。これはある時点の液体内の二体相関の空間的平均を表している。g(r) はある中心点から距離 r までの球の体積内にある粒子数の平均から計算によって決定される。与えられた半径における原子の平均密度は次の式で表される。

gr の対応を示した典型的なグラフには次のような重要な特徴がある。

  1. 距離が短い部分(r が小さい)では、g(r) = 0 である。つまり原子自体に大きさがあるため、ある程度以上に原子同士が近づくことができないことを示している。
  2. ピークがいくつか現れるが、距離が離れるとピークも小さくなっていく。このピークは原子が互いに近接する原子に取り囲まれていることを示す。距離が離れると1に漸近していくが、これはその液体の平均密度に対応している。
  3. 距離が離れるに従ってピークが徐々に小さくなるのは、中心の粒子から見た秩序の減少を示している。これは、液体やガラスに見られる「短距離秩序」を表している。

単純液体の動径分布の実験的検証はX線散乱などの手法を用いる。構造的干渉は半径 r の範囲内のピークに限られる。したがって、X線の干渉の条件が満たされたときだけ振幅の減衰したピークが現れる。結果として結晶面に対応したX線回折パターンに似た明暗の帯が周期的に配された結果が得られる[13]

力学

弾性波

一般に液体と固体の基本的違いとして、固体がせん断応力に対して弾性的抵抗を示すのに対して、液体はそうではないという点が挙げられる。したがって液体の分子運動縦波フォノン)に分解でき、横波は非常に秩序立った結晶質の固体でのみ現れる。すなわち、単純液体はせん断応力という形で加えられた力に耐えることができず、力学的にそれに降伏し巨視的には塑性変形(粘性流)を起こす。さらに言えば、固体せん断応力に対して局所的に変形するだけで全体の形が保たれるのに対して、液体はナビエ-ストークス方程式で表される粘性流となって大きく変形・流動する。この点が固体と液体の力学的な違いとされている[14]

しかし連続性についての観測によれば、横波は必ずしも固体のみで伝わるわけではなく、液体でも伝わると結論付けられる。通常の液体での実験でこの結論が確認できないのは、現代の音響学光学の技法(超音波レーザー)で得られる振動周期に対して液体中での横波の減衰が極めて素早く起きるためである。そのような条件下では、液体での横波は急激に減衰する。

それらの結論の検証には、単原子分子の液体やガラス分子動力学法のコンピュータシミュレーションが使われ、短い波長では液体が横波を伝播できることが確認された。この粘弾性の振る舞いは波数が増加するにつれて液体の剛性が重要な要素になるという事実と結びついている[15][16][17][18][19][20][21]

高周波の横波と縦波の減衰機構は、粘性の液体や重合体やガラスを考慮していた[22]。その後、広範囲の時間的・空間的スケールで観測される構造緩和スペクトルを使って粘性液体のガラス転移を解釈する新たな成果が生まれた。動的光散乱法(または光子相関法)を使った実験では、10−11秒という短い時間における分子の動きを研究できる。これは、周波数の範囲を 109 Hz かそれ以上に拡張したのと等価である[23][24]

したがって、横音響フォノン(横波)と硬化あるいはガラス化の開始には密接な関係があることがわかる。硬化が観測される波長の増大を考慮すると、その現象の周波数への依存性が明らかになる。

液体の熱運動を弾性波重ね合わせで表すという方法は Brillouin が最初に導入した。したがって凝集系の原子の動きは定常波フーリエ級数で表され、それらは物理的には様々な方向や波長の原子の振動(密度のゆらぎ)の縦波や横波の重ね合わせと解釈できる。音波の伝播という意味では、縦波すなわち粗密波の速度は物質の体積弾性係数に制限される。密度ρと体積弾性係数 K の比の平方根、すなわち√(K /ρ)は、縦フォノンの伝播速度と等しい。横波の場合密度は一定なので、伝播速度は剛性率によって制限される[25]

密度と剛性率 G の比の平方根は、横フォノンの速度に等しい。従って、波動の速度は次のようになる[要出典]

高エネルギーその他転移
概念

  1. ^ Theodore Gray, The Elements: A Visual Exploration of Every Known Atom in the Universe New York: Workman Publishing, 2009 p.127 ISBN 1579128149
  2. ^ アイザック・アシモフ「第一部 生物学 4.われわれの知らないようなやつ」『空想自然科学入門』小尾信彌、山高昭訳、ハヤカワ文庫、1995年(原著1978年)、18刷、69-87頁。ISBN 4-15-050021-5 ただしアシモフは、この定義は「われわれの知っている生命」すなわち地球の生命体が対象であるという。同項でアシモフは異なる温度や圧力下での生命に関する思考実験を行い、高温から低温にわたりフッ化珪素硫黄アンモニアメタン水素という物質がそれぞれ生命活動の環境になりうると言うが、それらは各温度域で液体であることを前提に置いている。
  3. ^ Theo Mang, Wilfried Dressel Lubricants and lubrication, Wiley-VCH 2007 ISBN 3527314970
  4. ^ George Wypych ’’Handbook of solvents’’ William Andrew Publishing 2001 pp. 847-881 ISBN 1895198240
  5. ^ N. B. Vargaftik Handbook of thermal conductivity of liquids and gases CRC Press 1994 ISBN 0849393450
  6. ^ Jack Erjavec Automotive technology: a systems approach Delmar Learning 2000 p. 309 ISBN 1401848311
  7. ^ Gerald Wendt The prospects of nuclear power and technology D. Van Nostrand Company 1957 p. 266
  8. ^ Modern engineering for design of liquid-propellant rocket engines by Dieter K. Huzel, David H. Huang – American Institute of Aeronautics and Astronautics 1992 p. 99 ISBN 1563470136
  9. ^ Thomas E Mull HVAC principles and applications manual McGraw-Hill 1997 ISBN 007044451X
  10. ^ R. Keith Mobley Fluid power dynamics Butterworth-Heinemann 2000 p. vii ISBN 0750671742
  11. ^ Bela G. Liptak Instrument engineers’ handbook: process control CRC Press 1999 p. 807 ISBN 0849310814
  12. ^ McQuarrie, D.A., Statistical Mechanics (Harper Collins, 1976)
  13. ^ Berry, R.S. and Rice, S.A., Physical Chemistry, App.23A: X-Ray Scattering in Liquids: Determination of the Structure of a Liquid (Oxford University Press, 2000)
  14. ^ Born, M., The Stability of Crystal Lattices, Proc. Camb. Phil. Soc., Vol. 36, p.160, (1940) doi=10.1017/S0305004100017138; Thermodynamics of Crystals and Melting, J. Chem. Phys., Vol. 7, p. 591 (1939) doi=10.1063/1.1750497; A General Kinetic Theory of Liquids, University Press (1949)
  15. ^ C.A. Angell, J.H.R. Clarke, I.V. Woodcock (1981). “Interaction Potentials and Glass Formation: A Survey of Computer Experiments”. Adv. Chem. Phys. 48: 397. doi:10.1002/9780470142684.ch5. 
  16. ^ C.A. Angell (1981). “The Glass Transition: Comparison of Computer Simulation and Laboratory Studies”. Trans. N.Y. Acad. Sci. 371: 136. doi:10.1111/j.1749-6632.1981.tb55657.x. 
  17. ^ D. Frenkel, J.P. McTague (1980). “Computer Simulations of Freezing and Supercooled Liquids”. Ann. Rev. Phys. Chem. 31: 491. doi:10.1146/annurev.pc.31.100180.002423. 
  18. ^ Levesque, D. et al., Computer "Experiments" on Classical Fluids, Phys. Rev. A, Vol. 2, p. 2514 (1970); Phys. Rev. A, Vol. 7, p. 1690 (1973); Phys. Rev. B, Vol. 20, p. 1077 (1979)
  19. ^ G. Jacucci, I.R McDonald (1980). “Shear waves in liquid metals”. Molec. Phys. 39: 515. doi:10.1080/00268978000100411. 
  20. ^ M.H. Cohen and G.S. Grest (1980). “Liquid-glass transition: Dependence of the glass transition on heating and cooling rates”. Phys. Rev. B 21: 4113. doi:10.1103/PhysRevB.21.4113. 
  21. ^ G.S. Grest, S.R. Nagel, A. Rahman (1980). “Longitudinal and Transverse Excitations in a Glass”. Phys. Rev. Lett. 49: 1271. doi:10.1103/PhysRevLett.49.1271. 
  22. ^ Mason, W.P., et al., Mechanical Properties of Long Chain Molecule Liquids at Ultrasonic Frequencies, Phys. Rev., Vol. 73, p. 1074 (1948); Measurement of Shear Elasticity and Viscosity of Liquids by Means of Ultrasonic Shear Waves, J. Acoust. Soc. Amer., Vol. 21, p. 58 (1949)
  23. ^ Litovitz, T.A., et al., Ultrasonic Spectroscopy in Liquids, J. Acoust. Soc. Amer., Vol. 431, p. 681 (1959); Ultrasonic Relaxation and Its Relation to Structure in Viscous Liquids, Vol. 26, p. 566 (1954); Mean Free Path and Ultrasonic Vibrational Relaxation in Liquids, J. Acoust. Soc. Amer., Vol. 32, p. 928 (1960); On the Relation of the Intensity of Scattered Light to the Viscoelastic Properties of Liquids and Glasses, Vol. 41, p. 1601 (1967); Montrose, C.J., et al., Brillouin Scattering and Relaxation in Liquids, Vol. 43, p. 117 (1968); Lamacchia, B.T., Brillouin Scattering in Viscoelastic Liquids, Dissertation Abstracts International, Vol. 27-09, p. 3218 (1967)
  24. ^ I.L. Fabelinskii (1957). “Molecular Scattering of Light in Liquids”. Uspekhi Fizicheskikh Nauk 63: 355. 
  25. ^ L. Brillouin (1922). “Diffusion de la lumière et des rayons X par un corps transparent homogène; influence de l'agitation thermique”. Annales de Physique 17: 88. 
  26. ^ E.N. Andrade (1934). “Theory of viscosity of liquids”. Phil. Mag. 17: 497, 698. 
  27. ^ C. Lindemann (1911). “Kinetic theory of melting”. Phys. Zeitschr. 11: 609. 
  28. ^ Frenkel, J., Kinetic Theory of Liquids, Translated from Russian (Oxford University Press, 1946)
  29. ^ Fleury, P.A., Central-Peak Dynamics at the Ferroelectric Transition in Lead Germanate, Phys. Rev. Lett., Vol. 37, p. 1088 (1976); in Anharmonic Lattices, Structural Transitions and Melting, Ed. T. Riste (Noordhoff, 1974); in Light Scattering Near Phase Transitions, Eds. H.Z. Cummins, A. P. Levanyuk (North-Holland, 1983)
  30. ^ D.B. Macleod (1923). “On a relation between the viscosity of a liquid and its coefficient of expansion”. Trans. Farad. Soc. 19: 6. doi:10.1039/tf9231900006. 
  31. ^ G.W Stewart (1930). “The Cybotactic (Molecular Group) Condition in Liquids; the Association of Molecules”. Phys. Rev. 35: 726. doi:10.1103/PhysRev.35.726. 
  32. ^ Scherer, G.W., Relaxation in Glass and Composites, Krieger, 1992 ISBN 0471819913
  33. ^ Mason, W.P., et al. (1948). “Mechanical Properties of Long Chain Molecule Liquids at Ultrasonic Frequencies”. Phys. Rev. 73: 1074. doi:10.1103/PhysRev.73.1074. 
  34. ^ Montrose, C.J., et al. (1968). “Brillouin Scattering and Relaxation in Liquids”. J. Acoust. Soc. Am. 43: 117. doi:10.1121/1.1910741. 
    Litovits, T.A. (1959). “Ultrasonic Spectroscopy in Liquids”. J. Acoust. Soc. Am. 31: 681. 
    “Ultrasonic Relaxation and Its Relation to Structure in Viscous Liquids”. J. Acoust. Soc. Am. 26: 566. (1954). Candau, S., et al. (1967). “Brillouin Scattering in Viscoelastic Liquids”. J. Acoust. Soc. Am. 41: 1601. doi:10.1121/1.2143675. 
    Pinnow, D. et al. (1967). “On the Relation of the Intensity of Scattered Light to the Viscoelastic Properties of Liquids and Glasses”. J. Acoust. Soc. Am. 41: 1601. doi:10.1121/1.2143676. 
  35. ^ 倉本圭. “惑星としての地球”. 北海道大学理学部地球惑星科学課. 2012年2月18日閲覧。
  36. ^ アストロ・トピックス (217) 太陽系外で発見されたハビタブルゾーンに位置する惑星”. 国立天文台. 2012年2月18日閲覧。
  37. ^ ジム・ベル/コーネル大学「別冊日経サイエンス no.167 見えてきた太陽系の起源と進化」、日経サイエンス社、2009年、 ISBN 978-4-532-51167-8
  38. ^ 宮本英昭. “研究・プロジェクト紹介”. 東京大学大学院理学系研究科 地球惑星科学専攻. 2012年2月18日閲覧。
  39. ^ アイザック・アシモフ「16.もちろん木星だとも」『空想自然科学入門』早川書房、1963年、第一八刷、294-310頁。ISBN 4-15-050021-5
  40. ^ a b Hussmann, H.; Sohl, Frank; Spohn, Tilman (November 2006). "Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects". Icarus 185 (1): 258–273.
  41. ^ Lightest exoplanet yet discovered” (英語). European Southern Observatory. 2012年1月20日閲覧。
  42. ^ M. Gillon et al. (2007). “Detection of transits of the nearby hot Neptune GJ 436 b” (PDF). Astronomy and Astrophysics 472 2: L13-L16. http://www.aanda.org/articles/aa/pdf/2007/35/aa7799-07.pdf. 
  43. ^ Hot "ice" may cover recently discovered planet” (英語). Reuters. 2012年1月20日閲覧。
  44. ^ David P. Stern. “地磁気の起源”. 京都大学大学院理学研究科附属地磁気世界資料解析センター. 2012年2月18日閲覧。
  45. ^ 倉本圭. “研究”. 北海道大学理学部地球惑星科学課. 2012年2月18日閲覧。
  46. ^ ビル・アーネット. “木星”. 福岡教育大学. 2012年2月18日閲覧。
  47. ^ 木村友亮ら. “高強度レーザー衝撃圧縮を用いたメガバール領域における水の状態方程式計測 (PDF)”. 日本惑星科学会誌 Vol.20, No.1, 2011. 2012年2月18日閲覧。





液体と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「液体」の関連用語

1
100% |||||

2
100% |||||


4
94% |||||

5
94% |||||






液体のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



液体のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの液体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2020 Weblio RSS