太陽 太陽活動

太陽

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/10 01:25 UTC 版)

太陽活動

エネルギー源

光輝く太陽はどのようなエネルギーを源にしているかという問題は、19世紀頃までに続々と発見された化学反応ではとうてい解明できず、大きな疑問となっていた。当初は重力ポテンシャルエネルギーという想像もあったが、19世紀末に放射能が発見されると原子核反応が候補となった。そして1938年に核融合反応が発見されると、これが太陽活動のエネルギー源と考えられるようになった[37]

標準太陽モデル

太陽の内部構造は直接観測できない。そのため、1950年代–1960年代にかけてこれを理論的に構築する試みが行われた。これにより、熱核融合反応にて水素をヘリウムへ変換することでエネルギーを生み出す太陽46億年の歴史過程を求め、熱伝導や重力バランスを説明する[20]現在の構造を試算した結果が「標準太陽モデル」と呼ばれる。このモデルによって、太陽中心温度や密度が計算された[38]

差動回転

この偽色彩法の紫外線のイメージでは、太陽は星の表面から立ち上がって、磁界に続くプラズマのC3クラス太陽フレア(上部の左上の白い部分)、太陽の津波(波のような構造、上部の右)および多数のフィラメントを示している。

太陽内部の物質は極端な高温のために全てプラズマの状態にあるとされる。このように剛体でないため、太陽は赤道付近の方が高緯度の領域よりも速く自転し、周期は赤道部分で約25日(地球上の観測では地球公転運動の影響から27日となる[39])、極近くでは約30日である[22]。この太陽の赤道加速型[22]差動回転」(または「微分回転」)のために、太陽の磁力線は時間とともにねじれていくことになる。ねじれて変形した磁力線はやがて磁場のループを作って太陽表面から外へ飛び出して、太陽黒点紅炎(プロミネンス)を作ったり、太陽フレアと呼ばれる爆発現象を引き起こしたりする。この天体現象については地球からの観察に限って言うと、日食の間であれば比較的観察しやすい条件下にある。

太陽磁場と周期

太陽磁場

太陽圏電流シートは惑星軌道を越えて広がり、らせん状に展開する。このもようは、しばしばバレリーナのスカートに例えられる[40]

太陽は固有磁場を持っているが、その様相は地球磁場と大きく異なる。磁力線は太陽風によって放射状に広がり、しかも自転の影響を受けてらせん状に展開する。宇宙空間の一般磁場は1ガウスに満たないが、黒点部分では数千ガウスと強さもまちまちである[41]。太陽付近の強い磁場がプラズマを拘束する際にX線が生じる[42]

このような磁場は地球同様にダイナモ効果によると考えられるが、差動回転の影響で単純な双極磁場とならず緯度によって差が生まれて、やがて水平方向のトロイダル磁場を作る。しかし磁力線は反発し合うために浮き上がりやループなどが生じ、黒点を生む原因となる。ここにコリオリの力が影響すると、磁力線の繋ぎ変えやねじれができ水平方向の電流(トロイダル電流)が誘起され、磁場はNS極が逆転した緯度方向のポロイダル磁場となり、上下逆の双極磁場に戻る。この変動は11年を周期に起こり、これは太陽周期と呼ばれる[41]

周期

過去250年間の黒点数調査を描いた件数グラフ。11年周期で増減している。

太陽黒点は太陽周期で増減する。これは黒点の数で観測され、多くなれば活発な極大期へ向かう[43]。このサイクルは古い磁場が一方の極から引き剥がされてもう一方の極まで達する周期に対応しており、1周期ごとに太陽磁場は反転する。太陽活動の周期には1755年から始まった周期を第1周期とする通し番号が付けられており、2008年1月から第24周期に入っている。この他、マウンダー極小期のようなさらに長い周期での変化もある。なお、11年周期は磁場極性変動が片方(例えば北から南)へ動く期間であり、一周する期間で考えれば22年周期とも言える[43]

この周期は、太陽磁場・差動回転・対流の3つが対流層で相互作用を起こした結果という説明が1950年代にアメリカのユージン・パーカーが提唱した「ダイナモ機構」で行われた。ただし太陽周期を正確に説明するダイナモモデルは完成されておらず、これには対流層での差動回転の様子を解明しなければならない[43]

表面現象

SDOが捕らえたように、2012年8月に紅炎が発生した

太陽表面には、数時間から数ヶ月にかけて現れては消えるしみのような太陽黒点などさまざまな現象が生じる。また爆発現象である太陽フレア紅炎(プロミネンス)、CME(コロナ質量放出)なども観察できる[42]。これらを発生させる原因は太陽磁場の磁力線管である。黒点は磁力線管が浮き上がり[34]光球面と交わる部分に2つが対になって生じ[44]、太陽エネルギー放出を阻害するためにその領域の温度は相対的に低くなる。

2007年1月12日にひのでの可視光磁場望遠鏡によって撮影された。この太陽の画像は異なる磁気両極性の地域を繋いでいるプラズマの繊維状の性質を明らかにしている。
太陽フレア

太陽フレアは黒点上のコロナ部分周辺で数分から数十分発生する強力な爆発現象で、高さ1–10万キロメートルのフレアリボンという明るい帯状の光と強いX線[36]を放ちながら、10×1022–10×1025ジュールの高エネルギー粒子が宇宙空間に放たれる[34][42]。紅炎は黒点形成に関わる磁力線管に蓄積された2000–3000 Kの高温プラズマに耐えられず、付け根部分が破壊する現象で、これも高エネルギー粒子の放出が伴う[42]

コロナ質量放出(コロナガス放出、Coronal mass ejection, CME)

コロナ内でもコロナ質量放出(コロナガス放出、Coronal mass ejection, CME)という現象がある。これはコロナ下層から湧き上がる電離高温ガスの塊であり、質量1012 kg程度、速度10–1000 km/s、エネルギーは1026 J程度[44]にもなる。かつては太陽フレア発生による副次作用と思われていたが、観測の結果CMEがフレアよりも先に起こることもあると判明しており[45]、CME発生の根本原因は解明されていない[36][44]

太陽風

コロナ内部でプラズマのガス圧力が高まり、太陽の引力を超える状態になると宇宙空間へ吹き出す現象が起こる。これは太陽風と呼ばれ、1951年にドイツのルートヴィヒ・ビーアマンが彗星の尾が太陽光の圧力以外に何かしらの力を受けていることから予測し、1962年にマリナー2号の観測で実証された[40]

太陽風の密度は粒子が1 cm2当たり5個程度、通常速度は300–500 km/s[46]。成分は主にプロトン (H+)次いでアルファ粒子 (He++)などイオン[40]と電子などの荷電粒子である[46]。これが太陽から磁力線に沿ったスパイラル状に吹き出している[47]。温度は地球付近でも10万度を維持している[48]。この太陽風は110–160 auまで届き、銀河系の恒星間ガスと衝突するところまで到達する。この衝突面はヘリオポーズと呼ばれ、これより内側が太陽圏(ヘリオスフェア)と定義される[49]。この太陽風が地球磁場の南北極域に達し、オーロラが発生する[46]

太陽風は発生元によって特徴があり、太陽フレアから生じる場合は1000 km/sの高速[36]・高密度となる。CMEからは高密度だが速度は中程度となり、コロナホールからは高速だが密度が低い太陽風が発生する[40]


注釈

  1. ^ 2012年5月の金環日食の際の観測に基づく。金環日食直後の速報では、太陽半径として 696010±20 km としていたが、日本天文学会2012年秋季年会での報告値は太陽半径として 696019±10 km
  2. ^ 太陽内部では中心部にある核で生み出されたエネルギーが表面まで伝わるのに、数十万年から数百万年掛かると考えられている。プラズマ状態にある核では核融合反応によってニュートリノとガンマ線が生じている。ニュートリノは周囲の層を構成する物質と相互作用することはほとんどなく、そのまま宇宙空間に出て行く。核内部では生じたガンマ線が原子核に吸収され再び放射されることでジグザグに進むが、それは核の表面から放射層の最下層に達しても同様に原子核によって吸収と放射を繰り返しながらジグザグに進んで容易には外部へ伝わらない。核でエネルギーが生じてから放射層内部を進むのには数十万年から数百万年ほど掛かる。放射層表面に達したガンマ線は対流層の最底部を2百万度程度まで加熱する。対流層の表面は1万度程度であり、温度差によって対流しており、底部から表面まで約10日程度でエネルギーが運ばれる。対流層の外部の光球からは放射光や太陽風となって宇宙空間に出てゆく。
  3. ^ 地球史において太古の海洋の存在を示す地質学的な証拠と相容れないことから「暗い太陽のパラドックス」と呼ばれる。田近(1998)『地球進化論』315-320pによる アーカイブ 2016年6月30日 - ウェイバックマシン広島大学地球資源論研究室のまとめ、岐阜大学教育学部理科教育講座(地学)Web教材 高等学校理科総合B > 暗い初期太陽のパラドックス アーカイブ 2015年9月28日 - ウェイバックマシン、及びカール・セーガンらの原著、Sagan, C.; Mullen, G. (1972). “Earth and Mars: Evolution of Atmospheres and Surface Temperatures”. Science 177 (4043): 52–56. Bibcode1972Sci...177...52S. doi:10.1126/science.177.4043.52. PMID 17756316. オリジナルの2010年8月9日時点におけるアーカイブ。. http://www.sciencemag.org/cgi/content/abstract/177/4043/52?ck=nck 2015年9月27日閲覧。. ワシントン大学のサイト上の全文PDF アーカイブ 2015年11月23日 - ウェイバックマシン)を参照のこと。

出典

  1. ^ a b c d e 理科年表 2012, p. 96.
  2. ^ 理科年表 2012, p. 78.
  3. ^ a b c d e f g h i Williams, David R. (2016年12月16日). “Sun Fact Sheet” (英語). NASA. 2010年7月15日時点のオリジナルよりアーカイブ。2017年3月26日閲覧。
  4. ^ a b c d e f By the Numbers - Sun - Solar System Exploration: NASA Science”. Solar System Exploration: NASA Science. 2019年5月23日時点のオリジナルよりアーカイブ。2018年10月15日閲覧。
  5. ^ Elert, G.: “The Physics Factbook” (英語). 2010年11月25日時点のオリジナルよりアーカイブ。2010年10月16日閲覧。
  6. ^ a b 君が天文学者になる4日間 予習テキスト 第8章 知っておくべき事、知っておくと便利な事 (PDF)”. 国立天文台. pp. 55. 2012年5月25日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  7. ^ The Sun's Vital Statistics” (英語). Stanford Solar Center. 2011年1月5日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  8. ^ a b 尾崎 2010, pp. 9–10, 第2章 太陽と太陽系.
  9. ^ a b c d e ニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か
  10. ^ 君が天文学者になる4日間 予習テキスト 第2章 星の色と分類 (PDF)”. 国立天文台. p. 10. 2012年5月25日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  11. ^ a b c d e f 尾崎 2010, pp. 10–11, 第2章 太陽と太陽系、2.1太陽 2.1.1太陽の概観.
  12. ^ 最軽量の系外惑星を発見”. sorae.jp (2006年1月26日). 2015年9月24日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  13. ^ Sun: Facts & Figures”. NASA. 2008年1月2日時点のオリジナルよりアーカイブ。2018年6月17日閲覧。
  14. ^ 山崎 2007, pp. 102–103, 第4章 太陽系の広がりと宇宙の果て.
  15. ^ Table 1.1: IERS numerical standards 1 General definitions and numerical standards” (英語). 2012年6月24日閲覧。
  16. ^ a b c 山崎 2007, pp. 32–33, 第1章 太陽とは.
  17. ^ 君が天文学者になる4日間 予習テキスト 第8章 知っておくべき事、知っておくと便利な事 (PDF)” (日本語). 大学共同利用機関法人 自然科学研究機構 国立天文台. p. 52. 2012年5月25日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  18. ^ 第28回国際天文学連合総会 決議B2”. 2013年8月16日時点のオリジナルよりアーカイブ。2013年6月30日閲覧。
  19. ^ a b c d 山崎 2007, pp. 46–47, 第2章 太陽内部はエネルギーの宝庫.
  20. ^ a b c d e f g ニュートン (別2009)、2章 太陽と地球、そして月、pp. 32–33 太陽は超高温超高圧の核融合反応炉
  21. ^ a b 山崎 2007, pp. 36–37, 第2章 太陽内部はエネルギーの宝庫.
  22. ^ a b c d e f g h i j k l m n o p 尾崎 2010, pp. 11–16, 第2章 太陽と太陽系、2.1太陽 2.1.2太陽の表面およびその外層.
  23. ^ a b ニュートン (別2009)、2章 太陽と地球、そして月、pp. 34–36 海王星の先まで届く太陽の風
  24. ^ 太陽観測 2010, pp. 22–23, 第1章 太陽の基礎知識、1-4 太陽の構造.
  25. ^ 山崎 2007, pp. 38–39, 第2章 太陽内部はエネルギーの宝庫.
  26. ^ a b c 山崎 2007, pp. 42–43, 第2章 太陽内部はエネルギーの宝庫.
  27. ^ 山崎 2007, pp. 12–13.
  28. ^ 太陽観測 2009, pp. 22–23, 第1章 太陽の基礎知識、1-4 太陽の構造.
  29. ^ 山崎 2007, pp. 44–45, 第2章 太陽内部はエネルギーの宝庫.
  30. ^ 秋岡 2008, pp. 190–193, 第8章 太陽ってどんな星? 8-3太陽エネルギーの生成と輸送.
  31. ^ THE SUN DOES THE WAVE” (英語). NASA (2003年). 2010年3月11日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  32. ^ 広報普及室 (1997年). “天文ニュース(118) 太陽表面で水を検出” (日本語). 国立天文台. 2011年10月6日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  33. ^ Phillips, T. (2007年). “Stereo Eclipse”. Science@NASA. NASA. 2008年6月10日時点のオリジナルよりアーカイブ。2008年6月19日閲覧。
  34. ^ a b c d 浅井歩. “太陽観測による最近の磁気プラズマ研究の進展 (PDF)” (日本語). 社団法人日本流体力学会. 2011年10月6日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  35. ^ 黒河宏企. “7月22日の日食が世紀の日食と云われるわけ (PDF)” (日本語). 京都大学大学院理学研究科付属天文台 NPO法人花山星空ネットワーク. 2012年10月19日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  36. ^ a b c d 用語解説 (PDF)” (日本語). 文部科学省. 2013年1月28日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  37. ^ 尾崎 2010, pp. 20–21, 第2章太陽と太陽系、2.1太陽 2.1.4太陽のエネルギー源.
  38. ^ a b c d e f 尾崎 2010, pp. 21–33, 第2章太陽と太陽系、2.1太陽 2.1.5太陽ニュートリノの謎.
  39. ^ 2018年5月11日ニュース「太陽の自転が日本の雷に影響を与えている」”. SciencePortal (2018年5月11日). 2019年12月18日閲覧。
  40. ^ a b c d 町田忍. “太陽風 (Solar Wind)” (日本語). 京都大学大学院理学研究科 地球惑星科学専攻 太陽惑星系電磁気学講座. 2011年8月17日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  41. ^ a b 山崎 2007, pp. 50–51, 第2章 太陽内部はエネルギーの宝庫.
  42. ^ a b c d 太田善久 (2003年). “2003年5月12日 福田研輪講資料 太陽 (PDF)” (日本語). 電気通信大学情報理工学研究科情報・通信工学専攻田口研究室. 2005年5月5日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  43. ^ a b c 尾崎 2010, pp. 16–20, 第2章太陽と太陽系、2.1太陽 2.1.3太陽の活動現象.
  44. ^ a b c 秋岡, pp. 197–201, 第8章 太陽ってどんな星?.
  45. ^ 3.太陽の活動現象 (PDF)” (日本語). 山口大学教育学部数理情報コース. 2010年10月19日閲覧。[リンク切れ]
  46. ^ a b c 南極豆事典 Lesson.4オーロラ 太陽風と磁気圏” (日本語). 国立極地研究所. 2011年5月31日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  47. ^ 向井利典. “太陽風” (日本語). 東京大学地球惑星科学専攻宇宙惑星科学講座. 2014年3月18日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  48. ^ 太陽風” (日本語). 名古屋大学太陽地球環境研究所. 2012年1月12日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  49. ^ ヘリオポーズって何?” (日本語). 名古屋大学太陽地球環境研究所, りくべつ宇宙地球科学館, 豊川市ジオスペース館. 2012年1月14日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  50. ^ 読売新聞2009年7月18日夕刊記事、参照部分日食…少しは体感できた?。他Dust particles dynamics in the solar ringAn explanation for time dependent variability of the solar dust ring
  51. ^ 西尾正則. “宇宙科学入門第7回資料 恒星の誕生と進化 (PDF)” (日本語). 鹿児島大学理学部. 2011年9月22日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  52. ^ ニュートン (別2009)、6章 太陽系のなりたち、p134 私たちの体は星の死からつくりだされた?
  53. ^ Ramírez, I. et al. (2014). “Elemental Abundances of Solar Sibling Candidates”. The Astrophysical Journal 787 (2): 154. arXiv:1405.1723. Bibcode2014ApJ...787..154R. doi:10.1088/0004-637X/787/2/154. ISSN 0004-637X. 
  54. ^ Adibekyan, V. et al. (2018). “The AMBRE project: searching for the closest solar siblings”. Astronomy & Astrophysics 619: A130. arXiv:1810.01813v2. Bibcode2018A&A...619A.130A. doi:10.1051/0004-6361/201834285. ISSN 0004-6361. 
  55. ^ ニュートン (別2009)、6章 太陽系のなりたち、pp. 130–131 太陽系は現在の秩序ある姿となった
  56. ^ a b c d e f g h ニュートン (別2009)、7章 太陽系の最後、pp. 140–141 太陽は超巨大な赤い星に変化するという
  57. ^ a b c d 山崎 2007, pp. 148–149, 第7章 太陽と宇宙の未来.
  58. ^ a b ニュートン (別2009)、7章 太陽系の最後、pp. 142–143 太陽が膨らむと地球はどうなる?
  59. ^ 太陽観測 2009, pp. 20–21, 第1章 太陽の基礎知識.
  60. ^ ニュートン2016年4月号 p. 134
  61. ^ ニュートン (別2009)、7章 太陽系の最後、pp. 144–145 太陽の外側がはがれてなくなる?
  62. ^ ニュートン (別2009)、7章 太陽系の最後、pp. 146–147 太陽の最後の姿を想像してみると…
  63. ^ 山崎 2007, pp. 10–11, 第1章 太陽とは.
  64. ^ 編:大林太良伊藤清司、吉田敦彦、松村一男『世界神話事典』角川書店、2005年、297頁。ISBN 4-04-703375-8
  65. ^ a b 山崎 2007, pp. 14–15, 第1章 太陽とは.
  66. ^ 中村滋. “古代ギリシアの数学者たちの新しい姿 (PDF)” (日本語). 学習院大学. 2010年10月19日閲覧。[リンク切れ]
  67. ^ 山崎 2007, pp. 16–17, 第1章 太陽とは.
  68. ^ 山崎 2007, pp. 18–19, 第1章 太陽とは.
  69. ^ 村上陽一郎『宇宙像の変遷』講談社、1996年、第一刷、97–98。ISBN 4-06-159235-1
  70. ^ a b 山崎 2007, pp. 20–21, 第1章 太陽とは.
  71. ^ 尾崎 2010, p. 241, 第7章宇宙の中の人間.
  72. ^ Carrington, R. C. (1859). “Description of a Singular Appearance seen in the Sun on September 1, 1859”. Monthly Notices of the Royal Astronomical Society 20 (1): 13-15. Bibcode1859MNRAS..20...13C. doi:10.1093/mnras/20.1.13. ISSN 0035-8711. 
  73. ^ 山崎 2007, pp. 48–49, 第2章 太陽内部はエネルギーの宝庫.
  74. ^ a b アイザック・アシモフ、訳:玉虫文一、竹内敬人「第8章 周期表」『化学の歴史』ちくま学芸文庫、2010年、第一刷、172–173, 179。ISBN 978-4-480-09282-3
  75. ^ 太陽観測, pp. 118–120, 第7章 太陽観測の変遷、7-1-1 太陽観測の概観.
  76. ^ 日食網膜症 eclipse retinopathy、日光網膜症 solar retinopathy 聖隷浜松病院眼科 尾花 明”. 2012年5月28日時点のオリジナル[リンク切れ]よりアーカイブ。2013年6月30日閲覧。
  77. ^ 世界天文年2009 日食観察ガイド”. www.astronomy2009.jp. 2012年10月23日時点のオリジナルよりアーカイブ。2013年6月30日閲覧。
  78. ^ 財団法人 日本眼科学会 『日食観察で目を痛めないために』”. 2012年5月23日時点のオリジナル[リンク切れ]よりアーカイブ。2013年6月30日閲覧。
  79. ^ a b c 日本天文協議会、日本眼科学会、日本眼科医会、2012 「別紙 2012年5月21日(月曜日) 日食を安全に観察するために アーカイブ 2016年3月4日 - ウェイバックマシン」『平成24年5月21日の日食の観察における幼児・児童・生徒の安全確保に係る注意事項について(平成24年4月18日文部科学省研究開発局参事官(宇宙航空政策担当)付事務連絡) アーカイブ 2012年6月19日 - ウェイバックマシン』2012年2月
  80. ^ 株式会社ビクセン サポート情報”. 2013年7月27日時点のオリジナル[リンク切れ]よりアーカイブ。2013年6月30日閲覧。
  81. ^ a b 太陽観測 2009, pp. 118–120, 第7章 太陽観測の変遷、7-1-2 太陽望遠鏡の特徴.
  82. ^ a b 尾崎 2010, pp. 33–38, 第2章太陽と太陽系、2.1太陽 2.1.6日震学.






太陽と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「太陽」の関連用語

検索ランキング

   

英語⇒日本語
日本語⇒英語
   



太陽のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの太陽 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2022 GRAS Group, Inc.RSS