固体 物理的性質

固体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/02/18 04:22 UTC 版)

物理的性質

臭い、色、体積、密度、融点、沸点、比熱容量、常温での物理形状(固体・液体・気体の別、結晶構造など)、硬さ、孔隙率、反射率といった物体の物理特性は、その化学組成や元素を特定する確証を提供する。ここでは固相の物質の物理的性質の一部を解説する。

力学的性質

チリパタゴニアにある花崗岩の頂。多くの無機鉱物と同様、大気による酸化によって主成分は二酸化ケイ素 SiO2酸化アルミニウム Al2O3結晶となっている。

力学的性質とは、個々の固体素材の強度や変形への耐性といった性質である。例えば、鋼材は強度が高く変形しにくいことから建材としてよく使われている。

力学的性質としては、弾性塑性、引張強さ、圧縮強さ、せん断強さ、破壊じん性展延性、押込硬さなどがある。固体力学は様々な固体素材が外力や温度などの外的条件の下でどう振る舞うかを研究する。

固体は液体のような流動性を示さない。元の形から変化することを変形 (deformation) と呼び、原形からの変形の割合をひずみ (strain) と呼ぶ。加えられた応力が十分低ければ、ほとんど全ての固体でひずみと応力は比例する(フックの法則)。その比例係数を弾性率またはヤング率と呼ぶ。フックの法則が成り立つ変形の範囲を「弾性域」と呼ぶ。固体が応力に対してどう反応するかについては、3つのモデルがある。

  • 弾性 - 加えられた応力がなくなると、元の形状に戻る。
  • 粘弾性 - 弾性的に振る舞うが、その際に若干の摩擦のような時間差がある。加えられた応力がなくなると、ゆっくりと元の形に戻ろうとし、その際に熱が発生する。応力とひずみをグラフに表すと、一種のヒステリシスが現れる。また、その力学応答は時間依存性を有する。
  • 可塑性 - 降伏値より低い応力を加えた場合は弾性を示す。応力が降伏値を超えると可塑性を示し、元の形に戻らなくなる。すなわち降伏によって不可逆な塑性変形を起こし、その状態がずっと続く。

多くの素材は高温では弱くなる。高温でも高い強度を示す素材を耐火物と呼び、様々な用途に使われている。例えばガラスセラミックスは 1000 °C 程度までの急激な温度変化の繰り返しにも強度を保つ性質がある。航空機や宇宙機の外装には熱衝撃に強い高機能素材が使われている。有機高分子や複合材料でできた合成繊維などがそういった用途向けに設計されている。

熱的性質

結晶質の固体での原子(分子)の固有振動

固体は熱エネルギーを持っているため、その原子は格子内の平均位置を中心として振動している。結晶質やガラス質のネットワークにおける格子振動のスペクトルは、固体分子運動論の基礎となっている。この運動は原子レベルで起きており、分光法などの非常に専門的な機器でないと観察・検出できない。

固体の熱的性質としては熱伝導率があり、個々の素材の熱伝導能力を示す。また、比熱容量はその素材が熱(格子振動)の形でエネルギーを蓄える能力を示す。

電気的性質

イットリウム系超伝導体の空中浮遊の動画

電気的性質としては、電気伝導率、抵抗値、インピーダンス値、静電容量値などがある。金属や合金などの導体もあれば、ガラスやセラミックスなどの絶縁体もある。半導体はそれらの中間の性質を示す。金属の電気伝導性は電子によるものだが、半導体ではそれに加えて正孔電流を担っている。また、固体電解質では陽イオンも電流を担う。

極低温状態で超伝導を示す物質も多く存在する。スズやアルミニウムなどの金属元素、各種合金、大量にドーピングした半導体、ある種のセラミックスなどが超伝導を示す。多くの導体(金属)の抵抗値は温度を低くすると低下していくが、有限の値を示し続ける。しかし超伝導体では、臨界温度以下になると突然抵抗値がゼロになる。超伝導体の環に電流を流すと、電源なしで無限に電流が流れ続ける。

誘電体絶縁体は電流に対して大きな抵抗を示す。プラスチックなどの誘電体は電場を印加されるとそれを蓄える性質があり、コンデンサにその性質が使われている。コンデンサは少しだけ隙間を空けた電極間の電場にエネルギーを蓄えるデバイスである。コンデンサに電圧を印加すると、両方の電極に互いに逆の極性の比例した電荷が蓄えられる。コンデンサは電気回路におけるエネルギー蓄積装置として使われるだけでなく、高周波と低周波の信号を区別するフィルタ回路にも使われている。

