木星 観測史

木星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/22 02:12 UTC 版)

観測史

古代の観測

『アルマゲスト』にて提案された、地球 (⊕) に対する木星 (☉) の相対的な位置と動き

木星の観察は紀元前8 - 7世紀ごろの古代バビロニアまでさかのぼることができる[118]。また古代中国大陸でも、天文学者の甘徳が紀元前362年に肉眼で木星の衛星を観察したと席澤宗(Xi Zezong)は主張した。これが正しければ、彼はガリレオに先立つこと2000年前に衛星を発見していたことになる[119][120]。紀元前2世紀ごろには古代ローマクラウディオス・プトレマイオスが著作『アルマゲスト』にて、従円と周転円を用いて木星と地球の相対位置を説明し、木星の公転時間を地球時間で4332.38日または11.86年とする天動説の惑星モデルを作り上げた[121]。499年にはインドの天文学者・数学者アリヤバータが同じく天動説モデルにて、木星公転を4332.2722日または11.86年と計算した[122]

中世以降の観測

1610年にガリレオ・ガリレイは、望遠鏡を用いて木星に4つの衛星を発見した。これらは地球の月以外では初めて発見された衛星で、今日ではガリレオ衛星と呼ばれるイオエウロパガニメデカリストである。これは同時に、地球以外の天体力学の中心が初めて見つかった例でもあり、ニコラウス・コペルニクス地動説を支持する有力な証拠とガリレオは主張したが、そのために彼は異端審問にかけられた[2][123]

1660年代、ジョヴァンニ・カッシーニは新型の望遠鏡を用いて観測を行い、木星表面の斑や多彩な帯を発見した。さらに、惑星全体が極方向でつぶれた扁平状であることも視認した。これらの観察から、彼は木星の自転時間を計算し[124]、1690年には大気が差動回転を起こしていることにも気づいた[29]

ボイジャー1号撮影の映像に着色(en)したもの。大赤斑や白斑などが見られる

南半球にある木星を特徴づける大赤斑は、1664年にロバート・フックが発見したとも、1665年にカッシーニが発見した[49]とも言われる。その詳細は1831年に薬剤師でもあったハインリッヒ・シュワーベが初めて記録した[125]。記録によると、大赤斑は1665年から1708年の間には見つけられなくなり、1878年ごろからしだいに見えるようになった。1883年以降、今日に至るまで大赤斑は一貫して観測され続けている[126]

ジョヴァンニ・ボレリとカッシーニは木星衛星の動きについての精緻な図を作成し、木星の前後を通過する予測を立てた。しかし1670年代までの観測では、地球から見て木星が太陽の反対側にある際、衛星の木星面通過は予測よりも17分遅れることが判明した。カッシーニはこの観測結果を受け入れなかったが[124]オーレ・レーマーはこの差異が生じる理由は光には有限の速度があると考え、ここから光速を求めた[127]

近現代の観測

1892年、エドワード・エマーソン・バーナードカリフォルニアリック天文台にある36インチ屈折望遠鏡を使って、木星5番目の衛星アマルテアを発見した。優れた視力を生かした彼の発見は[128]、目視観測で発見された最後の衛星となった[129]

ヨーロッパ南天天文台超大型望遠鏡VLT が捉えた木星の赤外線映像

1932年、ルーペルト・ヴィルトは木星のスペクトルを解析し、アンモニアとメタンの吸収線があることを示した[130]

1938年には白斑と呼ばれる永続的な3つの高気圧性の楕円斑が見つかった。これは数十年間にわたって個別に存在し、時に近づくことがあっても合体することなく存在した。しかし1998年には2つが合わさり、2000年に残りのひとつも含まれてオーバルBAとなった[131]

フライバイ計画

1973年を皮切りに、多くの無人探査機が木星観測を行っている。その中でもパイオニア10号が太陽系最大の惑星に近づき多くの発見をもたらしたことが知られている[132][133]。太陽系のほかの惑星に到達するには、探査機の速度変化であるデルタvdelta-v)を引き起こすエネルギーをどれだけ費やせるかによって決まる。ホーマン遷移軌道を通って地球から木星の低軌道に至るには、デルタvは6.3 km/s[134]であり、地球から打ち上げるのに必要なデルタv9.7 km/sとの差を埋める必要があった[135]。これは、かなり長い時間を要するが、惑星の近接飛行によるスイングバイを用いて縮めることができる[136]

木星へのフライバイ計画
探査機 最接近の日付 距離
パイオニア10号 1973年12月3日 130,000 km
パイオニア11号 1974年12月4日 34,000 km
ボイジャー1号 1979年3月5日 349,000 km
ボイジャー2号 1979年7月9日 570,000 km
ユリシーズ 1992年2月8日[137] 408,894 km
2004年2月4日[137] 120,000,000 km
カッシーニ 2000年12月30日 10,000,000 km
ニュー・ホライズンズ 2007年2月28日 2,304,535 km
ボイジャー1号が1979年1月24日に距離4千万キロメートルから撮影した木星の姿

1973年から数機の探査機がフライバイ航行法を用いて木星観測に向かった。パイオニア計画では初めて木星といくつかの衛星の近接写真が撮影された。惑星近くの固有磁場が予測よりも非常に強かったが、探査機に致命的なトラブルは生じなかった。これらの探査機軌道は木星系質量の予想精度を高めることに役立った。また、探査機の無線信号が惑星によって遮蔽されたことで、木星の直径と極方向の扁平についての詳しい情報が得られた[20][138]

6年後に行われたボイジャー計画では、ガリレオ衛星に関する知見が深まり、また木星の環が発見された[2]。また、大赤斑が高気圧性の現象ということも知らしめ、パイオニア計画との画像比較から大赤斑の色がオレンジ色から暗い茶色へ変わったことも判明した。衛星イオについて軌道にあるイオン化原子の円環が見つかり、また表面では噴火中の火山活動も確認された。探査機が惑星の夜側を通過した際の観測から、稲妻の光も観測された[139][20]

次に木星を通過するフライバイは太陽観測衛星ユリシーズが行った。これは太陽の極に到達するための経路に使われた。その際、ユリシーズは木星の磁気圏に関する情報を得たが、カメラを搭載していなかったために画像情報の追加は行われなかった。ユリシーズは6年の間隔を経て2度目のフライバイを行ったが、その位置は木星から遠く離れた軌道を取った[137]

2000年には探査機カッシーニが土星へ向かう途上で木星観測を行い、それまでにない高い解像度の映像を撮影した。2000年12月19日には第6衛星ヒマリアの撮影に成功したが、解像度は低く表面状態の解明は進まなかった[140]

探査機ニュー・ホライズンズ冥王星を目指す航行中に木星でフライバイを行い、2007年2月28日に最接近した[141]。ニュー・ホライズンズのカメラは衛星イオの火山起源のプラズマを計測し、そのほかのガリレオ衛星の詳細だけでなく、ヒマリアエララに対しても長期間観測を行った[142]。木星系の画像撮影は2006年9月4日から行われた[143][144]

探査機ガリレオ

通過ではなく木星を周回しつつ、観測を行った探査機はガリレオのみであり、1995年12月7日に周回軌道へ投入されてから7年間にわたってガリレオ衛星やアマルテアなどのフライバイを含む観測を行った。それに先立つ1994年にはシューメーカー・レヴィ第9彗星の衝突が起こった際に、探査機ガリレオは通常では望めない位置にいたこともあって観測を行った。しかし、木星系にたどり着いたあとに観測で得た情報が膨大になったうえ、高利得電波アンテナを展開させることに失敗し、情報発信に制限がかかってしまった[145]

1995年7月にはプローブが切り離され、12月7日には木星大気の探測が始められた。プローブはパラシュートを開いて深度159キロメートルに到達する75分間データを送信し続け、機能を停止した。その位置は、気圧は地球の約28倍、温度は185°Cに達していた[146]。プローブは溶解してしまったものと思われる。探査機ガリレオは使命を終えると、エウロパのような生命が存在する可能性を持つ衛星に落下しないように、2003年9月21日に意図的に木星内へ秒速50キロ以上の速度で落とされた[145]

その他の計画

ジュノーによって撮影された木星の北極英語版と周りを囲むサイクロン群

運用中の探査には、NASAが2011年打ち上げた極軌道から木星を詳細に観測するジュノーがある[147]。これは2016年に木星に到着しており、木星を観測中である[148]

また、木星の衛星エウロパやガニメデ、カリストには表面の氷の下に液体の海があると推測され、強い関心が持たれており、NASAは木星氷衛星周回機 (JIMO) を検討したが、この計画は資金面から難航し、2005年に頓挫した[149]。ヨーロッパでもエウロパ探査(en)の計画が検討されたが、2007年にお蔵入りとなった[150]

このほか、木星と衛星の観測を目的としたEJSM(エウロパ・ジュピター・システム・ミッション)もNASAESA協同の元で進行しており、これは土星系探査のタイタン・サターン・システム・ミッションに先行する旨が2009年2月に発表された[151][152]。ただし、ESAの負担はほかのプロジェクトに影響を及ぼす懸念が拭えない[153]。計画ではNASAのJIMOやESAのジュピター・ガニメデ計画(Jupiter Ganymede Orbiter)を基軸に、2020年ごろに実行が見込まれる[154]

中止された探査機

  • パイオニアH(Pioneer H)- 11号の次に打ち上げられる予定だった。1974年に中止。
  • エウロパ・オービター - エウロパの海を研究するために計画された探査機。2002年か2003年に打ち上げられる予定だった。

注釈

  1. ^ 使用例:“IAUC 2844: Jupiter; 1975h”. International Astronomical Union. (1975年10月1日). http://cbat.eps.harvard.edu/iauc/02800/02844.html 2010年10月24日閲覧。 Query Results from the Astronomy Database”. Smithsonian/NASA. 2007年7月29日閲覧。

出典

  1. ^ 天文年鑑2008年版より
  2. ^ a b c d e f g h i j k l m n 金光理. “木星に関する事実”. 福岡教育大学教育学部. 2011年5月5日閲覧。
  3. ^ Seidelmann, P. Kenneth; Archinal, B. A.; A’Hearn, M. F.; et al. (2007). “Report of the IAU/IAGWorking Group on cartographic coordinates and rotational elements: 2006” (英語). Celestial Mechanics and Dynamical Astronomy 90 (3): 155–180. doi:10.1007/s10569-007-9072-y. https://adsabs.harvard.edu/doi/10.1007/s10569-007-9072-y 2011年5月5日閲覧。. 
  4. ^ a b c d e f Refers to the level of 1 bar atmospheric pressure
  5. ^ a b c d e f g h i j Williams, Dr. David R. (2004年11月16日). “Jupiter Fact Sheet”. NASA. 2011年5月1日閲覧。
  6. ^ Seidelmann, P. K.; Abalakin, V. K.; Bursa, M.; Davies, M. E.; de Burgh, C.; Lieske, J. H.; Oberst, J.; Simon, J. L.; Standish, E. M.; Stooke, P.; Thomas, P. C. (2001年). “Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000” (英語). HNSKY Planetarium Program. 2011年5月5日閲覧。
  7. ^ a b c ニュートン (別2009)、pp. 24–25、惑星の密度と種類
  8. ^ ニュートン (別2009)、pp. 18–19、太陽系の構成員
  9. ^ Stuart Ross Taylor (2001). Solar system evolution: a new perspective : an inquiry into the chemical composition, origin, and evolution of the solar system (2nd, illus., revised ed.). Cambridge University Press. p. 208. ISBN 0-521-64130-6 
  10. ^ ニュートン (別2009)、pp.26-27、惑星の密度と種類
  11. ^ Michtchenko, T. A.; Ferraz-Mello, S. (February 2001). “Modeling the 5 : 2 Mean-Motion Resonance in the Jupiter–Saturn Planetary System”. Icarus 149 (2): 77–115. doi:10.1006/icar.2000.6539. 
  12. ^ Interplanetary Seasons” (英語). Science@NASA. 2011年5月5日閲覧。
  13. ^ a b Lang, Kenneth R. (2003年). “Jupiter: a giant primitive planet” (英語). NASA. 2011年5月5日閲覧。
  14. ^ 木星の概要”. 独立行政法人科学技術振興機構. 2011年5月5日閲覧。
  15. ^ Ridpath, Ian (1998). Norton's Star Atlas (19th ed.). Prentice Hall. ISBN 0-582-35655-5 
  16. ^ 福江純. “天体の流体力学 14 回転星の大気構造” (PDF). 大阪教育大学. 2011年4月29日閲覧。
  17. ^ Herbst, T. M.; Rix, H.-W. (1999). Guenther, Eike; Stecklum, Bringfried; Klose, Sylvio. ed. Star Formation and Extrasolar Planet Studies with Near-Infrared Interferometry on the LBT. San Francisco, Calif.: Astronomical Society of the Pacific. pp. 341–350. Bibcode1999ASPC..188..341H. ISBN 1-58381-014-5 
  18. ^ MacDougal, Douglas W. (2012). “A Binary System Close to Home: How the Moon and Earth Orbit Each Other” (英語). Newton's Gravity. Undergraduate Lecture Notes in Physics. Springer New York. pp. 193–211. doi:10.1007/978-1-4614-5444-1_10. ISBN 978-1-4614-5443-4. "the barycenter is 743,000 km from the center of the sun. The Sun's radius is 696,000 km, so it is 47,000 km above the surface." 
  19. ^ 暦Wiki/惑星/太陽系重心 - 国立天文台暦計算室”. 暦計算室. 国立天文台. 2020年4月24日閲覧。
  20. ^ a b c d e f Burgess, Eric (1982). By Jupiter: Odysseys to a Giant. New York: Columbia University Press. ISBN 0-231-05176-X 
  21. ^ Shu, Frank H. (1982). The physical universe: an introduction to astronomy. Series of books in astronomy (12th ed.). University Science Books. p. 426. ISBN 0-935702-05-9 
  22. ^ Davis, Andrew M.; Turekian, Karl K. (2005). Meteorites, comets, and planets. Treatise on geochemistry,. 1. Elsevier. p. 624. ISBN 0-08-044720-1 
  23. ^ Jean Schneider (2011年). “The Extrasolar Planets Encyclopedia: Interactive Catalogue” (英語). Paris Observatory. 2011年5月5日閲覧。
  24. ^ a b Seager, S.; Kuchner, M.; Hier-Majumder, C. A.; Militzer, B. (2007). “Mass-Radius Relationships for Solid Exoplanets”. The Astrophysical Journal 669 (2): 1279–1297. arXiv:0707.2895. doi:10.1086/521346. 
  25. ^ Guillot, Tristan (1999). “Interiors of Giant Planets Inside and Outside the Solar System”. Science 286 (5437): 72–77. doi:10.1126/science.286.5437.72. PMID 10506563. http://www.sciencemag.org/cgi/content/full/286/5437/72 2007年8月28日閲覧。. 
  26. ^ a b 木星は太陽になりそこねたって本当ですか?”. 国立科学博物館. 2011年4月24日閲覧。
  27. ^ Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I. (1993). “An expanded set of brown dwarf and very low mass star models”. Astrophysical Journal 406 (1): 158–71. Bibcode1993ApJ...406..158B. doi:10.1086/172427. 
  28. ^ Queloz, Didier (2002年11月19日). “VLT Interferometer Measures the Size of Proxima Centauri and Other Nearby Stars” (英語). European Southern Observatory. http://www.eso.org/outreach/press-rel/pr-2002/pr-22-02.html 2011年5月5日閲覧。 
  29. ^ a b c d e f g h i j k l m Elkins-Tanton, Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 0-8160-5196-8 
  30. ^ a b c d Guillot, T.; Stevenson, D. J.; Hubbard, W. B.; Saumon, D. (2004). “Chapter 3: The Interior of Jupiter”. In Bagenal, F.; Dowling, T. E.; McKinnon, W. B. Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 0-521-81808-7. http://web.gps.caltech.edu/faculty/stevenson/pdfs/guillot_etal'04.pdf 
  31. ^ Bodenheimer, P. (1974). “Calculations of the early evolution of Jupiter”. Icarus. 23 pages=319–25 (3): 319. Bibcode1974Icar...23..319B. doi:10.1016/0019-1035(74)90050-5. 
  32. ^ Guillot, T.; Gautier, D.; Hubbard, W. B. (1997). “New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models”. Icarus 130 (2): 534–539. Bibcode1997astro.ph..7210G. doi:10.1006/icar.1997.5812. 
  33. ^ 松井 (1996)、第五章 巨大ガス惑星の世界へ、pp. 114–117、主としてガスから成る巨大ガス惑星
  34. ^ Various (2006). McFadden, Lucy-Ann; Weissman, Paul; Johnson, Torrence. ed. Encyclopedia of the Solar System (2nd ed.). Academic Press. p. 412. ISBN 0-12-088589-1 
  35. ^ a b c 木星に地面はないのですか”. 国立科学博物館. 2011年5月5日閲覧。
  36. ^ Züttel, Andreas (September 2003). “Materials for hydrogen storage”. Materials Today 6 (9): 24–33. doi:10.1016/S1369-7021(03)00922-2. 
  37. ^ Guillot, T. (1999). “A comparison of the interiors of Jupiter and Saturn”. Planetary and Space Science 47 (10–11): 1183–200. Bibcode1999astro.ph..7402G. doi:10.1016/S0032-0633(99)00043-4. 
  38. ^ Horia, Yasunori; Sanoa, Takayoshi; Ikomaa, Masahiro; Idaa, Shigeru (2007). “On uncertainty of Jupiter's core mass due to observational errors”. Proceedings of the International Astronomical Union (Cambridge University Press) 3 (S249): 163–166. doi:10.1017/S1743921308016554. 
  39. ^ a b c 松井 (1996)、第六章 新たな謎を生んだ星‐木星、pp. 129–132、木星大気の運動
  40. ^ Alvin Seiff. Dynamics of Jupiter's atmosphere. Nature. 2000; 403: 603-605.
  41. ^ Gautier, D.; Conrath, B.; Flasar, M.; Hanel, R.; Kunde, V.; Chedin, A.; Scott N. (1981). “The helium abundance of Jupiter from Voyager”. Journal of Geophysical Research 86 (A10): 8713–8720. Bibcode1981JGR....86.8713G. doi:10.1029/JA086iA10p08713. 
  42. ^ Kunde, V. G. et al. (September 10, 2004). “Jupiter's Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment”. Science 305 (5690): 1582–86. Bibcode2004Sci...305.1582K. doi:10.1126/science.1100240. PMID 15319491. http://www.sciencemag.org/cgi/content/full/305/5690/1582 2007年4月4日閲覧。. 
  43. ^ Kim, S. J.; Caldwell, J.; Rivolo, A. R.; Wagner, R. (1985). “Infrared Polar Brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS Experiment”. Icarus 64 (2): 233–48. Bibcode1985Icar...64..233K. doi:10.1016/0019-1035(85)90201-5. 
  44. ^ Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; Owen, T. C.; Spencer, N. W.; Way, S. H. (1996). “The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere”. Science 272 (5263): 846–849. Bibcode1996Sci...272..846N. doi:10.1126/science.272.5263.846. PMID 8629016. 
  45. ^ Mahaffy, Paul. “Highlights of the Galileo Probe Mass Spectrometer Investigation”. NASA Goddard Space Flight Center, Atmospheric Experiments Laboratory. 2007年6月6日閲覧。
  46. ^ Lodders, Katharina (2004). “Jupiter Formed with More Tar than Ice”. The Astrophysical Journal 611 (1): 587–597. doi:10.1086/421970. http://www.journals.uchicago.edu/doi/full/10.1086/421970 2007年7月3日閲覧。. 
  47. ^ a b Seiff, A.; Kirk, D.B.; Knight, T.C.D. et al. (1998). “Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt”. Journal of Geophysical Research 103 (E10): 22857–22889. Bibcode1998JGR...10322857S. doi:10.1029/98JE01766. 
  48. ^ *Miller, S.; Aylword, A.; Milliword, G. (2005). “Giant Planet Ionospheres and Thermospheres: the Importance of Ion-Neutral Coupling”. Space Science Reviews 116 (1-2): 319–343. Bibcode2005SSRv..116..319M. doi:10.1007/s11214-005-1960-4. 
  49. ^ a b c d e ニュートン (別2009)、pp. 74–75、木星1
  50. ^ Ingersoll, A. P.; Dowling, T. E.; Gierasch, P. J.; Orton, G. S.; Read, P. L.; Sanchez-Lavega, A.; Showman, A. P.; Simon-Miller, A. A.; Vasavada, A. R. “Dynamics of Jupiter’s Atmosphere” (PDF) (英語). Lunar & Planetary Institute. 2011年5月5日閲覧。
  51. ^ Kerr, Richard A. (2000). “Deep, Moist Heat Drives Jovian Weather”. Science 287 (5455): 946–947. doi:10.1126/science.287.5455.946b. http://www.sciencemag.org/cgi/content/full/287/5455/946b 2007年2月24日閲覧。. 
  52. ^ Watanabe, Susan: “Surprising Jupiter: Busy Galileo spacecraft showed jovian system is full of surprises” (英語). NASA (2006年2月25日). 2011年5月5日閲覧。
  53. ^ Strycker, P. D.; Chanover, N.; Sussman, M.; Simon-Miller, A. (2006). "A Spectroscopic Search for Jupiter's Chromophores". DPS meeting #38, #11.15. American Astronomical Society. Bibcode:2006DPS....38.1115S
  54. ^ a b c Gierasch, Peter J.; Nicholson, Philip D. (2004年). “Jupiter” (英語). World Book @ NASA. 2011年5月5日閲覧。
  55. ^ a b 松井 (1996)、第六章 新たな謎を生んだ星‐木星、pp.132-133、大赤斑のなぞ
  56. ^ Covington, Michael A. (2002). Celestial Objects for Modern Telescopes. Cambridge University Press. p. 53. ISBN 0-521-52419-9 
  57. ^ Denning, W. F. (1899). “Jupiter, early history of the great red spot on”. Monthly Notices of the Royal Astronomical Society 59: 574–584. Bibcode1899MNRAS..59..574D. 
  58. ^ Kyrala, A. (1982). “An explanation of the persistence of the Great Red Spot of Jupiter”. Moon and the Planets 26 (1): 105–7. Bibcode1982M&P....26..105K. doi:10.1007/BF00941374. 
  59. ^ Sommeria, Jöel; Steven D. Meyers & Harry L. Swinney (February 25, 1988). “Laboratory simulation of Jupiter's Great Red Spot”. Nature 331 (6158): 689–693. Bibcode1988Natur.331..689S. doi:10.1038/331689a0. 
  60. ^ “Jupiter's Great Red Spot is Shrinking”NASA (15 May 2014)
  61. ^ Jupiter's Great Red Spot could soon disappear - Unexplained Mysteries”. Unexplained Mysteries (2018年2月20日). 2019年12月2日閲覧。
  62. ^ Contrary to recent reports, Jupiter's Great Red Spot is not in danger of disappearing”. The Conversation (2019年11月26日). 2019年12月2日閲覧。
  63. ^ Jupiter Data Sheet” (英語). Space.com. 2011年5月5日閲覧。
  64. ^ Phillips, Tony (2006年3月3日). “Jupiter's New Red Spot”. NASA. 2007年2月2日閲覧。
  65. ^ Cardall, C. Y.; Daunt, S. J. “The Great Red Spot” (英語). University of Tennessee. 2011年5月5日閲覧。
  66. ^ Jupiter's New Red Spot” (英語) (2006年). 2011年5月5日閲覧。
  67. ^ Steigerwald, Bill (2006年10月14日). “Jupiter's Little Red Spot Growing Stronger” (英語). NASA. 2011年5月5日閲覧。
  68. ^ Goudarzi, Sara (2006年5月4日). “New storm on Jupiter hints at climate changes” (英語). USA Today. 2011年5月5日閲覧。
  69. ^ a b c David P. Stern、佐納康治・能勢正仁・二穴喜文・永田大祐・家森俊彦. “惑星磁気学”. 京都大学大学院理学研究科附属地磁気世界資料解析センター. 2011年5月5日閲覧。
  70. ^ 中村正人. “太陽系の天体を取り巻く磁気圏”. 東京大学地球惑星科学専攻宇宙惑星科学講座. 2011年5月3日閲覧。
  71. ^ Brainerd, Jim (2004年11月22日). “Jupiter's Magnetosphere” (英語). The Astrophysics Spectator. http://www.astrophysicsspectator.com/topics/planets/JupiterMagnetosphere.html 2011年5月5日閲覧。 
  72. ^ Radio Storms on Jupiter” (英語). NASA (2004年2月20日). 2011年5月5日閲覧。
  73. ^ 土佐誠. “天体の磁場‐磁場の起源:ダイナモ理論”. 月惑星研究会. 2011年5月3日閲覧。
  74. ^ a b 佐藤毅彦. “オーロラ観測で探る木星の磁気圏” (PDF). 国立情報学研究所 学協会情報発信サービス. 2011年5月3日閲覧。
  75. ^ The Discovery of Jupiter's Radio Emissions” (英語). NASA. 2011年5月5日閲覧。
  76. ^ Weintraub, Rachel A. (2005年9月26日). “How One Night in a Field Changed Astronomy” (英語). NASA. 2011年5月5日閲覧。
  77. ^ Garcia, Leonard N. “The Jovian Decametric Radio Emission” (英語). NASA. 2011年5月5日閲覧。
  78. ^ Klein, M. J.; Gulkis, S.; Bolton, S. J. (1996年). “Jupiter's Synchrotron Radiation: Observed Variations Before, During and After the Impacts of Comet SL9” (英語). NASA. 2006年10月1日時点のオリジナルよりアーカイブ。2011年5月5日閲覧。
  79. ^ 土佐誠 (2010年1月26日). “木星のまわりに大きく広がる硬X線放射を発見” (PDF). 首都大学東京. 2011年5月7日閲覧。
  80. ^ a b スコット・S・シェパード. “Moons of Jupiter”. Carnegie Science. 2023年1月7日閲覧。
  81. ^ 惑星の衛星数・衛星一覧”. 国立天文台 (2023年2月23日). 2023年2月26日閲覧。
  82. ^ ニュートン (別2009)、pp.76-77、木星2
  83. ^ Musotto, S.; Varadi, F.; Moore, W. B.; Schubert, G. (2002). “Numerical simulations of the orbits of the Galilean satellites”. Icarus 159 (2): 500–504. doi:10.1006/icar.2002.6939. http://cat.inist.fr/?aModele=afficheN&cpsidt=13969974. 
  84. ^ a b c いずれは消えていく? 木星の輪”. 国立教育政策研究所. 2018年1月22日閲覧。
  85. ^ Showalter, M.A.; Burns, J.A.; Cuzzi, J. N.; Pollack, J. B. (1987). “Jupiter's ring system: New results on structure and particle properties”. Icarus 69 (3): 458–98. Bibcode1987Icar...69..458S. doi:10.1016/0019-1035(87)90018-2. 
  86. ^ Burns, J.A.; Hamilton, D.P.; Showalter, M.R. (2001). “Dusty Rings and Circumplanetary Dust: Observations and Simple Physics”. In Grun, E.; Gustafson, B. A. S.; Dermott, S. T.; Fechtig H. (pdf). Interplanetary Dust. Berlin: Springer. pp. 641–725.
  87. ^ a b Burns, J. A.; Showalter, M.R.; Hamilton, D.P.; et al. (1999). “The Formation of Jupiter's Faint Rings”. Science 284 (5417): 1146–50. Bibcode1999Sci...284.1146B. doi:10.1126/science.284.5417.1146. PMID 10325220. 
  88. ^ Fieseler, P.D. (2004). “The Galileo Star Scanner Observations at Amalthea”. Icarus 169 (2): 390–401. Bibcode2004Icar..169..390F. doi:10.1016/j.icarus.2004.01.012. 
  89. ^ Kerr, Richard A. (2004). “Did Jupiter and Saturn Team Up to Pummel the Inner Solar System?”. Science 306 (5702): 1676. doi:10.1126/science.306.5702.1676a. PMID 15576586. http://www.sciencemag.org/cgi/content/full/306/5702/1676a?etoc 2007年8月28日閲覧。. 
  90. ^ List Of Jupiter Trojans” (英語). IAU Minor Planet Center. 2011年5月5日閲覧。
  91. ^ Quinn, T.; Tremaine, S.; Duncan, M. (1990). “Planetary perturbations and the origins of short-period comets”. Astrophysical Journal, Part 1 355: 667–679. Bibcode1990ApJ...355..667Q. doi:10.1086/168800. 
  92. ^ 木星、彗星を捕獲して衛星にしていた”. ナショナル ジオグラフィック. ナショナル ジオグラフィック協会 (2009年9月14日). 2023年11月25日閲覧。
  93. ^ Dennis Overbye (2009年7月24日). “Hubble Takes Snapshot of Jupiter’s ‘Black Eye’” (英語). New York Times. http://www.nytimes.com/2009/07/25/science/space/25hubble.html?ref=science 2011年5月5日閲覧。 
  94. ^ Lovett, Richard A. (December 15,2006). “Stardust's Comet Clues Reveal Early Solar System” (英語). National Geographic News. http://news.nationalgeographic.com/news/2006/12/061215-comet-stardust.html 2011年5月5日閲覧。 
  95. ^ Nakamura, T.; Kurahashi, H. (1998). “Collisional Probability of Periodic Comets with the Terrestrial Planets: An Invalid Case of Analytic Formulation” (英語). Astronomical Journal 115 (2): 848–854. Bibcode1998AJ....115..848N. doi:10.1086/300206. http://www.iop.org/EJ/article/1538-3881/115/2/848/970144.html 2011年5月5日閲覧。. 
  96. ^ 「徹底図解 宇宙のしくみ」、新星出版社、2006年、p69
  97. ^ Horner, J.; Jones, B. W. (2008). “Jupiter - friend or foe? I: the asteroids”. International Journal of Astrobiology 7 (3–4): 251–261. arXiv:0806.2795. doi:10.1017/S1473550408004187. 
  98. ^ Overbyte, Dennis (2009年7月25日). “Jupiter: Our Comic Protector?” (英語). Thew New York Times. http://www.nytimes.com/2009/07/26/weekinreview/26overbye.html?hpw 2011年5月5日閲覧。 
  99. ^ Tabe, Isshi; Watanabe, Jun-ichi; Jimbo, Michiwo (February 1997). “Discovery of a Possible Impact SPOT on Jupiter Recorded in 1690”. Publications of the Astronomical Society of Japan 49: L1–L5. Bibcode1997PASJ...49L...1T. 
  100. ^ Baalke, Ron. “Comet Shoemaker-Levy Collision with Jupiter”. NASA. 2007年1月2日閲覧。
  101. ^ Britt, Robert R. (2004年8月23日). “Remnants of 1994 Comet Impact Leave Puzzle at Jupiter” (英語). space.com. http://www.space.com/scienceastronomy/mystery_monday_040823.html 2011年5月5日閲覧。 
  102. ^ Staff (2009年7月21日). “Amateur astronomer discovers Jupiter collision” (英語). ABC News online. http://www.abc.net.au/news/stories/2009/07/21/2632368.htm 2011年5月5日閲覧。 
  103. ^ Salway, Mike (2009年7月19日). “Breaking News: Possible Impact on Jupiter, Captured by Anthony Wesley” (英語). IceInSpace. 2011年5月5日閲覧。
  104. ^ Grossman, Lisa (2009年7月20日). “Jupiter sports new 'bruise' from impact”. New Scientist. http://www.newscientist.com/article/dn17491-jupiter-sports-new-bruise-from-impact.html 
  105. ^ 木星に天体が衝突、天文ファンが捉えた動画”. WIRED.jp. WIRED.jp (2010年6月7日). 2010年6月7日閲覧。
  106. ^ Bakich, Michael (2010年6月4日). “Another impact on Jupiter” (英語). Astronomy Magazine online. 2011年5月5日閲覧。
  107. ^ Optical flash on Jupiter”. 渡部潤一 (2010年8月21日). 2011年5月5日閲覧。
  108. ^ Third Jupiter Fireball Spotted—Sky-Watching Army Needed?” (英語). National Geographic. 2011年5月5日閲覧。
  109. ^ Staff (2005年6月16日). “Stargazers prepare for daylight view of Jupiter” (英語). ABC News Online. http://www.abc.net.au/news/newsitems/200506/s1393223.htm 2011年5月5日閲覧。 
  110. ^ Rogers, J. H. (1998). “Origins of the ancient constellations: I. The Mesopotamian traditions”. Journal of the British Astronomical Association, 108: 9–28. Bibcode1998JBAA..108....9R. 
  111. ^ Harper, Douglas (2001年11月). “Jupiter” (英語). Online Etymology Dictionary. 2011年5月5日閲覧。
  112. ^ 【Jovial】”. weblio英和辞典. 2011年5月5日閲覧。
  113. ^ Jovial” (英語). Dictionary.com. 2011年5月5日閲覧。
  114. ^ 十二支と十干”. 海上保安庁海洋情報部. 2011年5月5日閲覧。
  115. ^ 柴田晋平. “木星を見つけよう”. 山形大学理学部物理学科. 2011年5月5日閲覧。
  116. ^ 藤井隆晴. “呪符木簡「天形星」から見る備後地方の疫病対策” (PDF). 福山大学. 2011年5月5日閲覧。
  117. ^ 石川源晃『【実習】占星学入門』ISBN 4-89203-153-4
  118. ^ A. Sachs (May 2, 1974). “Babylonian Observational Astronomy”. Philosophical Transactions of the Royal Society of London (Royal Society of London) 276 (1257): 43–50 (see p. 44). JSTOR 74273 
  119. ^ Xi, Z. Z. (1981). “The Discovery of Jupiter's Satellite Made by Gan-De 2000 Years Before Galileo”. Acta Astrophysica Sinica 1 (2): 87. Bibcode1981AcApS...1...87X. 
  120. ^ Dong, Paul (2002). China's Major Mysteries: Paranormal Phenomena and the Unexplained in the People's Republic. China Books. ISBN 0-8351-2676-5 
  121. ^ Olaf Pedersen (1974). A Survey of the Almagest. Odense University Press. pp. 423, 428 
  122. ^ tr. with notes by Walter Eugene Clark (1930). The Aryabhatiya of Aryabhata. University of Chicago Press. p. 9, Stanza 1. https://archive.org/download/The_Aryabhatiya_of_Aryabhata_Clark_1930/The_Aryabhatiya_of_Aryabhata_Clark_1930.pdf 
  123. ^ Westfall, Richard S. “Galilei, Galileo” (英語). The Galileo Project. 2011年5月5日閲覧。
  124. ^ a b O'Connor, J. J.; Robertson, E. F. (2003年4月). “Giovanni Domenico Cassini”. University of St. Andrews. 2007年2月14日閲覧。
  125. ^ Murdin, Paul (2000). Encyclopedia of Astronomy and Astrophysics. Bristol: Institute of Physics Publishing. ISBN 0-12-226690-0 
  126. ^ SP-349/396 Pioneer Odyssey—Jupiter, Giant of the Solar System” (英語). NASA (1974年8月). 2011年5月5日閲覧。
  127. ^ Roemer's Hypothesis” (英語). MathPages. 2011年5月5日閲覧。
  128. ^ Tenn, Joe (2006年3月10日). “Edward Emerson Barnard” (英語). Sonoma State University. 2011年5月5日閲覧。
  129. ^ Amalthea Fact Sheet” (英語). NASA JPL (2001年10月1日). 2011年5月5日閲覧。
  130. ^ Dunham Jr., Theodore (1933). “Note on the Spectra of Jupiter and Saturn”. Publications of the Astronomical Society of the Pacific 45: 42–44. Bibcode1933PASP...45...42D. doi:10.1086/124297. 
  131. ^ Youssef, A.; Marcus, P. S. (2003). “The dynamics of jovian white ovals from formation to merger”. Icarus 162 (1): 74–93. Bibcode2003Icar..162...74Y. doi:10.1016/S0019-1035(02)00060-X. 
  132. ^ Pioneer 10 Mission Profile” (英語). NASA. 2011年5月5日閲覧。
  133. ^ Glenn Research Center” (英語). NASA. 2011年5月5日閲覧。
  134. ^ p. 150, Spacecraft systems engineering, Peter W. Fortescue, John Stark, and Graham Swinerd, 3rd ed., John Wiley and Sons, 2003, ISBN 0-470-85102-3.
  135. ^ Hirata, Chris. “Delta-V in the Solar System”. California Institute of Technology. 2006年7月15日時点のオリジナルよりアーカイブ。2006年11月28日閲覧。
  136. ^ Wong, Al (1998年5月28日). “Galileo FAQ - Navigation” (英語). NASA. 2011年5月5日閲覧。
  137. ^ a b c Chan, K.; Paredes, E. S.; Ryne, M. S. (2004年). “Ulysses Attitude and Orbit Operations: 13+ Years of International Cooperation” (PDF) (英語). American Institute of Aeronautics and Astronautics. 2005年12月14日時点のオリジナルよりアーカイブ。2011年5月5日閲覧。
  138. ^ Lasher, Lawrence (2006年8月1日). “Pioneer Project Home Page”. NASA Space Projects Division. 2006年1月1日時点のオリジナルよりアーカイブ。2006年11月28日閲覧。
  139. ^ Jupiter”. NASA Jet Propulsion Laboratory (2003年1月14日). 2006年11月28日閲覧。
  140. ^ Hansen, C. J.; Bolton, S. J.; Matson, D. L.; Spilker, L. J.; Lebreton, J.-P. (2004). “The Cassini-Huygens flyby of Jupiter”. Icarus 172 (1): 1–8. Bibcode2004Icar..172....1H. doi:10.1016/j.icarus.2004.06.018. 
  141. ^ Mission Update: At Closest Approach, a Fresh View of Jupiter” (英語). 2011年5月5日閲覧。
  142. ^ Pluto-Bound New Horizons Provides New Look at Jupiter System” (英語). 2011年5月5日閲覧。
  143. ^ New Horizons targets Jupiter kick” (英語). BBC News Online (2007年1月19日). 2011年5月5日閲覧。
  144. ^ Alexander, Amir (2006年9月27日). “New Horizons Snaps First Picture of Jupiter” (英語). The Planetary Society. 2011年5月5日閲覧。
  145. ^ a b McConnell, Shannon (2003年4月14日). “Galileo: Journey to Jupiter” (英語). NASA Jet Propulsion Laboratory. 2011年5月5日閲覧。
  146. ^ Galileo Probe Mission Events Timeline” (英語). Petr Horálek (1995年11月30日). 2011年5月5日閲覧。
  147. ^ Goodeill, Anthony (2008年3月31日). “New Frontiers – Missions - Juno” (英語). NASA. 2007年2月3日時点のオリジナルよりアーカイブ。2011年5月5日閲覧。
  148. ^ ジュノー - 月探査情報ステーション
  149. ^ Berger, Brian (2005年2月7日). “White House scales back space plans” (英語). MSNBC. http://www.msnbc.msn.com/id/6928404/ 2011年5月5日閲覧。 
  150. ^ Atzei, Alessandro (2007年4月27日). “Jovian Minisat Explorer” (英語). ESA. 2011年5月5日閲覧。
  151. ^ Talevi, Monica; Brown, Dwayne (2009年2月18日). “NASA and ESA Prioritize Outer Planet Missions” (英語). 2011年5月5日閲覧。
  152. ^ Rincon, Paul (2009年2月18日). “Jupiter in space agencies' sights” (英語). BBC News. http://news.bbc.co.uk/1/hi/sci/tech/7897585.stm 2011年5月5日閲覧。 
  153. ^ Volonte, Sergio (2007年7月10日). “Cosmic Vision 2015-2025 Proposals” (英語). ESA. http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=41177 2011年5月5日閲覧。 
  154. ^ Laplace: A mission to Europa & Jupiter system” (英語). ESA. 2011年5月5日閲覧。
  155. ^ Heppenheimer, T. A. (2007年). “Colonies in Space, Chapter 1: Other Life in Space” (英語). National Space Society. 2011年5月5日閲覧。
  156. ^ Life on Jupiter” (英語). Encyclopedia of Astrobiology, Astronomy & Spaceflight. 2011年5月5日閲覧。
  157. ^ Sagan, C.; Salpeter, E. E. (1976). “Particles, environments, and possible ecologies in the Jovian atmosphere”. The Astrophysical Journal Supplement Series 32: 633–637. doi:10.1086/190414. 
  158. ^ アイザック・アシモフ「16.もちろん木星だとも」『空想自然科学入門』(第一八刷)早川書房、1963年、294-310頁。ISBN 4-15-050021-5 
  159. ^ 木星とガリレオ衛星(2018年) アストロアーツ、2022年1月11日閲覧
  160. ^ Encounter with the Giant”. NASA (1974年). 2007年2月17日閲覧。






木星と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「木星」の関連用語

検索ランキング

   

英語⇒日本語
日本語⇒英語
   



木星のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの木星 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS