太陽電池 温度の影響

太陽電池

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/08/22 15:21 UTC 版)

温度の影響

太陽電池モジュールは条件によっては日光によって温度が60~80℃にも達することがあるが、太陽電池では温度が上昇することで出力が低下する現象が見られることがある。これは高温において禁制帯幅(シリコンでは1.2eV)が減少することで出力電圧が低下するためである。エネルギーギャップの大きいアモルファスシリコンや一部化合物系の太陽電池では電圧低下の影響が少ないため、モジュールが高温になる地域では有利になる。一方、高温になると光吸収係数が大きくなることで電流が増加する効果も発生するが、結晶シリコンでは通常この効果は小さい。このほか、上部に2枚以上の偏光板を回転させて日光量を調節し温度抑制あるいは出力調整をする方法がある。

  • 温度係数は結晶シリコンにおいては通常-0.45%/℃前後であり、これは70℃において基準温度(25℃)に対して約2割の出力低下になる。
  • アモルファスシリコンにおいては禁制帯幅が1.75eVと大きいため、温度による効率低下は少ない。アモルファスシリコンを結晶シリコン等と積層することで、変換効率を単結晶シリコン並の20%前後にしつつ、温度係数を-0.2~-0.3%/℃程度(70℃においても1割程度の出力低下)に抑えることが出来、内外の企業によって実用化されている。
  • GaAs(禁制帯幅1.4eV)では温度係数は-0.2~-0.3%/℃である。
  • CIS系など一部の太陽電池では、ある程度温度が上がることで光や放射線による劣化がアニーリング効果によって回復する性質がある。
  • 人工衛星用など宇宙用の太陽電池モジュールでは、使用時の温度が-100℃~+120℃程度の範囲で軌道周回に伴って頻繁に変化するのに対応して、熱サイクルによる疲労などに配慮した製品が用いられる。



  1. ^ E. Becquerel (1839). “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”. Comptes Rendus 9: 561–567. http://gallica.bnf.fr/ark:/12148/bpt6k2968p/f561.chemindefer. 
  2. ^ R. Williams (1960). “Becquerel Photovoltaic Effect in Binary Compounds”. The Journal of Chemical Physics 32 (5): 1505–1514. Bibcode 1960JChPh..32.1505W. doi:10.1063/1.1730950. 
  3. ^ a b 太陽電池はどのように発明され、成長したのか、桑野幸徳、オーム社、平成23年8月、ISBN 978-4-274-50348-1
  4. ^ a b Pre-1900 Semiconductor Research and Semiconductor Device Applications, AI Khan, IEEE Conference on the History of Electronics, 2004 (PDF)
  5. ^ a b c John Perlin, The Silicon Solar Cell Turns 50 (PDF)
  6. ^ M.B.Prince (May 1955). “Silicon Solar Energy Converters”. Journal of Applied Physics 26 (5): 534. doi:10.1063/1.1722034. 
  7. ^ Vanguard Project
  8. ^ 荒川裕則、「色素増感太陽電池」、シーエムシー出版、2001年、ISBN 978-4-88231-933-7
  9. ^ 特許庁によるまとめ
  10. ^ 太陽電池用シリコン素材の製造プロセス (生研リーフレット No.289)
  11. ^ EPIA, Solar Generation IV - 2007, P.43 Archived 2008年5月11日, at the Wayback Machine.
  12. ^ EPIA, Solar Generation IV - 2007, P.17 Archived 2008年5月11日, at the Wayback Machine.
  13. ^ 参照:開発例1開発例2
  14. ^ 参照:解説1解説2
  15. ^ HIT太陽電池モジュール(財団法人新エネルギー財団)
  16. ^ HIT太陽電池の特徴(三洋電機)
  17. ^ 球状太陽電池(京セミ株式会社)
  18. ^ 球状半導体(日経BP社)
  19. ^ 球状シリコン太陽電池の開発・製造 (日経ビジネス)日経ビジネスが描いた日本経済の40年
  20. ^ 電界効果を用いる新型高効率アモルファス太陽電池の開発(独立行政法人新エネルギー・産業技術総合開発機構)
  21. ^ 低次元超構造のコンビナトリアル分子層エピタキシー(独立行政法人科学技術振興機構)
  22. ^ 太陽電池セルで世界最高変換効率35.8%を達成 ニュースリリース(2009年10月22日)
  23. ^ 例1例2
  24. ^ http://www.aist.go.jp/aist_j/aistinfo/aist_today/vol07_07/p14.html
  25. ^ http://www.aist.go.jp/aist_j/press_release/pr2008/pr20080716/pr20080716.html
  26. ^ http://www.aist.go.jp/aist_j/aistinfo/aist_today/vol07_07/p14.html
  27. ^ 長岡高専
  28. ^ ソーラーフロンティア、CZTS太陽電池の変換効率で世界記録、IBMなどと共同研究
  29. ^ Cadmium Use in Photovoltaics - Concerned Citizen”. NREL. 2011年3月15日時点のオリジナルよりアーカイブ。2007年6月15日閲覧。
  30. ^ en:Cadmium telluride photovoltaics参照
  31. ^ 例:PR_solarpowerplant_RoteJahne.pdf”. www.juwi.de. 2007年9月29日時点のオリジナルよりアーカイブ。2007年6月15日閲覧。
  32. ^ 透明な太陽電池の試作に成功”. 産総研 (2003年6月25日). 2015年3月閲覧。
  33. ^ 透明なのに発電できる?”. 産総研. 2015年4月閲覧。
  34. ^ EPFL、色素増感太陽電池で変換効率15%を達成。二段階蒸着法で実現
  35. ^ ヘリアテック社が有機太陽電池においてセル効率13.2%の世界新記録を更新
  36. ^ 高効率ペロブスカイト型太陽電池の製造コストが大幅低減
  37. ^ R・Turton著、川村 清監訳など『量子ドットへの誘い マイクロエレクトロニクスへの未来へ』1998年、シュプリンガー・フェアラーク東京、p47、ISBN 4-431-70780-8
  38. ^ 産業技術総合研究所太陽光発電研究センター「トコトンやさしい太陽電池の本」、日刊工業新聞社、ISBN 978-4-526-05795-3 P.78
  39. ^ 東北大、量子ドット太陽電池で世界最高効率-12.6%
  40. ^ 集光型太陽電池セルで世界最高変換効率43.5%を達成
  41. ^ 例1 例2
  42. ^ 例えば(浜川, & 桑野 1994, p. 167)







太陽電池と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「太陽電池」の関連用語

太陽電池のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



太陽電池のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの太陽電池 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2018 Weblio RSS