電気-力学的性質

圧電効果とは、結晶に力学的応力を加えると電位差を発生する現象である。圧電効果を示す結晶に電圧を印加すると、逆に結晶の形が若干変化する。ゴム、羊毛、髪の毛、絹など重合体は電石として振る舞うものが多い。例えばポリフッ化ビニリデン (RDVF) は水晶(SiO2 の結晶)よりも数倍強い圧電性を示す。約0.1%の変形で大きな圧電効果が得られることから、高電圧源、スピーカー、レーザー、各種センサーやトランスデューサーに応用されている。

光学的性質

固体にはガラスのように透明なものと金属のように不透明なものがある。

特定の波長だけを透過させる素材も多い。例えば、窓ガラスは可視光線を透過させるが、紫外線の周波数帯はそれほど透過しない。このような性質は周波数選択性の光学フィルターなどに使われている。

用途によっては、光学的性質と力学的性質の両方が重視される場合もある。例えば、赤外線追尾式(熱探知式)のミサイルでは、赤外線センサのカバーは赤外線を透過させる素材でなければならない。このため現状の赤外線追尾式ミサイルではサファイアの単結晶がその用途に使われている。サファイアは中赤外線帯域(3–5 μm)を全部透過するわけではなく、常温では 4.5 μm より長い波長を透過しない。しかし常温で赤外線を透過する物質の中では最も強度が高く、600 °C 以上になるまで強度が保たれる。このように強度と光学特性を両立させることは長年の課題となっており、透明セラミックスや光学ナノ複合材といった新素材がよりよい性能を示す可能性がある。

導波光伝播では、光ファイバーなどを使って様々な周波数の光で複数の信号を同時に伝播する。光導波路は光集積回路や光通信システムの光伝送媒体として使われている。

光-電子工学的性質

太陽電池は光を電気に変換する。基本的には2つの機能が必要である。1つは光を吸収する素材で光から電荷担体(電子と正孔)を生成できることで、もう1つは電極にそれら電荷担体を極性によって分離して移動させて電流を発生させることである。これを光電効果と呼び、太陽電池に関わる研究分野としては光起電力学 (photovoltaics) がある。

太陽電池には様々な用途がある。僻地や宇宙空間など電力網がない場所での電力源として使われており、他にも電卓、腕時計、無線電話、ポンプなどに組み込まれている。最近では住宅などに太陽電池を設置して発電し、その電力を電力網に供給するということも行われている。

光子を吸収することで自由電子を発生させているため、太陽電池には光を吸収する素材が必要とされる。太陽電池の原料には地球の地表に到達する太陽光の波長を吸収する特性のものが優先的に採用されているが、中には大気圏外での発電に最適化された太陽電池もある。


  1. ^ Mortimer, Charles E. (1975). Chemistry: A Conceptual Approach (3rd ed.). New York:: D. Van Nostrad Company 
  2. ^ Buffat, Ph.; Burrel, J.-P. (1976). “Size effect on the melting temperature of gold particles”. Physical Review A 13 (6): 2287. doi:10.1103/PhysRevA.13.2287. 
  3. ^ Walter H. Kohl (1995). Handbook of materials and techniques for vacuum devices. Springer. pp. 164–167. ISBN 1563963876. https://books.google.co.jp/books?id=-Ll6qjWB-RUC&pg=PA164&redir_esc=y&hl=ja 
  4. ^ Shpak, Anatoly P; Kotrechko, Sergiy O; Mazilova, Tatjana I; Mikhailovskij, Igor M (2009). “Inherent tensile strength of molybdenum nanocrystals” (free-download pdf). Science and Technology of Advanced Materials 10: 045004. doi:10.1088/1468-6996/10/4/045004. 
  5. ^ Lin, A.; Meyers, M.A. (2005). “Growth and structure in abalone shell”. Materials Science and Engineering A 390: 27. doi:10.1016/j.msea.2004.06.072. 
  6. ^ Mayer, G. (2005). “Rigid biological systems as models for synthetic composites”. Science 310 (5751): 1144. doi:10.1126/science.1116994. PMID 16293751. 


「固体」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「固体」の関連用語

固体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



固体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの固体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS