原子間ポテンシャル 原子間ポテンシャルの分類

原子間ポテンシャル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/01/12 21:02 UTC 版)

原子間ポテンシャルの分類

原子間ポテンシャルにはさまざまな種類があり、それぞれ物理的な意図が異なる。ケイ素のようなよく知られた元素一つを取っても、関数形や理論的背景が大きく異なる多様なポテンシャルが作られている[13]。真の原子間ポテンシャルは本質的に量子力学の問題だが、シュレディンガー方程式もしくはディラック方程式で記述される真の相互作用を、多数の電子と原子核すべてについて一つの解析的な関数形に落とし込む方法は知られていない。必然的に、あらゆる解析的な原子間ポテンシャルは近似である。

ペアポテンシャル

広く用いられている原子間相互作用のモデルの中でおそらくもっとも単純なのは、次のレナード-ジョーンズ・ポテンシャルであろう[14]

上式の εポテンシャル井戸英語版の深さを、σ はポテンシャルの値がゼロとなる距離を意味する。1 / r6 に比例する項は、それぞれの原子に誘起された電気双極子どうしの古典的もしくは量子的な相互作用を表している[6]。このポテンシャルは貴ガスに対して非常に正確な結果を与える。また化学的な力場の中の分子間相互作用を記述する場合など、双極子相互作用が重要な系で広く使われている。

モースポテンシャルもまたよく知られた単純な対ポテンシャルで、2つの指数関数を単に足し合わせた形をしている。

ここで De は平衡結合エネルギー、re は結合距離である。モースポテンシャルは分子振動や固体の研究に応用されてきた[15]。近年ではほとんど使われなくなったが、結合次数ポテンシャルのような新しいポテンシャル関数に派生している。

イオン性物質を記述するには、バッキンガム・ポテンシャルのような短距離斥力項と、イオン性物質を構成するのに必要なイオン間相互作用を与えるクーロンポテンシャルとの和が用いられることが多い。イオン性物質の短距離項は多体効果を受けることもある[16]

対ポテンシャルには立方晶金属の弾性定数3つすべてを与えることができないなど特有の限界がある[7]。したがって現代のMDシミュレーションは様々な多体ポテンシャルを用いて行われることがほとんどである。

多体ポテンシャル

Stilinger-Weberのポテンシャル[17]は二体項と三体項からなり、以下の標準形を持つ。

ここで三体項は結合の曲げに対してポテンシャルエネルギーがどう変化するかを表している。このポテンシャルは本来純粋なケイ素のために作られたものだが、多くの元素や化合物のために拡張されてきたほか[18][19]、ケイ素についてのほかのポテンシャルの基礎にもなった[20][21]

金属は「埋め込み原子型 (EAM-like)」と呼べるポテンシャルによってかなり一般的に表すことができる。それらのポテンシャルは埋め込み原子モデルと同じ関数形を持つもので、ポテンシャルエネルギーの総和は以下のように表せる。

上式の Fi は埋め込み関数(力 とは異なる)と呼ばれ、電子密度 ρ(rij) の総和の関数である。通常はペアポテンシャル V2 には純斥力を用いる。最初に定式化されたときには[22][23]、電子密度 ρ(rij) は単純に原子が持つ電子の密度のことで、埋め込み関数 Fi密度汎関数理論に基づいて電子密度の中に原子を一個「埋め込む」のに必要とされるエネルギーを表していた[24]。しかし、金属を記述するほかの多くのポテンシャルは関数形が同じであっても ρ(rij)Fi を異なる意味で用いている。背景理論の例としては強結合近似[25][26][27]など[28][29][30]がある。

埋め込み原子型ポテンシャルは数表として実装されるのが一般的である。アメリカ国立標準技術研究所 (NIST) は原子間ポテンシャル・リポジトリに数表を集めて公開している[1]

共有結合性の物質は結合次数ポテンシャルによって記述されることが多い。このポテンシャルはTersoff型ないしBrenner型と呼ばれることもある[10][31][32]。それらは一般にペアポテンシャルと似た形を取る。

ここで斥力部分 Vrep と引力部分 Vatt はモースポテンシャルと似た単純な指数関数である。ただし相互作用の強さは bijk の項を通じて原子 i の周囲の環境から影響を受けている。角度依存性を明示的に導入しない場合には、これらのポテンシャルはある種の埋め込み原子型ポテンシャルと数学的に同等であることが示される[33][34]。この利点により、結合次数ポテンシャルの数学的形式は金属性と共有結合性を併せ持つ物質に対しても用いられてきた[34][35][36][37]

短距離相互作用における斥力ポテンシャル

粒子線物性学英語版で重要になるように原子間隔が極めて小さい場合には、次式のような一般形を持つ遮蔽されたクーロンポテンシャルによって原子間相互作用を非常に正確に表すことができる。

ここで r → 0 に対して φ(r) → 1 となる。Z1 および Z2 は相互作用を行っている2つの原子核の電荷であり、a は遮蔽パラメータと呼ばれる。一般に広く用いられる遮蔽関数は「ユニバーサルZBL型」(Ziegler, Biersak, Littmarkによる)である[38]。すべての電子を考慮した量子化学的計算によってもっと正確な遮蔽関数を得ることもできる[39]。この種のポテンシャルは二体衝突近似英語版のシミュレーションで核的阻止能を求めるときに用いられる。


  1. ^ a b M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, England, 1989.
  2. ^ Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, second edition, 2002.
  3. ^ a b c R. Lesar. Introduction to Computational Materials Science. Cambridge University Press, 2013.
  4. ^ Brenner, D.W. (2000). “The Art and Science of an Analytic Potential”. Physica Status Solidi B 217 (1): 23–40. doi:10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-N. ISSN 0370-1972. 
  5. ^ N. W. Ashcroft and N. D. Mermin. Solid State Physics.Saunders College, Philadelphia, 1976.
  6. ^ a b c Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, New York, third edition, 1968.
  7. ^ a b Daw, Murray S.; Foiles, Stephen M.; Baskes, Michael I. (1993). “The embedded-atom method: a review of theory and applications”. Materials Science Reports 9 (7-8): 251–310. doi:10.1016/0920-2307(93)90001-U. ISSN 09202307. 
  8. ^ Tersoff, J. (15 April 1988). “New empirical approach for the structure and energy of covalent systems”. Physical Review B (American Physical Society (APS)) 37 (12): 6991–7000. doi:10.1103/physrevb.37.6991. ISSN 0163-1829. 
  9. ^ FINNIS, M (2007). “Bond-order potentials through the ages”. Progress in Materials Science (Elsevier BV) 52 (2-3): 133–153. doi:10.1016/j.pmatsci.2006.10.003. ISSN 0079-6425. 
  10. ^ a b Sinnott, Susan B.; Brenner, Donald W. (2012). “Three decades of many-body potentials in materials research”. MRS Bulletin (Cambridge University Press (CUP)) 37 (5): 469–473. doi:10.1557/mrs.2012.88. ISSN 0883-7694. 
  11. ^ Beardmore, Keith M.; Grønbech-Jensen, Niels (1 October 1999). “Direct simulation of ion-beam-induced stressing and amorphization of silicon”. Physical Review B (American Physical Society (APS)) 60 (18): 12610–12616. arXiv:cond-mat/9901319v2. doi:10.1103/physrevb.60.12610. ISSN 0163-1829. 
  12. ^ Albe, Karsten; Nord, J.; Nordlund, K. (2009). “Dynamic charge-transfer bond-order potential for gallium nitride”. Philosophical Magazine (Informa UK Limited) 89 (34-36): 3477–3497. doi:10.1080/14786430903313708. ISSN 1478-6435. 
  13. ^ a b Balamane, H.; Halicioglu, T.; Tiller, W. A. (15 July 1992). “Comparative study of silicon empirical interatomic potentials”. Physical Review B (American Physical Society (APS)) 46 (4): 2250–2279. doi:10.1103/physrevb.46.2250. ISSN 0163-1829. 
  14. ^ Lennard-Jones, J. E. (1924), “On the Determination of Molecular Fields”, Proc. R. Soc. Lond. A 106 (738): 463–477, Bibcode1924RSPSA.106..463J, doi:10.1098/rspa.1924.0082 .
  15. ^ Girifalco, L. A.; Weizer, V. G. (1 April 1959). “Application of the Morse Potential Function to Cubic Metals”. Physical Review (American Physical Society (APS)) 114 (3): 687–690. doi:10.1103/physrev.114.687. ISSN 0031-899X. 
  16. ^ Feuston, B. P.; Garofalini, S. H. (1988). “Empirical three‐body potential for vitreous silica”. The Journal of Chemical Physics (AIP Publishing) 89 (9): 5818–5824. doi:10.1063/1.455531. ISSN 0021-9606. 
  17. ^ Stillinger, Frank H.; Weber, Thomas A. (15 April 1985). “Computer simulation of local order in condensed phases of silicon”. Physical Review B (American Physical Society (APS)) 31 (8): 5262–5271. doi:10.1103/physrevb.31.5262. ISSN 0163-1829. 
  18. ^ Ichimura, M. (16 February 1996). “Stillinger-Weber potentials for III–V compound semiconductors and their application to the critical thickness calculation for InAs/GaAs”. Physica Status Solidi A (Wiley) 153 (2): 431–437. doi:10.1002/pssa.2211530217. ISSN 0031-8965. 
  19. ^ H. Ohta and S. Hamaguchi. Classical interatomic potentials for si-o-f and si-o-cl systems. J. Chemical Physics, 115(14):6679--90, 2001.
  20. ^ Bazant, M. Z.; Kaxiras, E.; Justo, J. F. (1997). “Environment-dependent interatomic potential for bulk silicon”. Phys. Rev. B 56 (14): 8542. arXiv:cond-mat/9704137. Bibcode1997PhRvB..56.8542B. doi:10.1103/PhysRevB.56.8542. 
  21. ^ a b Justo, João F.; Bazant, Martin Z.; Kaxiras, Efthimios; Bulatov, V. V.; Yip, Sidney (1 July 1998). “Interatomic potential for silicon defects and disordered phases”. Physical Review B (American Physical Society (APS)) 58 (5): 2539–2550. arXiv:cond-mat/9712058. doi:10.1103/physrevb.58.2539. ISSN 0163-1829. 
  22. ^ Foiles, S. M.; Baskes, M. I.; Daw, M. S. (15 June 1986). “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”. Physical Review B (American Physical Society (APS)) 33 (12): 7983–7991. doi:10.1103/physrevb.33.7983. ISSN 0163-1829. 
  23. ^ Foiles, S. M.; Baskes, M. I.; Daw, M. S. (15 June 1988). “Erratum: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”. Physical Review B (American Physical Society (APS)) 37 (17): 10378–10378. doi:10.1103/physrevb.37.10378. ISSN 0163-1829. 
  24. ^ Puska, M. J.; Nieminen, R. M.; Manninen, M. (15 September 1981). “Atoms embedded in an electron gas: Immersion energies”. Physical Review B (American Physical Society (APS)) 24 (6): 3037–3047. doi:10.1103/physrevb.24.3037. ISSN 0163-1829. 
  25. ^ Finnis, M. W.; Sinclair, J. E. (1984). “A simple empirical N-body potential for transition metals”. Philosophical Magazine A (Informa UK Limited) 50 (1): 45–55. doi:10.1080/01418618408244210. ISSN 0141-8610. 
  26. ^ “Erratum”. Philosophical Magazine A (Informa UK Limited) 53 (1): 161–161. (1986). doi:10.1080/01418618608242815. ISSN 0141-8610. 
  27. ^ Cleri, Fabrizio; Rosato, Vittorio (1 June 1993). “Tight-binding potentials for transition metals and alloys”. Physical Review B (American Physical Society (APS)) 48 (1): 22–33. doi:10.1103/physrevb.48.22. ISSN 0163-1829. 
  28. ^ Kelchner, Cynthia L.; Halstead, David M.; Perkins, Leslie S.; Wallace, Nora M.; DePristo, Andrew E. (1994). “Construction and evaluation of embedding functions”. Surface Science (Elsevier BV) 310 (1-3): 425–435. doi:10.1016/0039-6028(94)91405-2. ISSN 0039-6028. 
  29. ^ Dudarev, S L; Derlet, P M (17 October 2005). “A ‘magnetic’ interatomic potential for molecular dynamics simulations”. Journal of Physics: Condensed Matter (IOP Publishing) 17 (44): 7097–7118. doi:10.1088/0953-8984/17/44/003. ISSN 0953-8984. 
  30. ^ Olsson, Pär; Wallenius, Janne; Domain, Christophe; Nordlund, Kai; Malerba, Lorenzo (21 December 2005). “Two-band modeling of α-prime phase formation in Fe-Cr”. Physical Review B (American Physical Society (APS)) 72 (21): 214119. doi:10.1103/physrevb.72.214119. ISSN 1098-0121. 
  31. ^ Tersoff, J. (1988). “New empirical approach for the structure and energy of covalent systems”. Physical Review B 37 (12): 6991–7000. Bibcode1988PhRvB..37.6991T. doi:10.1103/PhysRevB.37.6991. ISSN 0163-1829. 
  32. ^ Brenner, Donald W. (1990). “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”. Physical Review B 42 (15): 9458–9471. Bibcode1990PhRvB..42.9458B. doi:10.1103/PhysRevB.42.9458. ISSN 0163-1829. 
  33. ^ Brenner, Donald W. (1989). “Relationship between the embedded-atom method and Tersoff potentials”. Physical Review Letters 63 (9): 1022. Bibcode1989PhRvL..63.1022B. doi:10.1103/PhysRevLett.63.1022. ISSN 0031-9007. PMID 10041250. 
  34. ^ a b c Albe, Karsten; Nordlund, Kai; Averback, Robert S. (2002). “Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon”. Physical Review B 65 (19): 195124. Bibcode2002PhRvB..65s5124A. doi:10.1103/PhysRevB.65.195124. ISSN 0163-1829. 
  35. ^ de Brito Mota, F.; Justo, J. F.; Fazzio, A. (1998). “Structural properties of amorphous silicon nitride”. Phys. Rev. B 58 (13): 8323. Bibcode1998PhRvB..58.8323D. doi:10.1103/PhysRevB.58.8323. 
  36. ^ a b Juslin, N.; Erhart, P.; Träskelin, P.; Nord, J.; Henriksson, K. O. E.; Nordlund, K.; Salonen, E.; Albe, K. (15 December 2005). “Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system”. Journal of Applied Physics (AIP Publishing) 98 (12): 123520. doi:10.1063/1.2149492. ISSN 0021-8979. 
  37. ^ a b Erhart, Paul; Juslin, Niklas; Goy, Oliver; Nordlund, Kai; Müller, Ralf; Albe, Karsten (30 June 2006). “Analytic bond-order potential for atomistic simulations of zinc oxide”. Journal of Physics: Condensed Matter (IOP Publishing) 18 (29): 6585–6605. doi:10.1088/0953-8984/18/29/003. ISSN 0953-8984. 
  38. ^ J. F. Ziegler, J. P. Biersack, and U. Littmark. The Stopping and Range of Ions in Matter. Pergamon, New York, 1985.
  39. ^ Nordlund, K.; Runeberg, N.; Sundholm, D. (1997). “Repulsive interatomic potentials calculated using Hartree-Fock and density-functional theory methods”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms (Elsevier BV) 132 (1): 45–54. doi:10.1016/s0168-583x(97)00447-3. ISSN 0168-583X. 
  40. ^ Ercolessi, F; Adams, J. B (10 June 1994). “Interatomic Potentials from First-Principles Calculations: The Force-Matching Method”. Europhysics Letters (EPL) (IOP Publishing) 26 (8): 583–588. arXiv:cond-mat/9306054. doi:10.1209/0295-5075/26/8/005. ISSN 0295-5075. 
  41. ^ Mishin, Y.; Mehl, M. J.; Papaconstantopoulos, D. A. (12 June 2002). “Embedded-atom potential forB2−NiAl”. Physical Review B (American Physical Society (APS)) 65 (22): 224114. doi:10.1103/physrevb.65.224114. ISSN 0163-1829. 
  42. ^ Beardmore, Keith; Smith, Roger (1996). “Empirical potentials for C-Si-H systems with application to C60 interactions with Si crystal surfaces”. Philosophical Magazine A (Informa UK Limited) 74 (6): 1439–1466. doi:10.1080/01418619608240734. ISSN 0141-8610. 
  43. ^ Swamy, Varghese; Gale, Julian D. (1 August 2000). “Transferable variable-charge interatomic potential for atomistic simulation of titanium oxides”. Physical Review B (American Physical Society (APS)) 62 (9): 5406–5412. doi:10.1103/physrevb.62.5406. ISSN 0163-1829. 
  44. ^ Aguado, Andrés; Bernasconi, Leonardo; Madden, Paul A. (2002). “A transferable interatomic potential for MgO from ab initio molecular dynamics”. Chemical Physics Letters (Elsevier BV) 356 (5-6): 437–444. doi:10.1016/s0009-2614(02)00326-3. ISSN 0009-2614. 
  45. ^ Interatomic Potentials Repository Project”. www.ctcms.nist.gov. 2019年9月3日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「原子間ポテンシャル」の関連用語

原子間ポテンシャルのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



原子間ポテンシャルのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの原子間ポテンシャル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS