平均
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/26 15:13 UTC 版)
狭い意味での中間値にとどまらず、算術平均(相加平均)・幾何平均(相乗平均)・調和平均・対数平均など様々な種類で用いられる。一般的には特に算術平均を指し、集合の要素の総和を要素数で割ったものである[1][2]。
算術平均を用いる際の注意
科学観測や社会調査から得られるデータでは、算術平均を代表値の一つとして用いる。算術平均が中央値、最頻値、中点値と比べてデータの特徴をよく表すものかどうかを検討する必要がある。正規分布に近い場合は算術平均と標準偏差を用いることは適切だが、そうでない分布の場合は、算術平均値が度数の多い値を示すとはいえない。
例えば、国民(例えば日本人)の所得について考える。このデータでは、一部の高所得者が算術平均値を引き上げてしまい、算術平均値をとる世帯は実際にはほとんどいないということになる。よってこの場合正規分布には従わない。日本の国税庁の民間給与実態統計調査によると、平成29年度の場合、給与所得の算術平均値は423万円だが、最頻値は300万円~400万円の区分であり、ずれている[3]。従って、一般的な世帯の所得をとらえるには中央値や最頻値が有効であるが、所得は97%~99%は所得の対数値が正規分布(対数正規分布)に従っているため[4]、所得の対数値の算術平均、つまり幾何平均を用いるのが適切な所得の代表値であるともいえる。
分布が左右対称でない時、中央値、最頻値を用いると良い場合もある。また、飛び抜けた値(外れ値)がごく少数の場合には、最大と最小を除外した刈込平均(トリム平均)を用いることもある。平均が中央値、最頻値、中点値と乖離している場合は刈込平均を含めた平均以外の使用を考えるとよい[5]。
統計学
統計学では、平均値とは普通は算術平均(相加平均)のことを指す。これはデータの値から算術的に計算して得られる統計指標値の一つである。
母平均と標本平均
統計学では平均には母平均と標本平均がある。母平均は、母集団の相加平均のこと。標本平均は、抽出した標本(母集団の部分集合)の相加平均のこと。母平均を μ、標本平均を m と書いて区別する場合がある[6][7]。
相加平均
算術平均(さんじゅつへいきん、英: arithmetic mean, 独: arithmetisches Mittel, 仏: moyenne arithmétique)とも呼ぶ。
相加平均は
で定義される。式変形して
と表すこともできる。
の相加平均を とも表す。
相加平均は、加法とスカラー倍が定義された数(実数、複素数、ベクトル等)に対して定義できる。
一般化平均
相乗平均
相乗平均(そうじょうへいきん)または幾何平均(きかへいきん、英: geometric mean, 独: geometrisches Mittel, 仏: moyenne géométrique)は
で定義される。幾何平均は相乗平均と同義の用語である。
式変形して
とも表せる。
対数を取ると
となり、相乗平均は、対数の算術平均の指数関数である。あるいは、相乗平均の対数は対数の算術平均である。
データに1つ以上の 0 があるときは、相乗平均は 0 となる。値全てが実数であっても、積が負の場合は、相乗平均は実数の範囲内では存在しない。また複素数の範囲内では、値全てが実数であって積が正負いずれであっても、相乗平均は一意に定まらない可能性がある。
相乗平均は、積と累乗根が定義された数(実数、複素数)について定義できる。
調和平均
調和平均(ちょうわへいきん、英: harmonic mean)は
で定義される。あるいは
とも表せる。
調和平均は、逆数の算術平均の逆数である。あるいは、逆数の算術平均は調和平均の逆数である。
しかし、データに1つ以上の 0 があるとき、調和平均はもとの定義式からは定義できないが、0 への極限を取ると、調和平均は 0 となる( のとき )。データに負数があっても調和平均は計算することができる。ただし、正負が混在している場合に逆数の和が 0 になることがあり、その場合の極限は発散する。
一般化平均
算術平均、相乗平均、調和平均は同じ式
あるいは
で表せる。この実数 p に対して定義した式の値を p一般化平均と呼ぶ。
p = 1 で算術平均、p = −1 で調和平均となり、p → 0 への極限が相乗平均である。また、p = 2 の場合を二乗平均平方根 (RMS) と呼び、物理学や工学で様々な応用をもつ。p → ∞ への極限は最大値、p → −∞ への極限は最小値である。
一般化平均は、ベクトル の pノルムを で割った結果に一致する。
データの p乗の平均、つまり、一般化平均の p乗
を p乗平均と呼ぶ。
p乗平均・一般化平均の応用として、例えば統計学では分散と標準偏差がある。偏差(値から相加平均を引いた値)のそれぞれ 2乗平均・2一般化平均として定義されている。
一般化平均はさらに一般化が可能で、全単射な関数 f により
という平均が定義できる。恒等関数 f(x) = x により相加平均が、逆数 f(x) = 1/x により調和平均が、対数関数 f(x) = log x により相乗平均がそれぞれ表されている。
相加平均 | 相乗平均 | 調和平均 | |
---|---|---|---|
定義域
実数 p に対する p一般化平均は、データの値が全て非負の実数であるときに定義される。これは、一般化平均の式に現れる p乗根(冪函数)が負数に対し定義できないためである。例外は、冪関数を使わずに計算できる算術平均と調和平均 (p = ±1) である。それ以外の p ≠ ±1 の場合、負数が1つでも含まれるデータに対しては、一般化平均の定義式は実数を返さないか、実数を返したとしても結果は解釈が難しい。
p < 0 の場合、0 を含むデータに対しては一般化平均の定義式は使えないが、調和平均同様、0 への極限を取ると一般化平均は 0 となる。幾何平均(0一般化平均)も 0 となるので、p ≤ 0 の場合に一般化平均は 0 と考えることができる。
具体例
- 相乗平均
- 78年の経済成長率20%、79年の経済成長率80%の場合、この2年間の平均成長率はより、約47%
- 調和平均
- 往は時速60 km、復は時速90 kmの場合の往復の平均速度は である。
- 並列接続された電気抵抗の抵抗値などを考える場合に用いる(直列回路と並列回路)。
関係式
相加平均≧相乗平均≧調和平均
n個の実数が全て正の時、次の大小関係が成り立つ。
- 相加平均 ≥ 相乗平均 ≥ 調和平均
等号成立条件は
である。
左側の不等式は、両辺に対数をとりlogの凸性(イェンセンの不等式)を適用すれば証明できる(数学的帰納法を使った別証明も知られている)。右側の不等式は、調和平均が逆数の相加平均の逆数という事実を左側の不等式に適用すれば証明できる。
さらに拡張した p一般化平均 (p は実数)について、一般には p の広義増加関数となる。p = 1 のとき相加平均、p = −1 のとき調和平均、p → 0 のとき極限として幾何平均になる(#一般化平均を参照)。
相加平均と調和平均の相乗平均
データの大きさ n が 2 のときの相加平均、相乗平均、調和平均をそれぞれ A, G, H とすると、
なので、
が成立する。すなわち、データの相乗平均は相加平均と調和平均の相乗平均に等しくなる。
- ^ 最小二乗法において、加重和の最小化と加重平均の最小化は同じことである。
- ^ JIS Z 8101-1 : 1999, 2.13 平均.
- ^ 例えば A, B, C という3人の体重がそれぞれ 55 kg, 60 kg, 80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg) ÷ 3 = 65 kg である。
- ^ 民間給与実態統計調査結果 - 標本調査結果|国税庁
- ^ Clementi, Fabio; Gallegati, Mauro (2005) "Pareto's law of income distribution: Evidence for Germany, the United Kingdom, and the United States", EconWPA
- ^ 西岡, 刈込平均 p.7.
- ^ 西岡, p.5.
- ^ 伏見, 第II章 確率論 10節 偶然量、平均値 p.70.
平均と同じ種類の言葉
品詞の分類
「平均」に関係したコラム
-
FXやCFDのダブル指数移動平均とは、指数移動平均と指数移動平均の指数移動平均を用いたテクニカル指標のことです。ダブル指数移動平均は2重指数移動平均ともいい、英語では、DEMA、Double Expo...
-
FXやCFDのトリプル指数移動平均とは、指数移動平均と指数移動平均の指数移動平均、さらに指数移動平均の指数移動平均の指数移動平均を用いたテクニカル指標のことです。トリプル指数移動平均は3重指数移動平均...
-
FX(外国為替証拠金取引)で用いられる移動平均線にはいくつかの種類があります。ここでは、よく知られている移動平均線を紹介します。▼単純移動平均線単に移動平均線という場合は、単純移動平均線(Simple...
-
FXやCFDの三角形移動平均とは、移動平均の移動平均のことです。つまり、移動平均値を算出して、さらにその数値の移動平均値を算出します。なお、移動平均には単純移動平均を用います。三角形移動平均は、三角移...
-
FXやCFDの平均足スムースドとは、平均足を平滑化したローソク足のことです。平均足は通常のローソク足よりも平滑化されたように見えますが、平均足スムースドではさらに平滑化されたローソク足の並びになります...
FXでグランビルの法則を使用してエントリーポイントを見つけるには
グランビルの法則は、アメリカ合衆国のジョセフ・グランビル(Joseph Granville)が創り出した投資手法で、FX(外国為替証拠金取引)や株式売買などで用いられています。グランビルの法則で用いら...
- >> 「平均」を含む用語の索引
- 平均のページへのリンク