リチウムイオン二次電池 特徴

リチウムイオン二次電池

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/20 09:59 UTC 版)

特徴

長所

  1. エネルギー密度が高い
    • 現在実用化されている二次電池の中で最もエネルギー密度が高い。
    • 重量エネルギー密度(100-243 Wh/kg)は、ニッケル水素電池(60-120 Wh/kg)の2倍、鉛蓄電池(30-40 Wh/kg)の5倍であり、より軽くできる。
    • 体積エネルギー密度(250-676 Wh/L)は、ニッケル水素電池(140-300 Wh/L)の1.5倍、鉛蓄電池(60-75 Wh/L)の4-5倍であり、より小さくできる。
  2. 4 V 級の高い電圧
    • これまでの二次電池は電解質溶媒水溶液)だったため 1.5 V 以上の電圧がかかると水素酸素電気分解してしまったが、有機溶媒を使用することで水の電気分解電圧以上の起電力を得ることができた。
    • 公称電圧(3.6-3.7 V)は、ニッケル水素電池(1.2 V)の3倍、鉛蓄電池(2.1 V)の1.5倍、乾電池(1.5 V)の2.5倍であり、高い電圧が必要な場合に直列につなぐ電池の使用本数を減らすことができるため、その分小さく軽くでき、機器設計上の利点となる。
  3. メモリー効果がない
    • 浅い充電と放電を繰り返すことで電池自体の容量が減ってしまう現象(メモリー効果)がないため、いつでも継ぎ足し充電ができる。ニッカド電池やニッケル水素電池では常にこれが起こる。
  4. 自己放電が少ない
    • 使わずに放っておくと少しずつ自然に放電してしまう現象(自己放電)は月に 5% 程度で、ニッカド電池やニッケル水素電池の 15 と格段に良い。
  5. 充電/放電効率が良い
    • 放電で得られた電気量と充電に要した電気量の比(充電/放電効率)は、80%-90% と比較的電気ロスが小さいため、電力貯蔵用途にも適している。
  6. 寿命が長い
    • 500回以上の充放電サイクルに耐え、長期間使用することができる。適切に使えば1000回以上も可能。ただし近年は「500回」という数値は形骸化している。高容量化および出力電流が増加した現在では日本工業規格(JIS)のサイクルテストを受けると低い数値が出てしまうため、JISを受けず自称値を記載する製品が多い。
  7. 高速充電が可能
    • 最近では 3C 充電が可能な製品も登場している(一般的なタイプでは 1C 程度)。
  8. 大電流放電が可能
    • 大電流放電に適さないと考えられていたが、改良により克服してきている。産業用の大型のものでは数百Aの大電流で放電できる製品も登場している[66]
  9. 使用温度範囲が広い
    • 一般的なタイプでは -20-60℃ という幅広い温度帯で使用可能(充電時は 0-45℃)。乾電池のように電解液に水溶液を使用しないため氷点下の環境でも使用できる。保証温度内では温度が上がるほどに容量が上がるが、高温放置をすると劣化が起こり、低い温度では著しく放電能力が落ちる。[67]
  10. 汎用性が高い
    • 全体的な性能のバランスが良い(欠点が少ない)ため携帯電話から自動車まで様々な用途に利用できる。容量や充電速度などどれか一つの性能だけならリチウムイオン電池よりも良い二次電池が研究報告されているが、他の性能も併せて良くなければここまで汎用的には普及しない。

短所

寿命を迎え、劣化・膨張したNEC携帯電話用リチウムイオン二次電池。左上は新品のもの。

常用領域と危険領域が非常に接近していて、安全性確保のために充放電を監視する保護回路がなくてはならない。これは、充電時に電圧が上昇する際に、正極および負極が極めて強い酸化状態・還元状態に置かれ、他の低電圧の電池に比べて材料が不安定化しやすいためである。

急速あるいは過度に充電すると、正極側では電解液の酸化や結晶構造の破壊により発熱し、負極側では金属リチウムが析出する。これにより両極が直接繋がり、回路がショートしてしまう。電池を急激に劣化させるだけでなく、最悪の場合は破裂・発火する(リチウムを含めたアルカリ金属は空気中の酸素および水と触れることにより自然発火する特性を持つため)。したがって、充電においては数十mVを制御するほどの極めて高い精度で電圧を制御する必要がある。

過放電では、正極のコバルトが溶出したり、負極の集電体のが溶出したりして、二次電池として機能しなくなる。この場合も、電池の異常発熱に繋がる。コバルト酸リチウムは可燃性が高く、一度燃え上がると電池に含まれる酸化剤に燃え移るため、手がつけにくい。

エネルギー密度が高いために、ショート時には急激に過熱する危険性が大きく、有機溶剤の電解液が揮発し、発火事故を起こす恐れがある。短絡は外力が加わることで電池内部で発生する場合もあり、衝撃に対する保護も必要である。高温になりすぎると熱暴走を経て、破裂・発火・爆発の危険性がある[68]

保存特性(保存状態での性能保持特性)はニッケル水素電池などより劣る。また、満充電状態で保存すると電池の劣化は急激に進行する。このため、他の蓄電池で一般的な充電方法であるトリクル充電はリチウムイオン電池には適していない。また高い発熱特性、制御回路と保護回路が必須、1セルあたりの電圧が高いなどの理由から、乾電池の代替用途には不向きであり普及していない。「ニッケル・水素充電池#概要」も参照。


  1. ^ a b c Lithium Ion Batteries (Li-Ion)”. Panasonic. 2015年11月26日閲覧。
  2. ^ a b http://na.industrial.panasonic.com/sites/default/pidsa/files/ncr18650b.pdf (PDF)
  3. ^ a b 高容量リチウムイオン電池を開発”. Panasonic. 2015年11月26日閲覧。(参考)重量エネルギー密度265Wh/kg、体積エネルギー密度730Wh/L。開発段階での数値。
  4. ^ 電池とバッテリーパックのパフォーマンスにおけるプラグインハイブリッドカーハイブリッドカーデューティ比効果, アーカイブされたコピー”. 2009年3月26日時点のオリジナルよりアーカイブ。2009年3月26日閲覧。
  5. ^ ASIN B001SV571M
  6. ^ Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries
  7. ^ a b c Types of Lithium-ion - Battery University
  8. ^ a b 主要メーカー(panasonic、maxell、他)の製品仕様書より
  9. ^ Nagaura, T.; Tozawa, K. (1990). “Lithium ion rechargeable battery”. Progress in Batteries & Solar Cells 9: 209–217. ISSN 0198-7259. 
  10. ^ https://www.sony.com/ja/SonyInfo/CorporateInfo/History/SonyHistory/2-13.html#block4
  11. ^ Whittingham, M. S. (1976). “Electrical Energy Storage and Intercalation Chemistry”. Science 192 (4244): 1126–1127. doi:10.1126/science.192.4244.1126. http://www.sciencemag.org/content/192/4244/1126.abstract. 
  12. ^ Besenhard, J.O.; Fritz, H.P. (1974). “Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts”. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 53 (2): 329–333. doi:10.1016/S0022-0728(74)80146-4. ISSN 0022-0728. http://www.sciencedirect.com/science/article/pii/S0022072874801464. 
  13. ^ Besenhard, J.O. (1976). “The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes”. Carbon 14 (2): 111–115. doi:10.1016/0008-6223(76)90119-6. ISSN 0008-6223. http://www.sciencedirect.com/science/article/pii/0008622376901196. 
  14. ^ Schöllhorn, R.; Kuhlmann, R.; Besenhard, J.O. (1976). “Topotactic redox reactions and ion exchange of layered MoO3 bronzes”. Materials Research Bulletin 11 (1): 83–90. doi:10.1016/0025-5408(76)90218-X. ISSN 0025-5408. http://www.sciencedirect.com/science/article/pii/002554087690218X. 
  15. ^ Besenhard, J.O.; Schöllhorn, R. (1976–1977). “The discharge reaction mechanism of the MoO3 electrode in organic electrolytes”. Journal of Power Sources 1 (3): 267–276. doi:10.1016/0378-7753(76)81004-X. ISSN 0378-7753. http://www.sciencedirect.com/science/article/pii/037877537681004X. 
  16. ^ Besenhard, J.O.; Eichinger, G. (1976). “High energy density lithium cells: Part I. Electrolytes and anodes”. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 68 (1): 1–18. doi:10.1016/S0022-0728(76)80298-7. ISSN 0022-0728. http://www.sciencedirect.com/science/article/pii/S0022072876802987. 
  17. ^ Eichinger, G.; Besenhard, J.O. (1976). “High energy density lithium cells”. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 72 (1): 1–31. doi:10.1016/S0022-0728(76)80072-1. ISSN 0022-0728. http://www.sciencedirect.com/science/article/pii/S0022072876800721. 
  18. ^ Zanini, M.; Basu, S.; Fischer, J. E. (1978). “Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound”. Carbon 16 (3): 211. doi:10.1016/0008-6223(78)90026-X. http://www.sciencedirect.com/science/article/pii/000862237890026X. 
  19. ^ Basu, S.; Zeller, C.; Flanders, P. J.; Fuerst, C. D.; Johnson, W. D.; Fischer, J. E. (1979). “Synthesis and properties of lithium-graphite intercalation compounds”. Materials Science and Engineering 38 (3): 275. doi:10.1016/0025-5416(79)90132-0. http://www.sciencedirect.com/science/article/pii/0025541679901320. 
  20. ^ Dey, A.N.; Sullivan, B.P. (1970). “The Electrochemical Decomposition of Propylene Carbonate on Graphite”. Journal of The Electrochemical Society 117 (2): 222-224. doi:10.1149/1.2407470. http://jes.ecsdl.org/content/117/2/222.abstract. 
  21. ^ Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. (1980). “LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density”. Materials Research Bulletin 15 (6): 783–789. doi:10.1016/0025-5408(80)90012-4. ISSN 0025-5408. http://www.sciencedirect.com/science/article/pii/0025540880900124. 
  22. ^ 欧州特許 EP17400B1
  23. ^ 日本国特許第1769661号
  24. ^ 技術発展図”. 二次電池. 特許庁. 2015年10月29日閲覧。
  25. ^ a b c 代表的特許リスト”. 二次電池. 特許庁. 2015年10月29日閲覧。
  26. ^ Abstract #23. International Meeting on Lithium Batteries. Rome. 27–29 April 1982. {{cite conference}}: 名無し引数「C.L.U.P. Ed. Milan」は無視されます。 (説明)
  27. ^ Yazami, R.; Touzain, Ph. (1983). “A reversible graphite-lithium negative electrode for electrochemical generators”. Journal of Power Sources 9 (3): 365–371. doi:10.1016/0378-7753(83)87040-2. ISSN 0378-7753. http://www.sciencedirect.com/science/article/pii/0378775383870402. 
  28. ^ T. Yamabe; K. Tanaka; K. Ohzeki; S. Yata. “Electronic structure of polyacenacene. A one-dimensional graphite”. Solid State Communications 44 (6): 823–825. doi:10.1016/0038-1098(82)90282-4. http://www.sciencedirect.com/science/article/pii/0038109882902824 2015年10月29日閲覧。. 
  29. ^ 特願昭56-92626(1981年)、特願昭57-93437(1982年)
  30. ^ 「リチウムイオン二次電池研究開発の源流を語る〜負極材料の開発史を中心に」『月刊化学』2015年12月(vol.70)
  31. ^ Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. (1983). “Lithium insertion into manganese spinels”. Materials Research Bulletin 18 (4): 461-472. doi:10.1016/0025-5408(83)90138-1. http://www.sciencedirect.com/science/article/pii/0025540883901381. 
  32. ^ “テクノロジー・イノベーション 40年の歴史 携帯機器の普及を支えたLiイオン,19年間で約4倍に高密度化 要素技術編:電池”. 日経エレクトロニクス. (2009年5月8日). https://xtech.nikkei.com/dm/article/FEATURE/20090408/168502/?ST=NE 2015年12月3日閲覧。 
  33. ^ Fong, Rosamaría; Sacken, Ulrich von; Dahn, J.R. (1990). “Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells”. Journal of The Electrochemical Society 137 (7): 2009-2013. doi:10.1149/1.2086855. http://jes.ecsdl.org/content/137/7/2009.abstract. 
  34. ^ 日本国特許第1823650号(出願日1983年12月13日)
  35. ^ 吉野 彰インタビュー”. 旭化成. 2015年10月29日閲覧。
  36. ^ a b 日本特許第1989293号(優先日1985/5/10)
  37. ^ アルバックグループ広報誌「ULVAC」 No.54 March, 2008 (PDF) [リンク切れ]
  38. ^ 日本特許第2128922号(出願日1984年5月28日)
  39. ^ 日本特許第2642206号(出願日1989年12月28日)
  40. ^ 日本特許第3035677号(出願日1991年9月13日)
  41. ^ 芳尾真幸ら 編『リチウムイオン二次電池』(2版)日刊工業新聞社 
  42. ^ Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. (1997). “Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries”. Journal of The Electrochemical Society 144 (4): 1188–1194. doi:10.1149/1.1837571. http://jes.ecsdl.org/content/144/4/1188.abstract 2015年12月3日閲覧。. 
  43. ^ 新世代自動車の基礎となる次世代電池技術に関する研究会 (2006年8月). “次世代自動車用電池の将来に向けた提言” (PDF). 経済産業省. 2015年10月29日閲覧。
  44. ^ “Liイオン電池,新時代へ”. 日経エレクトロニクス. (2010年1月8日). https://xtech.nikkei.com/dm/article/HONSHI/20100107/179056/ 
  45. ^ ノーベル化学賞の「リチウム電池」は生活をどう変えたか”. 日刊工業新聞 (2019年10月12日). 2019年11月2日閲覧。
  46. ^ a b GSユアサのリチウムイオン電池が「H-ⅡAロケット37号機」「気候変動観測衛星[しきさい]」「超低高度衛星技術試験機[つばめ]」に搭載”. 株式会社ジーエス・ユアサテクノロジー (2017年12月27日). 2019年11月2日閲覧。
  47. ^ a b c d GSユアサの国際宇宙ステーション用リチウムイオン電池の第3回打ち上げが決定~輸送機にもGSユアサの電池が貢献~”. 株式会社ジーエス・ユアサテクノロジー (2019年9月10日). 2019年11月2日閲覧。
  48. ^ 小惑星探査機「はやぶさ2」、2月22日にリュウグウへのタッチダウンに成功 ~古河電池製リチウムイオン電池搭載~”. 古河電池 (2019年2月22日). 2019年11月2日閲覧。
  49. ^ 技術開発進む潜水艦の世界 カギを握るのは希少資源リチウムだ”. GLOBE. 朝日新聞社 (2018年12月30日). 2019年10月28日閲覧。
  50. ^ 『化学と工業』第50巻 第3号(1997年)p.257
  51. ^ 2014 Charles Stark Draper Prize for Engineering Recipients”. NAE Website. 2019年10月11日閲覧。
  52. ^ The Nobel Prize in Chemistry 2019” (英語). NobelPrize.org. 2019年10月11日閲覧。
  53. ^ リチウムイオン電池の安全性評価試験における発生事象について” (PDF). 2015年12月10日閲覧。
  54. ^ 車載用リチウムイオン二次電池に関する特許が欧州で成立” (PDF). 三菱ケミカル株式会社 (2021年2月2日). 2022年7月15日閲覧。
  55. ^ (PDF) Gold Peak Industries Ltd., Lithium Ion technical handbook. http://www.gpbatteries.com/html/pdf/Li-ion_handbook.pdf. 
  56. ^ H.C. Choi; et al. (2003). J. Phys. Chem. B 107: 5806. doi:10.1021/jp030438w. 
  57. ^ G.G. Amatucci; J.M. Tarascon; L.C. Kein (1996). J. Electrochemical Society 143: 1114. doi:10.1149/1.1836594. 
  58. ^ 藤井英敏:リチウムイオン電池の価格を下げる「脱コバルト」レースの勝者は?ダイヤモンドオンライン(2009年8月18日) Archived 2009年8月21日, at the Wayback Machine.
  59. ^ リチウムイオン2次電池用電極材料”. 日経BP TechOn 用語 (2007年1月11日). 2015年10月29日閲覧。
  60. ^ リチウムイオン電池用高容量正極の安価な新材料を開発』(プレスリリース)産業技術総合研究所、2006年11月6日 発表https://www.aist.go.jp/aist_j/press_release/pr2006/pr20061106_2/pr20061106_2.html2015年10月29日閲覧 
  61. ^ “安全性に優れた新型二次電池SCiB”. 東芝レビュー 63 (2): 54. (2008). http://www.toshiba.co.jp/tech/review/2008/02/63_02pdf/f03.pdf 2015年10月29日閲覧。. 
  62. ^ R. Ruffo; S. S. Hong, C. K. Chan, R. A. Huggins, Y. Cui (2009). “Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes”. J. Phys. Chem. C. (113 (26), (2009)): 11390-11398. doi:10.1021/jp901594g. http://www.stanford.edu/group/cui_group/papers/Impedance_jpc.pdf 2009年9月1日閲覧。. 
  63. ^ C. K. Chan; X. F. Zhang, Y. Cui (2007). “High Capacity Li-ion Battery Anodes Using Ge Nanowires”. Nano Lett. (8 (2007)): 307-309. doi:10.1021/nl0727157. http://www.stanford.edu/group/cui_group/papers/High%20Capacity%20Li-ion%20Battery%20Anodes%20Using%20Ge%20Nanowires.pdf. 
  64. ^ R. Wenige. “LIQUID ELECTROYTE SYSTEMS FOR ADVANCED LITHIUM BATTERIES” (PDF). D-64271, Darmstadt, Germany: Merck KGaA. 2015年10月29日閲覧。
  65. ^ Lithium Ion Batteries: Solid Electrolyte Interphase. London: Imperial College Press. (2004) 
  66. ^ 産業用リチウムイオン電池”. GSユアサ. 2015年11月26日閲覧。
  67. ^ 電池における高温特性とは?【リチウムイオン電池の高温特性】”. kenkou888.com. 2018年11月17日閲覧。
  68. ^ 電池における高温特性とは?【リチウムイオン電池の高温特性】”. kenkou888.com. 2018年12月1日閲覧。
  69. ^ 「リチウム電池ごみ火災増 多摩地域 清掃工場や収集車/業務に支障分別呼びかけ」『読売新聞』朝刊2022年9月26日(都民面)
  70. ^ 日本テレビ (2023年4月20日). “クリーンセンター“非常事態” 火災が影響…分別されなかった「リチウムイオン電池」原因か 愛知・豊田市”. 日テレNEWS. 2023年4月25日閲覧。
  71. ^ 電池製造メーカーなどが会員となって設立した一般社団法人である。
  72. ^ 小型充電式電池のリサイクル”. 東京都環境局 (2022年12月19日). 2023年4月25日閲覧。
  73. ^ a b 『読売新聞 』2020年11月19日10面掲載(※記事名不明※)
  74. ^ リチウムイオン電池の安全性が向上 安全技術を搭載した業界初の高容量リチウムイオン電池の本格量産体制を確立』(プレスリリース)Panasonichttps://news.panasonic.com/jp/press/jn061218-12015年10月29日閲覧 
  75. ^ SMD対応小型全固体電池”SoLiCell”を年内量産開始 ~ 早期の実用化に向けて、量産体制を整備 ~ | FDK”. www.fdk.co.jp. 2022年7月10日閲覧。
  76. ^ Nast, Condé (2022年7月12日). “「全固体電池」の量産に向けて、一部のスタートアップが動き始めた”. WIRED.jp. 2022年7月19日閲覧。
  77. ^ a b Aqueous Li-Ion Batteries”. 2018年12月6日閲覧。
  78. ^ Yang, Chongyin, et al. "4.0 V aqueous Li-ion batteries." Joule 1.1 (2017): 122-132.
  79. ^ Sun, Wei, et al. "“Water-in-Salt” electrolyte enabled LiMn2O4/TiS2 Lithium-ion batteries." Electrochemistry Communications 82 (2017): 71-74.
  80. ^ 新たなリチウムイオン伝導性液体の発見 -水を用いた安全・安価・高性能な超 3 V 動作リチウムイオン電池へ-” (PDF). 2018年12月6日閲覧。
  81. ^ 水で作れる電解液を新発見、リチウムイオン電池を安く安全に”. 2018年12月6日閲覧。
  82. ^ 水を電解液に用いたリチウムイオン電池”. 2018年12月6日閲覧。
  83. ^ Interview with Dr. Cui, Inventor of Silicon Nanowire Lithium-ion Battery Breakthrough” (2007年12月21日). 2015年10月29日閲覧。
  84. ^ Guangyuan Zheng; Yuan Yang; Judy J. Cha; Seung Sae Hong; Yi Cui (2011). “Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries”. Nano Lett. 11: 4462-4467. doi:10.1021/nl2027684. 
  85. ^ He, Guang, et al. "Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes." Acs Nano 7.12 (2013): 10920-10930.
  86. ^ Zheng, Guangyuan, et al. "Interconnected hollow carbon nanospheres for stable lithium metal anodes." Nature nanotechnology 9.8 (2014): 618.
  87. ^ Li-Feバッテリーのメリットと注意事項”. 近藤科学株式会社. 2016年5月9日閲覧。
  88. ^ 動力用LiFeバッテリー”. 株式会社イーグル模型. 2016年5月9日閲覧。
  89. ^ リチウムフェライト”. コスモ・エナジー株式会社. 2016年5月9日閲覧。
  90. ^ UPSにおける新型電池の評価・適用技術” (PDF). 富士電機株式会社. 2016年5月9日閲覧。
  91. ^ 蓄電池に求められること”. ソニー株式会社. 2016年5月9日閲覧。
  92. ^ Adam Hadhazy (2009年3月11日). “A Better Battery? The Lithium Ion Cell Gets Supercharged”. Scientific American. http://www.scientificamerican.com/article.cfm?id=better-battery-lithium-ion-cell-gets-supercharged 2015年10月29日閲覧。 
  93. ^ Guo, Yu-Guo; Hu, Jin-Song; Wan, Li-Jun (2008). “Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices”. Adv. Mater. 20: 2878-2887. doi:10.1002/adma.200800627. 
  94. ^ A123Systems”. 2015年10月29日閲覧。 “...Current test projecting excellent calendar life: 17% impedance growth and 23% capacity loss in 15 [fifteen!] years at 100% SOC, 60 deg. C...”
  95. ^ Large-Format, Lithium Iron Phosphate”. 2008年11月18日時点のオリジナルよりアーカイブ。2015年12月3日閲覧。
  96. ^ A123Systems :: Technology :: Life[リンク切れ]
  97. ^ 高安全な大型リチウムイオン電池の開発と今後の展望” (PDF). エリーパワー株式会社. 2016年5月9日閲覧。
  98. ^ “EV事故は「電池が原因」、BYD幹部が発言[車両]”. NNA,News (NNA). (2012年6月13日). http://news.nna.jp/free/news/20120613cny027A.html 2012年6月19日閲覧。 
  99. ^ スティーヴ・レヴィン著、田沢恭子訳「バッテリーウォーズ 次世代電池開発競争の最前線」 日経BP社 2015年






リチウムイオン二次電池と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「リチウムイオン二次電池」の関連用語

リチウムイオン二次電池のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



リチウムイオン二次電池のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのリチウムイオン二次電池 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS