動物 分類

動物

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/16 05:37 UTC 版)

分類

2020年現在判明している真核生物の系統樹。
図中青字のOPISTHOKONTAオピストコンタに含まれる Metazoa が後生動物(本項の示す動物)で、 Fungi菌類Ichthyosporea と動物をまとめた枝がホロゾアで、菌類と Nucleariida をまとめた枝がホロマイコータである。

動物は、哺乳類爬虫類鳥類両生類魚類といった脊椎動物はもちろん、貝類昆虫サナダムシカイメンなど、幅広い種類の生物を含んだ系統群である。

上位分類

20世紀末の分子遺伝学の知見を踏まえると、生物は真正細菌古細菌真核生物の3つに分かれるが(3ドメイン説[4][5][6]、そのうち動物は植物菌類(キノコやカビ)、原生生物とともに真核生物に属する。なお、原生生物の一部である原生動物ゾウリムシミドリムシアメーバなど)は本項で言う動物(後生動物)とは系統上の位置が異なり、それ自身も多系統である事が判明している。

なお、初等教育では3ドメイン説以前の二界説(2011年まで)ないし五界説(2012年以降)に基づいて生物の分類を説明している[7]。二界説での「動物」は原生動物を含み、3ドメイン説での知見を反映しない。一方、五界説での動物は3ドメイン説のものと基本的に同じであり、原生動物は原生生物として動物とは区別されている。[要校閲]  

動物は、真核生物の中でもオピストコンタ(後方鞭毛生物、Opisthokonta)という単系統性が強く支持される系統群に属し、ここには動物以外に菌類や一部の真核生物が属する。オピストコンタに属する生物は、後ろ側にある1本の鞭毛で進むという共有形質を持ち、動物の精子ツボカビ胞子が持つ鞭毛がこれにあたる。オピストコンタはアメボゾア Amoebozoaとともにアモルフェア Amorphea というクレードにまとめられる[8][9]

さらにオピストコンタにはホロゾア Holozoa というクレードと、ホロマイコータ Holomycota というクレードがあり、動物は前者、菌類は後者に属する[8]。なお動物の起源とされる(後述)襟鞭毛虫もホロゾアに属する[8][10]。前述の通り後生動物を動物界として扱うこと[11][12][13] が多いが、このホロゾアを動物界と見なす試み[14]もある。

また、Adl et al. (2019)では、後生動物 Metazoa Haeckel1874 emend. Adl et al.2005を正規のランク[注釈 5]とし、動物 Animalia Linnaeus1758 および真正後生動物 Eumetazoa Bütschli, 1910と同義(後生動物のシノニム)として海綿動物、平板動物、刺胞動物、有櫛動物を含めながらもそれらを除いた左右相称動物に相当する階級とした[8]

学名と命名法

動物の学名は国際動物命名規約にて運用される[15]。現行の規約は2000年1月1日に発効した第4版である[16]。この命名規約では「動物」という語は本項で示す後生動物を指すが、原生生物であっても研究者によって動物(原生動物)として扱われる場合は命名法上は「動物」として扱われ、この命名規約が適用される[17][18]。(真核生物の命名規約には、国際動物命名規約国際藻類・菌類・植物命名規約があり、このどちらかに則らなければ学名と見なされない。)

動物命名法の起点はカール・フォン・リンネ (1758)の Systema Naturae 『自然の体系 第10版』およびカール・アレクサンダー・クラーク (Carl Alexander Clerck) (1757)の Aranei Svecici であり、ともに1758年1月1日に出版されたとみなされる[19]


地質時代先カンブリア時代[* 1][* 2]
累代 [* 3] 基底年代
Mya[* 4]
顕生代 新生代 66
中生代 251.902

古生代 541
原生代 新原生代 エディアカラン 635
クライオジェニアン 720
トニアン 1000
中原生代 ステニアン 1200
エクタシアン 1400
カリミアン 1600
古原生代 スタテリアン 1800
オロシリアン 2050
リィアキアン 2300
シデリアン 2500
太古代(始生代) 新太古代 2800
中太古代 3200
古太古代 3600
原太古代 4000
冥王代 4600
  1. ^ 基底年代の数値では、この表と本文中の記述では、異なる出典によるため違う場合もある。
  2. ^ 基底年代の更新履歴
  3. ^ 顕生代は省略、太古代は無し
  4. ^ 百万年前

注釈

  1. ^ 左上から順に、1段目:ヒトデの一種(棘皮動物門星形動物亜門ヒトデ綱)、クダカイメン Aplysina fistularis海綿動物門)、セイヨウダンゴイカ Sepiola atlantica軟体動物門頭足綱)、
    2段目:ミズクラゲ Aurelia aurita刺胞動物門鉢虫綱)、の一種 Hypercompe scribonia節足動物門六脚亜門昆虫綱)、ゴカイの一種 Nereis succinea環形動物門多毛綱)、
    3段目:ヒレジャコ Tridacna squamosa軟体動物門二枚貝綱)、シベリアトラ脊索動物門脊椎動物亜門哺乳綱)、ホヤの一種Polycarpa aurata脊索動物門尾索動物亜門ホヤ綱)、
    4段目:クマムシの一種(緩歩動物門異クマムシ綱)、淡水産コケムシの一種(外肛動物門掩喉綱)、ウツボの一種 Enchelycore anatina脊索動物門脊椎動物亜門条鰭綱)、
    5段目:カニの一種 Liocarcinus vernalis節足動物門甲殻亜門軟甲綱)、鉤頭動物の一種 Corynosoma wegeneri輪形動物門古鉤頭虫綱)、アオカケス脊索動物門脊椎動物亜門鳥綱)、
    6段目:ハエトリグモの一種(節足動物門鋏角亜門蛛形綱)、ヒラムシの一種 Pseudoceros dimidiatus扁形動物門渦虫綱)、ホウキムシ類のアクチノトロカ幼生(箒虫動物門
  2. ^ 古典ラテン語の中性第三活用(i音幹)名詞 animal, is, n複数主格
  3. ^ 明治以前の日本では、中国本草学の影響により生物各群を草・虫・魚・獣などと並列的に扱うことが一般的であり、生物を動物と植物に大別することは西欧の学問の流入以降に普及した考えである[1]
  4. ^ 原生動物は進化的に異なる雑多な生物をまとめたグループ(多系統群)であり、ミニステリアなどの一部の生物を除き後生動物とは系統的に遠縁である。
  5. ^ この「ランク」は流動的な分類群の実情に合わせ、リンネ式階層分類のように絶対的な階層をもたない[9]
  6. ^ 幼生中胚葉 (larval mesoderm)または中外胚葉 (mesectoderm)とも呼ばれる[35]
  7. ^ 真の中胚葉 (true mesoderm)または中内胚葉 (mesendoderm)とも呼ばれる[35]
  8. ^ 哺乳類のように卵黄が僅かな場合は無黄卵 alecithal eggと呼ばれる[72]
  9. ^ 中黄卵と呼ぶこともあるが、この語は中位の卵黄量を持つ mesolecithal にも用いられる[72]
  10. ^ 卵割腔も blastocoelと呼ばれ、区別されない[76]
  11. ^ 藤田 (2010)では、分子系統解析によればこれらの動物門は最古の化石より10億年以上遡ると推測されている[125]とあるが、これは正しくない。
  12. ^ 有爪動物緩歩動物節足動物
  13. ^ ガッコウチュウと呼ばれることもあるが[140]、顎口虫は線形動物の寄生虫 Gnathostoma にも用いられる[141]
  14. ^ a b 刺胞動物有櫛動物は外見が類似しているので腔腸動物門としてまとめられていたが、有櫛動物は刺胞がなく、上皮細胞が多繊毛性であり、決定性卵割であるといった刺胞動物との決定的違いがあり、しかも分子系統解析により腔腸動物が単系統とならないことがわかったので両者は別の門として分けられている[142]
  15. ^ かつて扁形動物門に分類されていた珍渦虫無腸動物を新たな門として立てたもの[143]。その系統的位置に関しては、左右相称動物の最も初期に分岐したとする説[144][145] と後口動物の一員であるとする説[146][147] がある。
  16. ^ a b c 脊椎動物・頭索動物・尾索動物の3門を亜門とし、まとめて脊索動物門とすることも多い。詳しくは#脊索動物を参照
  17. ^ a b 直泳動物門と二胚動物門はかつて中生動物門とされており[149]原生動物から後生動物に進化する過程であると過去には見られていたが、2010年現在では寄生生活により退化した後生動物(螺旋動物)であると見られている[150]
  18. ^ 鉤頭動物 Acanthocephalaは輪形動物に内包され、狭義の輪形動物は側系統となる。狭義の輪形動物および鉤頭動物を門として残し、広義の輪形動物を共皮類 Syndermata とすることもある[151]
  19. ^ 星口動物ユムシ動物有鬚動物は過去には門として立てられていた事もあるが、2018年現在は環形動物門の一部とみなされている[152]
  20. ^ ギリベ (2016)における系統仮説では有輪動物の系統位置が不明であり前口動物内に曖昧さをもって置かれるが、ラーマーら (2019)でははっきりと内肛動物との単系統性を示すため、これを反映した。また、ギリベ (2016)における系統仮説では苔虫動物と内肛動物が姉妹群をなすが、ラーマーら (2019)では苔虫動物と箒虫動物が姉妹群となり、それに腕足動物を加えた単系統群(lophophorate clade[157]、触手冠動物[10])が強く支持され、内肛動物はそれと姉妹群をなす結果はあるもののそうでない結果もあることから、ラーマーら (2019)の系統樹を優先して変更した。
  21. ^ 後口動物の水腔動物と姉妹群をなすという結果もある[147]
  22. ^ 前口動物内での位置は未確定[10][156] だが、担顎動物に近縁という結果がある[157]
  23. ^ 前口動物内での位置は未確定[10][156] だが、吸啜動物に近縁[158] または環形動物に内包される[159] という結果がある。
  24. ^ 前口動物内での位置は未確定[10][156] だが、吸啜動物に近縁という結果がある[158]
  25. ^ a b c 螺旋動物は冠輪動物と呼ばれる事もある[10]。その場合本項の系統樹に登場する冠輪動物は担輪動物と呼び変えられる[10]
  26. ^ この系統樹は主に Oakley et al. (2013)に基づくもので、Regier et al. (2010)などでは鰓脚綱は多甲殻類とともにとクレードをなし、真甲殻上綱 Vericrustaceaとして扱われる[204]
  27. ^ ただし、螺旋動物のうち、触手冠動物の腕足動物などでは放射卵割を行い[74]、脱皮動物でも線形動物のように螺旋卵割を行うものも存在する[218]。かつては前口動物の持つ形質だとみなされていたが、おそらく螺旋動物の持つ共有派生形質である[74]
  28. ^ 和名は『岩波生物学辞典 第5版』(2013)に基づく[229]
  29. ^ 多くが科名の列記になっているのはそれらをまとめた高次分類群は未だ命名されていないためである[228]
  30. ^ 例外も多く、例えば尾索動物では後口動物ながら真体腔は裂体腔的に生じる。
  31. ^ ドリオラリア幼生(ウミユリ、ナマコ)、オーリクラリア幼生(ナマコ)、ビピンナリア幼生(ヒトデ)、オフィオプルテウス幼生(クモヒトデ)、プルテウス幼生(エキノプルテウス、ウニ)などがあり、ドリオラリア型やオーリクラリア型のものが原始的であると考えられている
  32. ^ ただしホヤ綱は残りの両者を内部の別のクレードに含む側系統群[247]

種名

  1. ^ クダカイメン Aplysina fistularis
  2. ^ カイロウドウケツ Euplectella aspergillum
  3. ^ キタカブトクラゲ Bolinopsis infundibulum
  4. ^ アトランティックシーネットル Chrysaora quinquecirrha
  5. ^ 複数種(イシサンゴ目
  6. ^ センモウヒラムシ Trichoplax adherens
  7. ^ Waminoa sp.
  8. ^ ニッポンチンウズムシ Xenoturbella japonica
  9. ^ アカヒトデ Certonardoa semiregularis
  10. ^ ニセクロナマコ Holothuria leucospilota
  11. ^ ナガウニ Echinometra mathaei
  12. ^ 腸鰓綱の一種(未同定)
  13. ^ ナメクジウオ Branchiostoma lanceolatum
  14. ^ Symplegma rubra
  15. ^ ウシ Bos taurus
  16. ^ イソヤムシ Spadella cephaloptera
  17. ^ ヤギツノトゲカワ Echinoderes hwiizaa
  18. ^ エラヒキムシ Priapulus caudatus
  19. ^ Pliciloricus enigmatus
  20. ^ ヒトカイチュウ Ascaris_lumbricoides
  21. ^ Paragordius tricuspidatus
  22. ^ Hypsibius dujardini
  23. ^ Peripatoides indigo
  24. ^ ヨーロッパクロスズメバチ Vespula germanica
  25. ^ オオズワイガニ Chionoecetes bairdi
  26. ^ Rhopalura ophiocomae
  27. ^ ヤマトニハイチュウ Dicyema japonicum
  28. ^ パンドラムシ Symbion pandora
  29. ^ Gnathostomula paradoxa
  30. ^ コアゴムシ[140] Limnognathia maerski
  31. ^ カドツボワムシ Brachionus quadridentatus
  32. ^ Lepidodermella squamata
  33. ^ Schmidtea mediterranea
  34. ^ 無鉤条虫 Taenia saginata
  35. ^ ホタテガイ Mizuhopecten yessoensis
  36. ^ ヨーロッパヤリイカ Loligo vulgaris
  37. ^ オウシュウツリミミズ Lumbricus terrestris
  38. ^ セイヨウカワゴカイ Hediste diversicolor
  39. ^ ユムシ Urechis unicinctus
  40. ^ スジホシムシSipunculus nudus
  41. ^ ミサキヒモムシ Notospermus geniculatus
  42. ^ ミドリシャミセンガイ Lingula anatina
  43. ^ ホウキムシ Phoronis hippocrepia
  44. ^ オオマリコケムシ Pectinatella magnifica
  45. ^ スズコケムシ Barentsia discreta

出典

  1. ^ a b c d e f g 巌佐ほか 2013, p. 994.
  2. ^ a b 動物(どうぶつ)とは”. コトバンク. 2018年7月18日閲覧。より『デジタル大辞泉』の解説。
  3. ^ 八杉貞夫 (2018), “動物学の歴史 ―2000年の動物学史のエッセンス”, p. 2  in 日本動物学会 2018
  4. ^ 藤田 2010, p.91
  5. ^ Lisa A. Urry; Michael L. Cain; Steven A. Wasserman; Peter V. Minorsky; Jane B. Reece 池内昌彦、伊藤元己、箸本春樹 、道上達男訳 (2018-3-20). キャンベル生物学 原書11版. 丸善出版. p. 655. ISBN 978-4621302767 
  6. ^ P. レーヴン; J. ロソス; S. シンガー; G. ジョンソン (2007-05-01). レーヴン ジョンソン 生物学〈下〉(原書第7版). 培風館. p. 518 
  7. ^ 中学校理科教科書「未来へ広がるサイエンス」”. 啓林館. 2018年7月11日閲覧。
  8. ^ a b c d e Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric et al. (2019). “Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes”. Journal of Eukaryotic Microbiology 66: 4-119. 
  9. ^ a b 矢﨑裕規・島野智之 (2020). “真核生物の高次分類体系の改訂 ―Adl et al. (2019)について―”. タクサ 48: 71-83. 
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad 角井敬知 (2018), “動物界の分類群・系統 ―いまだに解けない古い関係”, pp. 54-57  in 日本動物学会 2018
  11. ^ 藤田 2010, p.99
  12. ^ Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D. et al.. “A Higher Level Classification of All Living Organisms”. PLoS ONE 10 (4): 1-60. doi:10.1371/journal.pone.0119248. 
  13. ^ Tedersoo, Leho; Sánchez-Ramírez, Santiago; Kõljalg, Urmas; Bahram, Mohammad; DÖring, Markus; Schigel, Dmitry; May, Tom; Ryberg, Martin et al. (2018). “High-level classification of the Fungi and a tool for evolutionary ecological analyses”. Fungal Diversity 90: 135-159. doi:10.1007/s13225-018-0401-0. 
  14. ^ 巌佐ほか 2013, p. 1552.
  15. ^ 動物命名法国際審議会 2005, 条1.
  16. ^ 動物命名法国際審議会 2005, 表紙.
  17. ^ 動物命名法国際審議会 2005, 条1.1.1.
  18. ^ 動物命名法国際審議会 2005, 用語集.
  19. ^ 中野隆文 (2018), “種と学名,高次分類群 ―動物の名称と名称に関するルール”, pp. 46-47  in 日本動物学会 2018
  20. ^ Avila, Vernon L. (1995). Biology: Investigating Life on Earth. Jones & Bartlett Learning. pp. 767–. ISBN 978-0-86720-942-6. https://books.google.com/books?id=B_OOazzGefEC&pg=PA767 
  21. ^ a b Palaeos:Metazoa”. Palaeos. 2018年2月25日閲覧。
  22. ^ Bergman, Jennifer. “Heterotrophs”. 2007年8月29日時点のオリジナルよりアーカイブ。2007年9月30日閲覧。
  23. ^ Mentel, Marek; Martin, William (2010). “Anaerobic animals from an ancient, anoxic ecological niche”. BMC Biology 8: 32. doi:10.1186/1741-7007-8-32. PMC 2859860. PMID 20370917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859860/. 
  24. ^ Saupe, S. G.. “Concepts of Biology”. 2007年9月30日閲覧。
  25. ^ Minkoff, Eli C. (2008). Barron's EZ-101 Study Keys Series: Biology (2nd, revised ed.). Barron's Educational Series. p. 48. ISBN 978-0-7641-3920-8 
  26. ^ 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 14-25  in 岩槻・馬渡 2000
  27. ^ a b c d e f g h i 藤田 2010, pp.102-106
  28. ^ 浅島・駒崎 2011, p.49
  29. ^ a b c d e f 濱田博司 (2018), “左右軸形成 ―なぜ心臓や胃は左に?”, pp. 308-309  in 日本動物学会 2018
  30. ^ a b c 巌佐ほか 2013, p. 1401.
  31. ^ a b c d e f g h i 松尾勲 (2018), “頭尾軸・背腹軸形成 ―動物界に共通する普遍的な体制”, pp. 304-307  in 日本動物学会 2018
  32. ^ a b 佐藤ほか 2004, pp.30-37
  33. ^ a b c d 佐藤ほか 2004, pp.38-41
  34. ^ a b c d e f g 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 16-17  in 岩槻・馬渡 2000
  35. ^ a b c d e f g h i j k l m n o p q r 久米・團 (1957), 総説, pp. 35-37  久米・團 1957
  36. ^ a b c d 佐藤ほか 2004, p.11
  37. ^ a b c 駒崎伸二・浅島誠 (2018), “胚葉形成 ―動物の体をつくる基本作業”, pp. 296-299  in 日本動物学会 2018
  38. ^ a b c d e f g 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 19-20  in 岩槻・馬渡 2000
  39. ^ 巌佐ほか 2013, p. 848.
  40. ^ a b Kozloff 1990, pp.7-8
  41. ^ a b 巌佐ほか 2013, p. 405.
  42. ^ 松本信二、船越浩海、玉野井逸朗『細胞の増殖と生体システム』学会出版センター、1993年、初版。ISBN 4-7622-6737-6 pp.47-50、3.細胞の微細構造とその機能、3.1.細胞と膜
  43. ^ 武村政春『DNAを操る分子たち』技術評論社、2012年、初版第1刷。ISBN 978-4-7741-4998-1 pp.14-24、第1章 エピジェネティクスを理解するための基礎知識、1-1 DNAとセントラルドグマ
  44. ^ 松本信二、船越浩海、玉野井逸朗『細胞の増殖と生体システム』学会出版センター、1993年、初版。ISBN 4-7622-6737-6、pp.53-56、3.細胞の微細構造とその機能、3.3.真核生物、3.3.1真核生物の構造と機能概説
  45. ^ 井出利憲『細胞の運命Ⅳ細胞の老化』サイエンス社、2006年、初版。ISBN 4-7819-1127-7 pp.65-75、第6章 テロメアとは何か
  46. ^ 『生化学辞典第2版』東京化学同人、1995年、第2版第6刷。ISBN 4-8079-0340-3、p.534 【細胞骨格タンパク質】
  47. ^ 林純一「ミトコンドリアDNAに突然変異をもつ細胞は自然免疫により排除されることを発見」筑波大学生命科学研究科発表 「Journal of Experimental Medicine」電子版 2011.Oct.12
  48. ^ 黒岩常祥『ミトコンドリアはどこからきたか』日本放送出版、2000年6月30日第1刷発行。ISBN 4140018879
  49. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). Molecular Biology of the Cell (4th ed.). Garland Science. ISBN 0-8153-3218-1. https://www.ncbi.nlm.nih.gov/books/NBK26810/ 
  50. ^ Sangwal, Keshra (2007). Additives and crystallization processes: from fundamentals to applications. John Wiley and Sons. p. 212. ISBN 978-0-470-06153-4 
  51. ^ Magloire, Kim (2004). Cracking the AP Biology Exam, 2004–2005 Edition. The Princeton Review. p. 45. ISBN 978-0-375-76393-9 
  52. ^ Starr, Cecie (2007-09-25). Biology: Concepts and Applications without Physiology. Cengage Learning. pp. 362, 365. ISBN 0495381500. https://books.google.com/?id=EXNFwB-O-WUC&pg=PA362 
  53. ^ Knobil, Ernst (1998). Encyclopedia of reproduction, Volume 1. Academic Press. p. 315. ISBN 978-0-12-227020-8 
  54. ^ a b c d e f g h i j k l m n 小林一也 (2018), “有性生殖と無性生殖 ―生殖戦略の多様性”, pp. 274-275  in 日本動物学会 2018
  55. ^ Hamilton, Matthew B. (2009). Population genetics. Wiley-Blackwell. p. 55. ISBN 978-1-4051-3277-0 
  56. ^ a b 巌佐ほか 2013, p. 638.
  57. ^ a b c 巌佐ほか 2013, p. 744.
  58. ^ 巌佐ほか 2013, pp. 1105–1106.
  59. ^ a b c 浅島・駒崎 2011, p.33
  60. ^ a b c d e 浅島誠・駒崎伸二 (2018), “さまざまな動物の発生 ―卵から形づくりの始まり”, pp. 270-273  in 日本動物学会 2018
  61. ^ 巌佐ほか 2013, p. 1313.
  62. ^ a b 久米・團 (1957), 総説, p. 371  久米・團 1957
  63. ^ 巌佐ほか 2013, p. 1430.
  64. ^ a b c d e f g h i j k l m Kozloff 1990, pp.4-5
  65. ^ a b 巌佐ほか 2013, p. 406.
  66. ^ a b 久米・團 (1957), 総説, pp. 39-40  久米・團 1957
  67. ^ 巌佐ほか 2013, p. 1397.
  68. ^ 巌佐ほか 2013, p. 923.
  69. ^ a b c d e f g h 久米・團 (1957), 総説, pp. 28-31  久米・團 1957
  70. ^ a b c d e 巌佐ほか 2013, p. 1443.
  71. ^ a b c d e f g h i j k l Kozloff 1990, p.3
  72. ^ a b c d e f 久米・團 (1957), 総説, p. 5  久米・團 1957
  73. ^ a b c d e f g 久米・團 (1957), 総説, pp. 31-33  久米・團 1957
  74. ^ a b c d e f g h i j k l m n o p q r Martín-Durán, José M.; Marlétaz, Ferdinand (2020). “Unravelling spiral cleavage”. Development 147: 1-7. doi:10.1242/dev.181081. 
  75. ^ a b c d 上野秀一 (2018), “卵割 ―大きな卵はなぜ速く分裂するのか”, pp. 294-295  in 日本動物学会 2018
  76. ^ a b c d e f g h i j k l m n o p q r s t u v w x 久米・團 (1957), 総説, pp. 33-35  久米・團 1957
  77. ^ 浅島・駒崎 2011, p.39
  78. ^ 浅島・駒崎 2011, p.42
  79. ^ a b Kozloff 1990, pp.5-7
  80. ^ a b 浅島・駒崎 2011, p.126
  81. ^ a b 浅島・駒崎 2011, p.108
  82. ^ a b 浅島・駒崎 2011, pp.72-73
  83. ^ a b c 浅島・駒崎 2011, p.115
  84. ^ a b c 浅島・駒崎 2011, p.110
  85. ^ 浅島・駒崎 2011, pp.115-117
  86. ^ 浅島・駒崎 2011, p.119
  87. ^ a b c 藤田 2010, pp. 99–101.
  88. ^ a b c 古屋秀隆 (2000), “後生動物の起源”, pp. 106-107  in 岩槻・馬渡 2000
  89. ^ a b c d e f g h i j dos Reis et al. 2015, pp. 2939–2950.
  90. ^ a b 藤田 2010, p. 92.
  91. ^ 土屋 2013, pp. 11–12.
  92. ^ Erwin, D.H.; Laflamme, M.; Tweedt, S.M.; Sperling, E.A.; Pisani, D.; Peterson, K.J. (2011). “The Cambrian conundrum: early divergence and later ecological success in the early history of animals”. Science 334: 1091-1097. 
  93. ^ Budd, G.E. (2008). “The earliest fossil record of the animals and its significance”. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363: 1425-1434. 
  94. ^ a b Maloof, A.C.; Porter, S.M.; Moore, J.L.; Dudas, F.O.; Bowring, S.A.; Higgins, J.A.; Fike, D.A.; Eddy, M.P. (2010). “The earliest Cambrian record of animals and ocean geochemical change”. Geol. Soc. Am. Bull. 122 (11–12): 1731–1774. Bibcode2010GSAB..122.1731M. doi:10.1130/B30346.1. 
  95. ^ a b c d 土屋 2013, pp. 12–13.
  96. ^ a b c Brain, C.K.; Prave, Anthony R.; Hoffmann, Karl-Heinz; Fallick, Anthony E.; Botha, Andre; Herd, Donald A.; Sturrock, Craig; Young, Iain et al. (2012). “The first animals: ca. 760-million-year-old sponge-like fossils from Namibia”. S Afr J Sci. 108 (1/2): 1-8. doi:10.4102/sajs.v108i1/2.658. 
  97. ^ 松本 2015, p.3
  98. ^ Maloof, Adam C.; Rose, Catherine V.; Beach, Robert; Samuels, Bradley M.; Calmet, Claire C.; Erwin, Douglas H.; Poirier, Gerald R.; Yao, Nan et al. (17 August 2010). “Possible animal-body fossils in pre-Marinoan limestones from South Australia”. Nature Geoscience 3 (9): 653–659. Bibcode2010NatGe...3..653M. doi:10.1038/ngeo934. http://www.nature.com/ngeo/journal/v3/n9/full/ngeo934.html. 
  99. ^ Love, G.D.; Grosjean, E.; Stalvies, C.; Fike, D.A.; Grotzinger, J.P.; Bradley, A.S.; Kelly, A.E.; Bhatia, M. et al. (2009). “Fossil steroids record the appearance of Demospongiae during the Cryogenian period”. Nature 457: 718-721. doi:10.1038/nature0767. 
  100. ^ Siegl, A.; Kamke, J.; Hochmuth, T.; Piel, J.; Richter, M.; Liang, C.; Dandekar, T.; Hentschel, U. (2011). “Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges”. ISME J. 5: 61-70. 
  101. ^ 土屋 2013, pp. 13–18.
  102. ^ Xiao, S.; Zhang, Y.; Knol (1998). “Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite”. Nature 391: 553-558. doi:10.1038/35318. 
  103. ^ Butterfield, N.J.. “Paleontology. Terminal developments in Ediacaran embryology”. Science 334: 1655-1656. 
  104. ^ Huldtgren, T.; Cunningham, J.A.; Yin, C.; Stampanoni, M.; Marone, F.; Donoghue, P.C.J.; Bengtson, S. (2011). “Fossilized nuclei and germination structures identify Ediacaran "animal embryos" as encysting protists”. Science 334: 1696-1699. 
  105. ^ Zhang, X.-G.; Pratt, B.R. (2014). “Possible algal origin and life cycle of Ediacaran Doushantuo microfossils with dextral spiral structure”. J. Paleontol. 88: 92-98. 
  106. ^ 土屋 2013, p. 164.
  107. ^ a b c Dunn, Frances S.; Liu, Alexander G.; Donoghue, Philip C. J. (2018). “Ediacaran developmental biology”. Biol. Rev. 93: 914-932. doi:10.1111/brv.12379. 
  108. ^ a b c 土屋 2013, pp. 21–40.
  109. ^ 土屋 2013, p. 28.
  110. ^ Two Explosive Evolutionary Events Shaped Early History Of Multicellular Life
  111. ^ Shen, Bing; Dong, Lin; Xiao, Shuhai; Kowalewski, Michał (2008). “The Avalon Explosion: Evolution of Ediacara Morphospace”. Science 319 (5859): 81–84. Bibcode2008Sci...319...81S. doi:10.1126/science.1150279. PMID 18174439. http://www.sciencemag.org/content/319/5859/81.short. 
  112. ^ Yin, Z.; Zhu, M.; Davidson, E.H.; Bottjer, D.J.; Zhao, F.; Tafforeau, P. (2015). “Sponge grade body fossil with cellular resolution dating 60 Myrbefore the Cambrian”. Proc. Natl. Acad. Sci. USA 112: E1453-E1460. doi:10.1073/pnas.1414577112. 
  113. ^ Antcliffe, J.B.; Callow, R.H.; Brasier, M.D. (2014). “Giving the early fossil record of sponges a squeeze”. Biol. Rev. Camb. Philos. Soc. 89: 972-1004. 
  114. ^ Fedonkin, M.A.; Simonetta, A.; Ivantsov, A.Y. (2007). “New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications”. Geol. Soc. Lond. Spec. Publ. 286: 157–179. 
  115. ^ Liu, A.G.; Matthews, J.J.; Menon, L.R.; McIlroy, D.; Brasier, M.D. (2014). “Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma)”. Proc. Biol. Sci. 281, 20141202. doi:10.1098/rspb.2014.1202. 
  116. ^ 土屋 2013, pp. 33–35.
  117. ^ 土屋 2013, pp. 35–36.
  118. ^ Carbone, C.; Narbonne, G.M. (2014). “When life got smart: the evolution of behavioral complexity through the Ediacaran and Early Cambrian of NW Canada”. J. Paleontol. 88: 309-330. 
  119. ^ Mángano, M.G.; Buatois, L.A. (2014). “Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks”. Proc. Biol. Sci. 281, 20140038. 
  120. ^ Liu, A.G.; Mcllroy, D.; Brasier, M.D. (2010). “First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland”. Geology 38. 
  121. ^ Rogov, V.I.; Marusin, V.; Bykova, N.; Goy, Y.; Nagovitsin, K.E.; Kochnev, B.B.; Karlova, G.A.; Grazhdankin, D. (2012). “The oldest evidence of bioturbation on Earth”. Geology 40: 395-398. 
  122. ^ Pecoits, E.; Konhauser, K.O.; Aubet, N.R.; Heaman, L.M.; Veroslavsky, G.; Stern, R.A.; Gingras, M.K. (2012). “Bilaterian burrows and grazing behavior at >585 million years ago”. Science 336: 1693-1696. 
  123. ^ 土屋 2013, pp. 165–166.
  124. ^ 土屋 2013, pp. 166–167.
  125. ^ a b c d e f g h i j k l m n o 藤田 2010, pp. 92–98.
  126. ^ 土屋 2013, pp. 169–171.
  127. ^ a b New Timeline for Appearances of Skeletal Animals in Fossil Record Developed by UCSB Researchers”. The Regents of the University of California (2010年11月10日). 2021年8月28日閲覧。
  128. ^ 土屋 2013, pp. 164–165.
  129. ^ a b c d 土屋 2013, pp. 171–174.
  130. ^ Conway-Morris 2003, pp. 505–515.
  131. ^ 土屋 2013, pp. 179–181.
  132. ^ Valentine, JW; Jablonski, D; Erwin, DH (1999). “Fossils, molecules and embryos: new perspectives on the Cambrian explosion”. Development 126 (5): 851–9. PMID 9927587. http://dev.biologists.org/content/126/5/851.long. 
  133. ^ Budd, Graham (2013). “At the origin of animals: the revolutionary cambrian fossil record”. Current Genomics 14 (6): 344–354. doi:10.2174/13892029113149990011. PMC 3861885. PMID 24396267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861885/. 
  134. ^ Erwin, D. H.; Laflamme, M.; Tweedt, S. M.; Sperling, E. A.; Pisani, D.; Peterson, K. J. (2011). “The Cambrian conundrum: early divergence and later ecological success in the early history of animals”. Science 334 (6059): 1091–1097. Bibcode2011Sci...334.1091E. doi:10.1126/science.1206375. PMID 22116879. 
  135. ^ Kouchinsky, A.; Bengtson, S.; Runnegar, B. N.; Skovsted, C. B.; Steiner, M.; Vendrasco, M. J. (2012). “Chronology of early Cambrian biomineralization”. Geological Magazine 149 (2): 221–251. Bibcode2012GeoM..149..221K. doi:10.1017/s0016756811000720. 
  136. ^ Servais, T.; Harper, D.A.T. (2018). “The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration”. Lethaia 51: 151-164. 
  137. ^ García-Bellido, Diego C; Paterson, John R (2014). “A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group”. BMC Evolutionary Biology 14: 214. doi:10.1186/s12862-014-0214-z. PMC 4203957. PMID 25273382. http://www.biomedcentral.com/1471-2148/14/214/abstract#. 
  138. ^ a b Smith, Martin R.; Ortega-Hernández, Javier (2014-08-17). “Hallucigenia’s onychophoran-like claws and the case for Tactopoda” (英語). Nature 514 (7522): 363–366. doi:10.1038/nature13576. ISSN 0028-0836. https://doi.org/10.1038/nature13576. 
  139. ^ a b c d Hernández, Javier Ortega (英語). Lobopodians. http://www.academia.edu/16933971/Lobopodians. 
  140. ^ a b c d e 白山義久・久保田信・駒井智幸・西川輝昭・月井雄二・加藤哲哉・窪寺恒己・齋藤寛・長谷川和範・藤田敏彦・土田真二 (2005-03-20). 水の生物. 小学館の図鑑 NEO. ISBN 4092172079 
  141. ^ 藤田 2010, p. 127.
  142. ^ a b 藤田 2010, p.119
  143. ^ a b c d e 中野裕昭 (2018), “珍無腸形動物 ―左右相称動物の祖先に迫る?”, pp. 86-87  in 日本動物学会 2018
  144. ^ a b c d e Cannon, Johanna T.; Vellutini, Bruno C.; Smith III, Julian.; Ronquist, Frederik; Jondelius, Ulf; Hejnol, Andreas (3 February 2016). “Xenacoelomorpha is the sister group to Nephrozoa”. Nature 530 (7588): 89–93. Bibcode2016Natur.530...89C. doi:10.1038/nature16520. PMID 26842059. http://www.nature.com/nature/journal/v530/n7588/full/nature16520.html 2016年2月3日閲覧。. 
  145. ^ a b c Rouse, Greg W.; Wilson, Nerida G.; Carvajal, Jose I.; Vrijenhoek, Robert C. (2016-02). “New deep-sea species of Xenoturbella and the position of Xenacoelomorpha” (英語). Nature 530 (7588): 94–97. doi:10.1038/nature16545. ISSN 0028-0836. http://www.nature.com/articles/nature16545. 
  146. ^ a b c Philippe, H.; Brinkmann, H.; Copley, R. R.; Moroz, L. L.; Nakano, H.; Poustka, A. J.; Wallberg, A.; Peterson, K. J. et al. (2011). “Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470 (7333): 255–258. doi:10.1038/nature09676. PMC 4025995. PMID 21307940. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025995/. 
  147. ^ a b c d e Philippe, H.; Poustka, Albert J.; Chiodin, Marta; J.Hoff, Katharina; Dessimoz, Christophe; Tomiczek, Bartlomiej; Schiffer, Philipp H.; Müller, Steven et al. (2019). “Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria”. Current Biology 29 (11): 1818-1826. doi:10.1016/j.cub.2019.04.009. 
  148. ^ 藤田 2010, p.124
  149. ^ a b c 藤田 2010, p. 113.
  150. ^ a b 藤田 2010, p. 122.
  151. ^ a b c d e f g h i 柁原宏 (2018), “腹毛動物・扁形動物・顎口動物・微顎動物・輪形動物・紐形動物 ―人目に触れないマイナー分類群”, pp. 62-63  in 日本動物学会 2018
  152. ^ 田中正敦 (2018), “環形動物(有鬚動物・ユムシ・星口動物を含む) ―誤解されていた系統関係”, pp. 70-71  in 日本動物学会 2018
  153. ^ 藤田 2010, p.106
  154. ^ Dunn, Casey W.; Hejnol, Andreas; Matus, David Q.; Pang, Kevin; Browne, William E.; Smith, Stephen A.; Seaver, Elaine; Rouse, Greg W. et al. (2008-03-05). “Broad phylogenomic sampling improves resolution of the animal tree of life” (英語). Nature 452 (7188): 745–749. doi:10.1038/nature06614. ISSN 0028-0836. http://www.nature.com/doifinder/10.1038/nature06614. 
  155. ^ Egger, Bernhard; Steinke, Dirk; Tarui, Hiroshi; Mulder, Katrien De; Arendt, Detlev; Borgonie, Gaëtan; Funayama, Noriko; Gschwentner, Robert et al. (2009-05-11). “To Be or Not to Be a Flatworm: The Acoel Controversy” (英語). PLOS ONE 4 (5): e5502. doi:10.1371/journal.pone.0005502. ISSN 1932-6203. PMC PMC2676513. PMID 19430533. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005502. 
  156. ^ a b c d e f g h i Giribet 2016, pp.14-21
  157. ^ a b c d e f g h i j k l m Laumer et al. 2019, pp.1-10
  158. ^ a b c d Lu, Tsai-Ming; Kanda, Miyuki; Satoh, Noriyuki; Furuya, Hidetaka (2017). “The phylogenetic position of dicyemid mesozoans offers insights into spiralian evolution”. Zoological Letters 3 (6): 1-9. doi:10.1186/s40851-017-0068-5. 
  159. ^ a b Schiffer, Philipp H.; Robertson, Helen E.; Telford, Maximilian J. (2018). “Orthonectids Are Highly Degenerate Annelid Worms”. Current Biology 28 (12): 1970-1974. doi:10.1016/j.cub.2018.04.088. 
  160. ^ a b c 藤田 2010, p. 114.
  161. ^ Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert (15 December 2015). “Genomic data do not support comb jellies as the sister group to all other animals”. Proceedings of the National Academy of Sciences 112 (50): 15402–15407. doi:10.1073/pnas.1518127112. PMC 4687580. PMID 26621703. http://www.pnas.org/content/112/50/15402. 
  162. ^ Simion, Paul; Philippe, Hervé; Baurain, Denis; Jager, Muriel; Richter, Daniel J.; Franco, Arnaud Di; Roure, Béatrice; Satoh, Nori et al. (3 April 2017). “A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals”. Current Biology 27 (7): 958–967. doi:10.1016/j.cub.2017.02.031. PMID 28318975. https://doi.org/10.1016/j.cub.2017.02.031. 
  163. ^ Feuda, Roberto; Dohrmann, Martin; Pett, Walker; Philippe, Hervé; Rota-Stabelli, Omar; Lartillot, Nicolas; Wörheide, Gert; Pisani, Davide (2017). “Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals”. Current Biology 27 (24): 3864. doi:10.1016/j.cub.2017.11.008. PMID 29199080. http://linkinghub.elsevier.com/retrieve/pii/S0960982217314537. 
  164. ^ a b Laumer, Christopher E.; Gruber-Vodicka, Harald; Hadfield, Michael G.; Pearse, Vicki B.; Riesgo, Ana; Marioni, John C.; Giribet, Gonzalo (2018). “Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias”. eLIFE 7:e36278: 1-19. doi:10.7554/eLife.36278. 
  165. ^ a b Dunn, Casey W.; Hejnol, Andreas; Matus, David Q.; Pang, Kevin; Browne, William E.; Smith, Stephen A.; Seaver, Elaine; Rouse, Greg W. et al. (2008). “Broad phylogenomic sampling improves resolution of the animal tree of life”. Nature 452 (7188): 745–749. Bibcode2008Natur.452..745D. doi:10.1038/nature06614. PMID 18322464. http://www.nature.com/doifinder/10.1038/nature06614. 
  166. ^ a b c d Henjol, Andreas; Matthias, Obst; Stamatakis, Alexandros; Ott, Michael; Rouse, Greg W.; Edgecombe, Gregory D.; Martinez, Pedro; Jaume, Baguñà et al. (2009). “Assessing the root of bilaterian animals with scalable phylogenomic methods”. Proc. R. Soc. B 276: 4261-4270. doi:10.1098/rspb.2009.0896. 
  167. ^ Whelan, Nathan V.; Kocot, Kevin M.; Moroz, Leonid L.; Halanych, Kenneth M. (2015). “Error, signal, and the placement of Ctenophora sister to all other animals”. PNAS 112 (18): 5773-5778. doi:10.1073/pnas.1503453112. 
  168. ^ Whelan, Nathan V.; Kocot, Kevin M.; Moroz, Tatiana P.; Mukherjee, Krishanu; Williams, Peter; Paulay, Gustav; Moroz, Leonid L.; Halanych, Kenneth M. (2017). “Ctenophore relationships and their placement as the sister group to all other animals”. Nature Ecology & Evolution 1 (11): 1737. doi:10.1038/s41559-017-0331-3. http://www.nature.com/articles/s41559-017-0331-3. 
  169. ^ Wainright, Patricia O.; Hinkle, Gregory; Sogin, Mitchell L.; Stickel, Shawn K. (1993). “Monophyletic Origins of the Metazoa: An Evolutionary Link with Fungi”. Science New Series 260 (5106): 340-342. 
  170. ^ Jessop, Nancy Meyer (1970). Biosphere; a study of life. Prentice-Hall. p. 428 
  171. ^ Sumich, James L. (2008). Laboratory and Field Investigations in Marine Life. Jones & Bartlett Learning. p. 67. ISBN 978-0-7637-5730-4 
  172. ^ a b c 藤田 2010, pp. 117–120.
  173. ^ Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 16. Encyclopædia Britannica. p. 523. ISBN 978-0-85229-961-6 
  174. ^ 藤田 2010, p.122
  175. ^ a b c d e 中野裕昭 (2018), “刺胞動物・有櫛動物・平板動物・海綿動物 ―左右相称でない動物たち”, pp. 58-59  in 日本動物学会 2018
  176. ^ 藤田 2010, pp. 120–121.
  177. ^ a b c 久保田信 (2000), 有櫛動物と刺胞動物の関係, pp. 116-117  in 岩槻・馬渡 2000
  178. ^ a b c 藤田 2010, pp. 122–132.
  179. ^ a b Minelli, Alessandro (2009). Perspectives in Animal Phylogeny and Evolution. Oxford University Press. p. 53. ISBN 978-0-19-856620-5. https://books.google.com/books?id=jIASDAAAQBAJ&pg=PA53 
  180. ^ a b c Brusca, Richard C. (2016). Introduction to the Bilateria and the Phylum Xenacoelomorpha | Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation. Sinauer Associates. pp. 345–372. ISBN 978-1605353753. http://www.sinauer.com/media/wysiwyg/samples/Brusca3e_Chapter_9.pdf 
  181. ^ Quillin, K. J. (May 1998). “Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris”. The Journal of Experimental Biology 201 (12): 1871–83. PMID 9600869. http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=9600869. 
  182. ^ Westblad, E. (1949). “Xenoturbella bocki n. g., n. sp., a peculiar, primitive Turbellarian type”. Arkiv för Zoologi 1: 3–29. 
  183. ^ Bourlat, S. et al. (2006). “Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida”. Nature 444: 85-88. 
  184. ^ Perseke, M.; Hankeln, T.; Weich, B.; Fritzsch, G.; Stadler, P.F.; Israelsson, O.; Bernhard, D.; Schlegel, M. (August 2007). “The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis”. Theory Biosci 126 (1): 35–42. doi:10.1007/s12064-007-0007-7. PMID 18087755. http://www.bioinf.uni-leipzig.de/Publications/PREPRINTS/07-009.pdf. 
  185. ^ Baguñà, J; Riutort, M (2004). “Molecular phylogeny of the Platyhelminthes”. Can J Zool 82: 168-193. 
  186. ^ Nakano, H.; Lundin, K.; Bourlat, S.J.; Telford, M.J. (2013). “Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha”. Nature Communications 4 (1): 1537. doi:10.1038/ncomms2556. 
  187. ^ 馬渡 2013, pp.27-29
  188. ^ 筑波大学 (2019年5月27日), “珍渦虫はもともと単純か複雑か ―まだ続く珍無腸動物門の系統樹上の放浪―” (プレスリリース), https://www.tsukuba.ac.jp/journal/images/pdf/190527nakano-2.pdf 2021年8月20日閲覧。 
  189. ^ 後藤太一郎 (2000), “31. 毛顎動物門 Phylum CHAETOGNATHA”, pp. 235-237  in 岩槻・馬渡 2000
  190. ^ a b c d e f g 後藤太一郎 (2018), “毛顎動物 ―謎に包まれた系統的位置”, pp. 84-85  in 日本動物学会 2018
  191. ^ Telford, Maximilian J.; Holland, P. W. H. (1993). “The Phylogenetic Affinities of the Chaetognaths: A Molecular Analysis”. Mol. Biol. Evol. 10 (3): 660-676. 
  192. ^ Wada, Hiroshi; Satoh, Noriyuki. Proc. Natl. Acad. Sci. 91 (5): 1801-1804. doi:10.1073/pnas.91.5.1801. 
  193. ^ a b c d Mallatt, Jon (2010). “Nearly complete rRNA genes assembled from across the metazoan animals: Effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction”. Molecular Phylogenetics and Evolution 55: 1-17. doi:10.1016/j.ympev.2009.09.028. 
  194. ^ a b 藤田 2010, pp. 122–123.
  195. ^ 藤田 2010, p. 108.
  196. ^ Dawkins, Richard (2005). The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution. Houghton Mifflin Harcourt. p. 381. ISBN 978-0-618-61916-0 
  197. ^ a b 藤田 2010, p.150
  198. ^ a b c d e 嶋田大輔 (2018), “線形動物・類線形動物 ―昆虫に匹敵する多様性の持ち主?”, pp. 72-73  in 日本動物学会 2018
  199. ^ 藤田 2010, pp.150-152
  200. ^ a b 藤田 2010, p.153
  201. ^ a b 山崎博史 (2018), “鰓曳動物・胴甲動物・動吻動吻 ―棘に覆われた頭部をもつ動物たち”, pp. 74-75  in 日本動物学会 2018
  202. ^ Miller, Stephen A.; Harley, John P. (2006). Zoology. McGraw-Hill Higher Education. p. 173. https://books.google.com/books?id=BWZFAQAAIAAJ 
  203. ^ a b 藤田 2010, pp.155-156
  204. ^ a b c 大塚攻・田中隼人 (2020). “顎脚類(甲殻類)の分類と系統に関する研究の最近の動向”. タクサ 48: 49-62. 
  205. ^ 島野智之 (2018), “節足動物(多足類・鋏角類) ―いまだ系統が解明されていない2つの大きな分類群”, pp. 78-79  in 日本動物学会 2018
  206. ^ a b 藤田 2010, p.168
  207. ^ a b Giribet, Gonzalo; Edgecombe, Gregory D. (2019-06-17). “The Phylogeny and Evolutionary History of Arthropods”. Current Biology 29 (12): R592–R602. doi:10.1016/j.cub.2019.04.057. ISSN 0960-9822. http://www.sciencedirect.com/science/article/pii/S0960982219304865. 
  208. ^ Olesen, Jørgen; Pisani, Davide; Iliffe, Thomas M.; Legg, David A.; Palero, Ferran; Glenner, Henrik; Thomsen, Philip Francis; Vinther, Jakob et al. (2019-08-01). “Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling” (英語). Genome Biology and Evolution 11 (8): 2055–2070. doi:10.1093/gbe/evz097. https://academic.oup.com/gbe/article/11/8/2055/5528088. 
  209. ^ a b 藤田 2010, p.157
  210. ^ 藤田 2010, pp.157-158
  211. ^ a b Siveter, Derek J.; Briggs, Derek E. G.; Siveter, David J.; Sutton, Mark D.; Legg, David (2018-08-01). “A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK” (英語). Open Science 5 (8): 172101. doi:10.1098/rsos.172101. ISSN 2054-5703. http://rsos.royalsocietypublishing.org/content/5/8/172101. 
  212. ^ Ramsköld, L.; Xianguang, Hou (1991-05). “New early Cambrian animal and onychophoran affinities of enigmatic metazoans” (英語). Nature 351 (6323): 225–228. doi:10.1038/351225a0. ISSN 0028-0836. https://www.nature.com/articles/351225a0. 
  213. ^ Budd, Graham (1993-08). “A Cambrian gilled lobopod from Greenland” (英語). Nature 364 (6439): 709–711. doi:10.1038/364709a0. ISSN 0028-0836. https://doi.org/10.1038/364709a0. 
  214. ^ BUDD, GRAHAM E. (1996-03). “The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group” (英語). Lethaia 29 (1): 1–14. doi:10.1111/j.1502-3931.1996.tb01831.x. ISSN 0024-1164. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1502-3931.1996.tb01831.x. 
  215. ^ (PDF) Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China (Acta Zoologica (2007) DOI: 10.1111/j.1463-6395.2007.00281.x)” (英語). ResearchGate. 2018年10月28日閲覧。
  216. ^ Dzik, Jerzy (2011). "The xenusian-to-anomalocaridid transition within the lobopodians". Bollettino della Società Paleontologica Italiana, 50(1): 65-74.
  217. ^ Budd, Graham E. (2001-01). “Tardigrades as ‘Stem-Group Arthropods’: The Evidence from the Cambrian Fauna”. Zoologischer Anzeiger - A Journal of Comparative Zoology 240 (3-4): 265–279. doi:10.1078/0044-5231-00034. ISSN 0044-5231. https://doi.org/10.1078/0044-5231-00034. 
  218. ^ a b c 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-5-4 分子系統学)”, pp. 34-45  in 岩槻・馬渡 2000
  219. ^ a b Struck, Torsten H.; Wey-Fabrizius, Alexandra R.; Golombek, Anja; Hering, Lars; Weigert, Anne; Bleidorn, Christoph; Klebow, Sabrina; Iakovenko, Nataliia et al. (2014). “Platyzoan Paraphyly Based on Phylogenomic Data Supports a Noncoelomate Ancestry of Spiralia”. Molecular Biology and Evolution 31 (7): 1833-1849. doi:10.1093/molbev/msu143. PMID 24748651. 
  220. ^ Shankland, M.; Seaver, E. C. (2000). “Evolution of the bilaterian body plan: What have we learned from annelids?”. Proceedings of the National Academy of Sciences 97 (9): 4434–7. Bibcode2000PNAS...97.4434S. doi:10.1073/pnas.97.9.4434. JSTOR 122407. PMC 34316. PMID 10781038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34316/. 
  221. ^ a b c d 藤田 2010, pp. 130–131.
  222. ^ a b 藤田 2010, pp. 127–128.
  223. ^ Balsamo, Maria; Artois, Tom; Smith III, Julian P. S.; Todaro, M. Antonio; Guidi, Loretta (2020). “The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes)”. Hydrobiologia 847: 2613-2644. 
  224. ^ a b 藤田 2010, pp. 135–136.
  225. ^ a b 藤田 2010, p.132
  226. ^ a b c d e 藤田 2010, pp. 136–137.
  227. ^ a b c 佐々木猛智 (2018), “軟体動物 ―900 kgのイカ,0.01 g の巻貝”, pp. 68-69  in 日本動物学会 2018
  228. ^ a b c d Weigert, Anne; Bleidorn, Christoph (2016). “Current status of annelid phylogeny”. Org Divers Evol 16: 345-362. doi:10.1007/s13127-016-0265-7. 
  229. ^ 巌佐ほか 2013, pp. 1584–1586.
  230. ^ a b 藤田 2010, pp. 104–105.
  231. ^ a b 佐藤ほか 2004, pp.63-64
  232. ^ 岩槻・馬渡 2000, p.23
  233. ^ 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 21-23  in 岩槻・馬渡 2000
  234. ^ a b 藤田 2010, p. 169.
  235. ^ a b 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-1 漸進的進化思想と分子系統樹)”, pp. 3-14  in 岩槻・馬渡 2000
  236. ^ 藤田 2010 p.108
  237. ^ Edgecombe, Gregory D.; Giribet, Gonzalo; Dunn, Casey W.; Hejnol, Andreas; Kristensen, Reinhardt M.; Neves, Ricardo C.; Rouse, Greg W.; Worsaae, Katrine et al. (June 2011). “Higher-level metazoan relationships: recent progress and remaining questions”. Organisms, Diversity & Evolution 11 (2): 151–172. doi:10.1007/s13127-011-0044-4. 
  238. ^ Fröbius, Andreas C.; Funch, Peter (2017-04-04). “Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans”. Nature Communications 8 (1). Bibcode2017NatCo...8....9F. doi:10.1038/s41467-017-00020-w. http://www.nature.com/articles/s41467-017-00020-w. 
  239. ^ Smith, Martin R.; Ortega-Hernández, Javier (2014). “Hallucigenia’s onychophoran-like claws and the case for Tactopoda”. Nature 514 (7522): 363–366. Bibcode2014Natur.514..363S. doi:10.1038/nature13576. https://doi.org/10.1038/nature13576. 
  240. ^ a b Palaeos Metazoa: Ecdysozoa”. palaeos.com. 2017年9月2日閲覧。
  241. ^ Yamasaki, Hiroshi; Fujimoto, Shinta; Miyazaki, Katsumi (June 2015). “Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences”. Zoological Letters 1: 18. doi:10.1186/s40851-015-0017-0. https://doi.org/10.1186/s40851-015-0017-0. 
  242. ^ Nielsen, C. (2002). Animal Evolution: Interrelationships of the Living Phyla (2nd ed.). Oxford University Press. ISBN 0-19-850682-1 
  243. ^ Bilateria”. Tree of Life Web Project (2001年). 2014年8月11日閲覧。
  244. ^ a b c d 藤田 2010, pp. 169–173.
  245. ^ a b c 藤田敏彦 (2018), “棘皮動物 ―星形の体をもつ海のスター”, pp. 88-89  in 日本動物学会 2018
  246. ^ a b c d e 藤田 2010, p. -173.
  247. ^ a b c d e f g h i 西川輝昭 (2018), “頭索動物・尾索動物・半索動物 ―脊椎動物のルーツを探る”, pp. 90-91  in 日本動物学会 2018
  248. ^ a b 佐藤ほか 2004, pp.117
  249. ^ a b c d e f g 藤田 2010, pp. 174–180.
  250. ^ (プレスリリース), 沖縄科学技術大学院大学東邦大学, (2014年9月17日), https://www.oist.jp/ja/news-center/press-releases/16643+2021年8月8日閲覧。 
  251. ^ Satoh, Noriyuki; Rokhsar, Daniel; Nishikawa, Teruaki (2014). “Chordate evolution and the three-phylum system”. Proceedings of Royal Society B 281 (1794): 1-10. doi:10.1098/rspb.2014.1729. 
  252. ^ a b 甲斐嘉晃 (2018), “脊椎動物(魚類) ―水中で多様に進化した分類群”, pp. 92-95  in 日本動物学会 2018
  253. ^ 栗田和紀 (2018), “脊椎動物(爬虫類) ―陸に卵を産み始めた脊椎動物”, pp. 98-99  in 日本動物学会 2018
  254. ^ a b 佐藤ほか 2004, p.196
  255. ^ a b c 鈴木大地「アリストテレス『動物発生論』の現代生物学・科学哲学的検討Ⅰ : 第1巻第1章~第16章」『古典古代学』第6号、筑波大学大学院人文社会科学研究科古典古代学研究室、2013年、 1-23頁、 ISSN 1883-7352NAID 1200053732712021年10月1日閲覧。
  256. ^ a b c d 松浦 2009, pp.17-18
  257. ^ 松浦 2009, pp.20-21
  258. ^ 藤田 2010, pp.119-120
  259. ^ a b 上島励 (2000), ミクソゾアの系統学的位置, p. 93  in 岩槻・馬渡 2000
  260. ^ a b 古屋秀隆 (2004). “中生動物研究の現状”. タクサ (日本動物分類学会) (16): 1-9. 
  261. ^ Kozloff 1990, pp.212-216
  262. ^ 藤田 2010, p.125
  263. ^ 久米又三・織田秀実 (1957), 外肛動物, pp. 171-198  in 久米・團 1957
  264. ^ 馬渡静夫「触手動物の系統」『哺乳類科学』第10巻第2号、日本哺乳類学会、1970年、 61-68頁、 doi:10.11238/mammalianscience.10.2_61ISSN 0385-437XNAID 1300008842202021年10月1日閲覧。
  265. ^ a b c d e f g h i 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統”, pp. 27-30  in 岩槻・馬渡 2000
  266. ^ 巌佐ほか 2013, p. 1585.
  267. ^ a b c d 藤田 2010, p. 145.
  268. ^ 藤田 2010, p. 163.
  269. ^ a b R.S.K.バーンズ 他『図説無脊椎動物学』本川達雄 監訳訳、2009年6月25日。ISBN 978-4-254-17132-7
  270. ^ 藤田 2010, p. 150.
  271. ^ 藤田 2010, p. 130.
  272. ^ a b c 資料4 「動物の愛護管理の歴史的変遷」”. 環境省. 2019年12月26日閲覧。
  273. ^ a b c 愛玩動物の衛生管理の徹底に関するガイドライン2006”. 厚生労働省. 2019年12月26日閲覧。
  274. ^ a b 巌佐ほか 2013, p. 424f.
  275. ^ 水野 1977, p. 266.
  276. ^ a b c 巌佐ほか 2013, p. 995h.
  277. ^ a b c 巌佐ほか 2013, p. 995a.






動物と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「動物」の関連用語

動物のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



動物のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの動物 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2021 GRAS Group, Inc.RSS