原子間ポテンシャル ポテンシャルのフィッティング

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 原子間ポテンシャルの解説 > ポテンシャルのフィッティング 

原子間ポテンシャル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/01/12 21:02 UTC 版)

ポテンシャルのフィッティング

原子間ポテンシャルはいずれも近似であるため、何らかの基準値に合わせて決定しなければならないパラメータを必ず持っている。レナード-ジョーンズ型やモース型のように単純なポテンシャルならば、例えば二量体分子の平衡結合距離や結合強さ、あるいは固体の凝集エネルギーなどから直接パラメータを決定することができる[6]。しかし多体ポテンシャルには多くの場合未知のパラメータが数十個から数百個も含まれる。これらの当て嵌めには、もっと大量の実験データや、密度汎関数理論のようなより原理的なモデルによるシミュレーションから得られる物性値が用いられる。固体の多体ポテンシャルを上手く構築すれば、あらゆる元素や安定な化合物の平衡結晶構造について、少なくとも格子定数線形弾性定数、基本的な点欠陥の性質は正しく求めることができる[21][34][36][37][40][41][42]。ほとんどの場合、ポテンシャルの構築や当て嵌めにおいてはそのポテンシャルを「転用可能」にすること、すなわち当て嵌めに用いた物性とは明らかに異なる物性を正しく表せることが目標となる(明確にこのような研究が行われているポテンシャルの例は[43][44]を見よ)。一部にでも転用可能性が示された例が、ケイ素の原子間ポテンシャルに関する一編の総説に示されている。それによると、Stillinger-WeberポテンシャルおよびTersoff IIIポテンシャルはフィッティングに用いたのとは異なる物性のいくつか(すべてではない)を記述することが可能である[13]

NISTのリポジトリには当て嵌られた原子間ポテンシャルが集められており、パラメータのフィット値、もしくはポテンシャル関数の数表という形で公開されている[45]


  1. ^ a b M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, England, 1989.
  2. ^ Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, second edition, 2002.
  3. ^ a b c R. Lesar. Introduction to Computational Materials Science. Cambridge University Press, 2013.
  4. ^ Brenner, D.W. (2000). “The Art and Science of an Analytic Potential”. Physica Status Solidi B 217 (1): 23–40. doi:10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-N. ISSN 0370-1972. 
  5. ^ N. W. Ashcroft and N. D. Mermin. Solid State Physics.Saunders College, Philadelphia, 1976.
  6. ^ a b c Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, New York, third edition, 1968.
  7. ^ a b Daw, Murray S.; Foiles, Stephen M.; Baskes, Michael I. (1993). “The embedded-atom method: a review of theory and applications”. Materials Science Reports 9 (7-8): 251–310. doi:10.1016/0920-2307(93)90001-U. ISSN 09202307. 
  8. ^ Tersoff, J. (15 April 1988). “New empirical approach for the structure and energy of covalent systems”. Physical Review B (American Physical Society (APS)) 37 (12): 6991–7000. doi:10.1103/physrevb.37.6991. ISSN 0163-1829. 
  9. ^ FINNIS, M (2007). “Bond-order potentials through the ages”. Progress in Materials Science (Elsevier BV) 52 (2-3): 133–153. doi:10.1016/j.pmatsci.2006.10.003. ISSN 0079-6425. 
  10. ^ a b Sinnott, Susan B.; Brenner, Donald W. (2012). “Three decades of many-body potentials in materials research”. MRS Bulletin (Cambridge University Press (CUP)) 37 (5): 469–473. doi:10.1557/mrs.2012.88. ISSN 0883-7694. 
  11. ^ Beardmore, Keith M.; Grønbech-Jensen, Niels (1 October 1999). “Direct simulation of ion-beam-induced stressing and amorphization of silicon”. Physical Review B (American Physical Society (APS)) 60 (18): 12610–12616. arXiv:cond-mat/9901319v2. doi:10.1103/physrevb.60.12610. ISSN 0163-1829. 
  12. ^ Albe, Karsten; Nord, J.; Nordlund, K. (2009). “Dynamic charge-transfer bond-order potential for gallium nitride”. Philosophical Magazine (Informa UK Limited) 89 (34-36): 3477–3497. doi:10.1080/14786430903313708. ISSN 1478-6435. 
  13. ^ a b Balamane, H.; Halicioglu, T.; Tiller, W. A. (15 July 1992). “Comparative study of silicon empirical interatomic potentials”. Physical Review B (American Physical Society (APS)) 46 (4): 2250–2279. doi:10.1103/physrevb.46.2250. ISSN 0163-1829. 
  14. ^ Lennard-Jones, J. E. (1924), “On the Determination of Molecular Fields”, Proc. R. Soc. Lond. A 106 (738): 463–477, Bibcode1924RSPSA.106..463J, doi:10.1098/rspa.1924.0082 .
  15. ^ Girifalco, L. A.; Weizer, V. G. (1 April 1959). “Application of the Morse Potential Function to Cubic Metals”. Physical Review (American Physical Society (APS)) 114 (3): 687–690. doi:10.1103/physrev.114.687. ISSN 0031-899X. 
  16. ^ Feuston, B. P.; Garofalini, S. H. (1988). “Empirical three‐body potential for vitreous silica”. The Journal of Chemical Physics (AIP Publishing) 89 (9): 5818–5824. doi:10.1063/1.455531. ISSN 0021-9606. 
  17. ^ Stillinger, Frank H.; Weber, Thomas A. (15 April 1985). “Computer simulation of local order in condensed phases of silicon”. Physical Review B (American Physical Society (APS)) 31 (8): 5262–5271. doi:10.1103/physrevb.31.5262. ISSN 0163-1829. 
  18. ^ Ichimura, M. (16 February 1996). “Stillinger-Weber potentials for III–V compound semiconductors and their application to the critical thickness calculation for InAs/GaAs”. Physica Status Solidi A (Wiley) 153 (2): 431–437. doi:10.1002/pssa.2211530217. ISSN 0031-8965. 
  19. ^ H. Ohta and S. Hamaguchi. Classical interatomic potentials for si-o-f and si-o-cl systems. J. Chemical Physics, 115(14):6679--90, 2001.
  20. ^ Bazant, M. Z.; Kaxiras, E.; Justo, J. F. (1997). “Environment-dependent interatomic potential for bulk silicon”. Phys. Rev. B 56 (14): 8542. arXiv:cond-mat/9704137. Bibcode1997PhRvB..56.8542B. doi:10.1103/PhysRevB.56.8542. 
  21. ^ a b Justo, João F.; Bazant, Martin Z.; Kaxiras, Efthimios; Bulatov, V. V.; Yip, Sidney (1 July 1998). “Interatomic potential for silicon defects and disordered phases”. Physical Review B (American Physical Society (APS)) 58 (5): 2539–2550. arXiv:cond-mat/9712058. doi:10.1103/physrevb.58.2539. ISSN 0163-1829. 
  22. ^ Foiles, S. M.; Baskes, M. I.; Daw, M. S. (15 June 1986). “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”. Physical Review B (American Physical Society (APS)) 33 (12): 7983–7991. doi:10.1103/physrevb.33.7983. ISSN 0163-1829. 
  23. ^ Foiles, S. M.; Baskes, M. I.; Daw, M. S. (15 June 1988). “Erratum: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”. Physical Review B (American Physical Society (APS)) 37 (17): 10378–10378. doi:10.1103/physrevb.37.10378. ISSN 0163-1829. 
  24. ^ Puska, M. J.; Nieminen, R. M.; Manninen, M. (15 September 1981). “Atoms embedded in an electron gas: Immersion energies”. Physical Review B (American Physical Society (APS)) 24 (6): 3037–3047. doi:10.1103/physrevb.24.3037. ISSN 0163-1829. 
  25. ^ Finnis, M. W.; Sinclair, J. E. (1984). “A simple empirical N-body potential for transition metals”. Philosophical Magazine A (Informa UK Limited) 50 (1): 45–55. doi:10.1080/01418618408244210. ISSN 0141-8610. 
  26. ^ “Erratum”. Philosophical Magazine A (Informa UK Limited) 53 (1): 161–161. (1986). doi:10.1080/01418618608242815. ISSN 0141-8610. 
  27. ^ Cleri, Fabrizio; Rosato, Vittorio (1 June 1993). “Tight-binding potentials for transition metals and alloys”. Physical Review B (American Physical Society (APS)) 48 (1): 22–33. doi:10.1103/physrevb.48.22. ISSN 0163-1829. 
  28. ^ Kelchner, Cynthia L.; Halstead, David M.; Perkins, Leslie S.; Wallace, Nora M.; DePristo, Andrew E. (1994). “Construction and evaluation of embedding functions”. Surface Science (Elsevier BV) 310 (1-3): 425–435. doi:10.1016/0039-6028(94)91405-2. ISSN 0039-6028. 
  29. ^ Dudarev, S L; Derlet, P M (17 October 2005). “A ‘magnetic’ interatomic potential for molecular dynamics simulations”. Journal of Physics: Condensed Matter (IOP Publishing) 17 (44): 7097–7118. doi:10.1088/0953-8984/17/44/003. ISSN 0953-8984. 
  30. ^ Olsson, Pär; Wallenius, Janne; Domain, Christophe; Nordlund, Kai; Malerba, Lorenzo (21 December 2005). “Two-band modeling of α-prime phase formation in Fe-Cr”. Physical Review B (American Physical Society (APS)) 72 (21): 214119. doi:10.1103/physrevb.72.214119. ISSN 1098-0121. 
  31. ^ Tersoff, J. (1988). “New empirical approach for the structure and energy of covalent systems”. Physical Review B 37 (12): 6991–7000. Bibcode1988PhRvB..37.6991T. doi:10.1103/PhysRevB.37.6991. ISSN 0163-1829. 
  32. ^ Brenner, Donald W. (1990). “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”. Physical Review B 42 (15): 9458–9471. Bibcode1990PhRvB..42.9458B. doi:10.1103/PhysRevB.42.9458. ISSN 0163-1829. 
  33. ^ Brenner, Donald W. (1989). “Relationship between the embedded-atom method and Tersoff potentials”. Physical Review Letters 63 (9): 1022. Bibcode1989PhRvL..63.1022B. doi:10.1103/PhysRevLett.63.1022. ISSN 0031-9007. PMID 10041250. 
  34. ^ a b c Albe, Karsten; Nordlund, Kai; Averback, Robert S. (2002). “Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon”. Physical Review B 65 (19): 195124. Bibcode2002PhRvB..65s5124A. doi:10.1103/PhysRevB.65.195124. ISSN 0163-1829. 
  35. ^ de Brito Mota, F.; Justo, J. F.; Fazzio, A. (1998). “Structural properties of amorphous silicon nitride”. Phys. Rev. B 58 (13): 8323. Bibcode1998PhRvB..58.8323D. doi:10.1103/PhysRevB.58.8323. 
  36. ^ a b Juslin, N.; Erhart, P.; Träskelin, P.; Nord, J.; Henriksson, K. O. E.; Nordlund, K.; Salonen, E.; Albe, K. (15 December 2005). “Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system”. Journal of Applied Physics (AIP Publishing) 98 (12): 123520. doi:10.1063/1.2149492. ISSN 0021-8979. 
  37. ^ a b Erhart, Paul; Juslin, Niklas; Goy, Oliver; Nordlund, Kai; Müller, Ralf; Albe, Karsten (30 June 2006). “Analytic bond-order potential for atomistic simulations of zinc oxide”. Journal of Physics: Condensed Matter (IOP Publishing) 18 (29): 6585–6605. doi:10.1088/0953-8984/18/29/003. ISSN 0953-8984. 
  38. ^ J. F. Ziegler, J. P. Biersack, and U. Littmark. The Stopping and Range of Ions in Matter. Pergamon, New York, 1985.
  39. ^ Nordlund, K.; Runeberg, N.; Sundholm, D. (1997). “Repulsive interatomic potentials calculated using Hartree-Fock and density-functional theory methods”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms (Elsevier BV) 132 (1): 45–54. doi:10.1016/s0168-583x(97)00447-3. ISSN 0168-583X. 
  40. ^ Ercolessi, F; Adams, J. B (10 June 1994). “Interatomic Potentials from First-Principles Calculations: The Force-Matching Method”. Europhysics Letters (EPL) (IOP Publishing) 26 (8): 583–588. arXiv:cond-mat/9306054. doi:10.1209/0295-5075/26/8/005. ISSN 0295-5075. 
  41. ^ Mishin, Y.; Mehl, M. J.; Papaconstantopoulos, D. A. (12 June 2002). “Embedded-atom potential forB2−NiAl”. Physical Review B (American Physical Society (APS)) 65 (22): 224114. doi:10.1103/physrevb.65.224114. ISSN 0163-1829. 
  42. ^ Beardmore, Keith; Smith, Roger (1996). “Empirical potentials for C-Si-H systems with application to C60 interactions with Si crystal surfaces”. Philosophical Magazine A (Informa UK Limited) 74 (6): 1439–1466. doi:10.1080/01418619608240734. ISSN 0141-8610. 
  43. ^ Swamy, Varghese; Gale, Julian D. (1 August 2000). “Transferable variable-charge interatomic potential for atomistic simulation of titanium oxides”. Physical Review B (American Physical Society (APS)) 62 (9): 5406–5412. doi:10.1103/physrevb.62.5406. ISSN 0163-1829. 
  44. ^ Aguado, Andrés; Bernasconi, Leonardo; Madden, Paul A. (2002). “A transferable interatomic potential for MgO from ab initio molecular dynamics”. Chemical Physics Letters (Elsevier BV) 356 (5-6): 437–444. doi:10.1016/s0009-2614(02)00326-3. ISSN 0009-2614. 
  45. ^ Interatomic Potentials Repository Project”. www.ctcms.nist.gov. 2019年9月3日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「原子間ポテンシャル」の関連用語

原子間ポテンシャルのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



原子間ポテンシャルのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの原子間ポテンシャル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS