リポソーム 製造法

リポソーム

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/06/27 06:17 UTC 版)

製造法

リポソームの調製法の選択は次のようなパラメータに依存する[24][25]

  1. 内包される物質やリポソームの成分の物理化学的性質
  2. 脂質小胞を分散させる媒体の性質
  3. 内包される物質の実効濃度と潜在的毒性
  4. 用途やデリバリーに際してさらに必要とされる過程
  5. 対象用途に最適なサイズ、多分散性、品質保持期限
  6. バッチ間の再現性と大スケールでの安全で効率的な生産の可能性

有用なリポソームが自発的に形成されることはめったにない。一般的に、有用なリポソームは(リン)脂質を水のような極性溶媒中に分散させるために十分なエネルギーを供給することではじめて形成され、多層の凝集体は数層または単層の脂質小胞へと解体される[2][15]

リポソームは、リン脂質のような両親媒性脂質を水中で超音波処理によって分散させることで形成することができる[5]。せん断速度が低ければ多層のリポソームが形成される。元々の凝集体は玉ねぎのように多数の層を形成しており、次第に小さくなって最終的に単層リポソームとなる(これらはサイズの小ささと超音波によって生じる構造欠陥のため、しばしば不安定である)。超音波処理は一般的には「大ざっぱな」調製法とみなされており、封入される薬剤に損傷を与えてしまうこともある。押出法(extrusion)やMozafari法[26]のような新たな手法がヒトでの使用を目的とした製造に利用されている。ホスファチジルコリン以外の脂質を用いることで、リポソームの調製はかなり容易になる[2]

展望

研究のさらなる進展によって、リポソームは体内の免疫系、特に細網内皮系の細胞による検知を避けることが可能となっている。このようなリポソームは「ステルスリポソーム」として知られている。これらはG. CevcとG. Blumeによって最初に提唱され[27]、その直後にL. HuangとV. TorchilinのグループはPEG(ポリエチレングリコール)を膜の外側に点在させたものを構築した[28]。PEGコーティングによって体内で不活性となり、ドラッグデリバリーのためにより長時間の体内循環が可能となる。現在の研究では、どの程度の量のPEGコーティングが実際にリポソームのデリバリー部位への結合を妨げるかを調査しようとしている。ステルスリポソームの大部分は、PEGコーティングに加えて、標的となるドラッグデリバリー部位に特異的に結合するため、ある種の生体物質がリガンドとして付加されている。これらの標的化リガンドはモノクローナル抗体であったり(イムノリポソーム)、ビタミンや特異的抗原であったりするが、これらは外部からアクセス可能なものでなければならない[29]。標的化リポソームは体内のほとんどすべての細胞種を標的とすることができ、特定の細胞種を標的としない場合は全身にデリバリーが行われる。毒性のある薬剤は、病変部位にのみデリバリーを行うことで全身の毒性を大きく低下させることができる。形態的にリポソームと関連するポリマーソーム英語版も同じように利用することができる。また形態的にリポソームと関連し、非侵襲的な経皮的物質デリバリーのために設計された高度に変形可能な小胞はトランスファーソーム英語版として知られている[30]

ドキソルビシンダウノルビシンといった、ある種の抗がん剤はリポソームの形で投与される可能性がある。シスプラチンのリポソーム製剤が欧州医薬品審査庁から膵臓がんのオーファンドラッグとしての指定を受けている[要出典]

2018年5月に発表された研究では、栄養失調や病弱な植物へ肥料となる栄養素を運搬する「ナノキャリア」としてリポソームを利用する可能性が模索されている。研究ではこれらの合成粒子が栄養素そのままよりも容易に植物の葉に浸透することが示され、作物の収量向上を目的としたナノテクノロジーの利用法のさらなる検証が行われている[31][32]


  1. ^ Kimball's Biology Pages, "Cell Membranes."
  2. ^ a b c Cevc, G (1993). “Rational design of new product candidates: the next generation of highly deformable bilayer vesicles for noninvasive, targeted therapy.”. Journal of Controlled Release 160 (2): 135–146. doi:10.1016/j.jconrel.2012.01.005. PMID 22266051. 
  3. ^ Torchilin, V (2006). “Multifunctional nanocarriers”. Advanced Drug Delivery Reviews 58 (14): 1532–55. doi:10.1016/j.addr.2006.09.009. PMID 17092599. 
  4. ^ Explanation on twst.com commercial page, cf. also Int.Patent PCT/US2008/074543 on p.4, section 0014
  5. ^ a b Stryer S. (1981) Biochemistry, 213
  6. ^ Bangham, A. D.; Horne, R. W. (1964). “Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents As Observed in the Electron Microscope”. Journal of Molecular Biology 8 (5): 660–668. doi:10.1016/S0022-2836(64)80115-7. PMID 14187392. 
  7. ^ Horne, R. W.; Bangham, A. D.; Whittaker, V. P. (1963). “Negatively Stained Lipoprotein Membranes”. Nature 200 (4913): 1340. Bibcode1963Natur.200.1340H. doi:10.1038/2001340a0. PMID 14098499. 
  8. ^ Bangham, A. D.; Horne, R. W.; Glauert, A. M.; Dingle, J. T.; Lucy, J. A. (1962). “Action of saponin on biological cell membranes”. Nature 196 (4858): 952–955. Bibcode1962Natur.196..952B. doi:10.1038/196952a0. PMID 13966357. 
  9. ^ Bangham A.D.; Standish M.M.; Weissmann G. (1965). “The action of steroids and streptolysin S on the permeability of phospholipid structures to cations”. J. Molecular Biol. 13: 253–259. doi:10.1016/s0022-2836(65)80094-8. 
  10. ^ Weissmann G.; Sessa G.; Standish M.; Bangham A. D. (1965). “ABSTRACTS”. J. Clin. Invest. 44 (6): 1109–1116. doi:10.1172/jci105203. 
  11. ^ Geoff Watts (2010-06-12). “Alec Douglas Bangham”. The Lancet 375 (9731): 2070. doi:10.1016/S0140-6736(10)60950-6. http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2810%2960950-6/fulltext 2014年10月1日閲覧。. 
  12. ^ Sessa G.; Weissmann G. (1970). “Incorporation of lysozyme into liposomes: A model for structure-linked latency”. J. Biol. Chem. 245: 3295–3301. 
  13. ^ YashRoy R.C. (1990). “Lamellar dispersion and phase separation of chloroplast membrane lipids by negative staining electron microscopy”. Journal of Biosciences 15 (2): 93–98. doi:10.1007/bf02703373. http://www.ias.ac.in/jarch/jbiosci/15/93-98.pdf. 
  14. ^ Cevc, G; Richardsen, H (1993). “Lipid vesicles and membrane fusion.”. Advanced Drug Delivery Reviews 38 (3): 207–232. doi:10.1016/s0169-409x(99)00030-7. PMID 10837758. 
  15. ^ a b Barenholz, Y; G, Cevc (2000). Physical chemistry of biological surfaces, Chapter 7: Structure and properties of membranes. New York: Marcel Dekker. pp. 171–241 
  16. ^ Bertrand, Nicolas; Bouvet, CéLine; Moreau, Pierre; Leroux, Jean-Christophe (2010). “Transmembrane pH-Gradient Liposomes to Treat Cardiovascular Drug Intoxication”. ACS Nano 4 (12): 7552–8. doi:10.1021/nn101924a. PMID 21067150. 
  17. ^ Barani, H; Montazer, M (2008). “A review on applications of liposomes in textile processing”. Journal of Liposome Research 18 (3): 249–62. doi:10.1080/08982100802354665. PMID 18770074. 
  18. ^ Meure, LA; Knott, R; Foster, NR; Dehghani, F (2009). “The depressurization of an expanded solution into aqueous media for the bulk production of liposomes”. Langmuir: The ACS Journal of Surfaces and Colloids 25 (1): 326–37. doi:10.1021/la802511a. PMID 19072018. 
  19. ^ Yoko Shojia; Hideki Nakashima (2004). “Nutraceutics and Delivery Systems”. Journal of Drug Targeting. 
  20. ^ Williamson, G; Manach, C (2005). “Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies”. The American Journal of Clinical Nutrition 81 (1 Suppl): 243S–255S. doi:10.1093/ajcn/81.1.243S. PMID 15640487. 
  21. ^ Bender, David A. (2003). Nutritional Biochemistry of Vitamins. Cambridge, U.K. 
  22. ^ Szoka Jr, F; Papahadjopoulos, D (1980). “Comparative properties and methods of preparation of lipid vesicles (liposomes)”. Annual Review of Biophysics and Bioengineering 9: 467–508. doi:10.1146/annurev.bb.09.060180.002343. PMID 6994593. 
  23. ^ Chaize, B; Colletier, JP; Winterhalter, M; Fournier, D (2004). “Encapsulation of enzymes in liposomes: High encapsulation efficiency and control of substrate permeability”. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology 32 (1): 67–75. doi:10.1081/BIO-120028669. PMID 15027802. 
  24. ^ Gomezhens, A; Fernandezromero, J (2006). “Analytical methods for the control of liposomal delivery systems”. TrAC Trends in Analytical Chemistry 25 (2): 167–178. doi:10.1016/j.trac.2005.07.006. 
  25. ^ Mozafari, MR; Johnson, C; Hatziantoniou, S; Demetzos, C (2008). “Nanoliposomes and their applications in food nanotechnology”. Journal of Liposome Research 18 (4): 309–27. doi:10.1080/08982100802465941. PMID 18951288. 
  26. ^ Colas, JC; Shi, W; Rao, VS; Omri, A; Mozafari, MR; Singh, H (2007). “Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting”. Micron (Oxford, England : 1993) 38 (8): 841–7. doi:10.1016/j.micron.2007.06.013. PMID 17689087. 
  27. ^ Blume, G; Cevc, G (1990). “Liposomes for the sustained drug release in vivo.”. Biochimica et Biophysica Acta 1029 (1): 92–97. doi:10.1016/0005-2736(90)90440-y. 
  28. ^ Klibanov, AL; Maruyama, K; Torchilin, VP; Huang, L (1990). “Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes.”. FEBS Letters 268 (1): 235–237. doi:10.1016/0014-5793(90)81016-h. 
  29. ^ Blume, G; Cevc, G; Crommelin, M D A J; Bakker-Woudenberg, I A J M; Kluft, C; Storm, G (1993). “Specific targeting with poly (ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times.”. Biochimica et Biophysica Acta (BBA) - Biomembranes 1149 (1): 180–184. doi:10.1016/0005-2736(93)90039-3. 
  30. ^ Cevc, G (2004). “Lipid vesicles and other colloids as drug carriers on the skin.”. Advanced Drug Delivery Reviews 56 (5): 675–711. doi:10.1016/j.addr.2003.10.028. PMID 15019752. 
  31. ^ Karny, Avishai; Zinger, Assaf; Kajal, Ashima; Shainsky-Roitman, Janna; Schroeder, Avi (2018-05-17). “Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops” (英語). Scientific Reports 8 (1): 7589. Bibcode2018NatSR...8.7589K. doi:10.1038/s41598-018-25197-y. ISSN 2045-2322. PMC 5958142. PMID 29773873. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958142/. 
  32. ^ Temming, Maria (2018年5月17日). “Nanoparticles could help rescue malnourished crops” (英語). Science News. https://www.sciencenews.org/article/nanoparticles-could-help-rescue-malnourished-crops?tgt=nr 2018年5月18日閲覧。 






リポソームと同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「リポソーム」の関連用語

リポソームのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



リポソームのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのリポソーム (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS