ファクシミリ 名称

ファクシミリ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/08 04:03 UTC 版)

名称

この種の伝送は最初から「ファクシミリ」という呼称で定まっていたわけではなく、「telephotography テレフォトグラフィ」や「telecopy テレコピー」などと呼ばれていたこともある。

「ファクシミリ facsimile」という用語はラテン語fac simile(=「同じものを作れ」)←{facere(為す)+simile(同一)}が語源である。[49]

「FAX(ファックス)」は本来、ゼロックス社のファクシミリに附された登録商標であったが、商標の普通名称化により広く使われる言葉となっている[2]

種類や分類

いろいろな分類法があるが、ひとつには document facsimile 模写電送[50] / photograph facsimile 写真電送[51]」と分類する方法がある(あった)。模写電送は、白か黒の2階調しかなく文字や線のようなものしか送れないものであり、写真電送とは中間調を含む写真のようなものも送れるものである。

有線ファクシミリ / ラジオファクシミリ(無線ファクシミリ) と分類することもある。 日本の電波法施行規則内で「ファクシミリ」と呼ばれているのは、後者のラジオファクシミリのことで、「電波を利用して、永久的な形に受信するために静止影像を送り、又は受けるための通信設備」と定義している(電波法施行規則2条1項23号)。

伝送経路の歴史的な変化、広がりを踏まえつつ、有線ファクシミリ / ラジオファクシミリ / 電話線(電話網)ファクシミリ と分類することもある。

標準化をもとにG1 / G2 / G3 / G4などと分類することもある。

最終的に出力される紙(「記録紙」)を基準にして(FAX機を) 感熱紙FAX / 普通紙FAX などと分類することもある。

ファクシミリ基本技術の推移

スキャナ(送信側)

振り子方式

1843年、ベインは振り子の振幅方向に平行な下部側面に絶縁板をセット、その絶縁板上に金属の文字を置き、振り子の先に絶縁板に接触する金属針を取り付けて、左右に振り子を動かす方式を発明した。振り子の先の接触針は絶縁板を左右に移動して、絶縁部分に接触している時は“非導通”、金属部分に接触すると“導通”の信号を送る。1回の振幅毎に絶縁板を上方(又は下方)に少しずつ移動させて、絶縁板全体を走査させる。送信側の読取走査と受信側の記録走査は、それぞれ別の振り子を利用しているので同期が難しく、記録位置にずれが発生して画像が乱れ実用化されなかった[4]

1862年、カセルはベインの同期が難しいという欠点を改良した。1862年、カセルは送信側から振り子の同期信号を送り、受信側の振り子を電磁マグネットで制御して同期を取ることを発明した(Pantelegraph)。フランス郵便・電信公社で採用され、手書きの文字や図面や絵等の電送に使用された[10]

機械走査のドラム回転式

1848年、ベイクウエルは金属円筒に特殊な絶縁インクで書いた金属箔を巻き付け、金属針を接触させて、円筒を回転させて“導通”、“非導通”の信号を得る。円筒を回転しながら、接触針を円筒の片方の端から他端にむかって軸方向に少しずつ移動させることによって、円周面(金属箔)全体を走査(スキャン)してその信号を送信した[52]

1906年、コルンとベランはイラスト、文字等が書かれた用紙を回転する円筒に巻き付け、用紙の一点にレンズで焦点を合わせて、光電管に光を送る。固定したレンズと光電管をドラムの軸方向に少しずつ移動させて全体を走査する。用紙に書かれた文字やイラスト等の“白”と“黒”およびその中間色の部分を光電管によって色の濃さに比例した電気信号に変えて送信する[11]

ドラム回転式は原稿を1枚ずつセットするので操作が煩雑で多数の原稿に時間を要する等の問題があり、平面走査による操作性の改善が求められていた。

オプチカル・ファイバによる平面走査

オプティカル・ファイバは極細に引き延ばした糸状のガラスである。そのガラス糸の端面に光を当てると光は直進し、ほとんどロス無く他端に到達する。そのファイバ約1,500本を横(原稿幅)一列に並べて、読み取りする原稿に接触させる。原稿に光を当てて白・黒の反射光を対応する1,500本のオプティカル・ファイバで反対側に送る。反対側の終端はセンサ側で、配列の順序はそのままで円形に固定し、その円形に対向して円盤を配置、モータで円盤を回転する。円盤にはファイバ終端の円形に相当する位置に1本のファイバがセットしてあり、円盤の回転により1,500本のファイバをスキャンする。ファイバの他端から出た光はフォト・マルチプライア(光電子増倍管)で電気信号に変換される。このオプティカル・ファイバは「ライン・サークル・コンバータ」と呼ばれ、オリンパス光学が開発した[53]

フォト・ダイオード・アレイによる固体走査

原稿に蛍光灯の光を当てレンズでフォト・ダイオード・アレイに焦点する。アレイはフォトダイオード512個を一列に並べてLSI化したものである。主走査方向256mm幅の原稿を4分割し4個のフォトダイオードアレイ面に焦点を合わせる。4×512個のフォトダイオードの出力を順次取り出すことにより1ラインの画像信号をスキャンする。8pel/mmの解像度を得る[54]

CCDによる固体走査

原稿に蛍光灯で光を当てレンズで一列に並べたフォトダイオードに焦点を合わせる。各フォトダイオードに対応してCCD(Charge Coupled Device Image Sensor)が配置されている。フォトダイオードが受けた光の強さを対応するCCDに伝えて記憶し、CCDを順次読み出すことによりスキャンする[55]

密着イメージセンサによる固体走査

照明を蛍光ランプからLEDアレイに変えて長寿命化、屈折率分布型レンズアレイを使用して光路長を30cmから1cmに短縮、センサにCdSタイプを使用したスキャナが開発された。大幅な小型化が図られ、読み取り部のユニット化が実現した[56]

完全な密着イメージセンサは京セラが1996年に発売したのが最初で、その後各社が開発し、各社のファックスで広く採用された。

フラットベッドタイプのスキャナ

本や雑誌、薄い用紙や小さい用紙等の原稿をガラス面に伏せてセットしてスキャンする。現在のコピーマシーンで採用されている自動給紙機構を持つ高性能ファックスが出現した。

記録(受信側)

振り子方式

1843年、ベインは振り子の振幅方向に平行な下部側面に接触針を設けて、化学反応によって変色する記録紙に接触針を走査させた。“導通”の信号のときに電流を流して、記録紙を変色させて送信側の絶縁板上の金属文字を再生させる[4]

機械走査のドラム回転式

1848年ベイクウエルは金属円筒に送信側と同じ大きさの金属円筒と接触針を設け、電流が流れたときに変色する化学紙を巻き付け、送信側に同期して回転させる。送信側の導通・非導通の信号は記録紙に濃淡となって表示された[52]

1906年、コルンとベランは送信側と同期して円筒を回転させ、円筒に巻いた印画紙に、送られてきた信号に基づいた光を当てて感光させた。写真の中間調(ハーフトーン)電送を実現させた[11]

OFT記録

OFT(Optical Fiber Tube)は表示面にオプティカル・ファイバ(極細に引き延ばした糸状のガラス)を束にして板状にしたプレートを使用したCRT(ブラウン管)である。内面に塗布された蛍光体に電子が衝突して発光し、ファイバを直進して表示面に出てくる。表示面に記録紙を密着して感光させる。一般のCRTは光が発散するが、OFTではファイバの方向へ光が直進するので、レンズにより焦点を合わせる効果と同様な解像度の良い画質となる。FAXに使用するOFTは表示面が扁平な形状で、横幅は用紙の幅(A4の場合約210mm)、縦方向は約1cmである[57]

記録用紙(ZnO紙)を帯電器に通した後、OFTのファイバー・プレートに密着して少しずつ移動する。帯電した用紙はOFT表示面からの光に当たったところが放電(露光)して潜像をつくり、次工程で黒色微細粉をいれた液体で湿したローラと接触(液体現像 : ローラ現像)させることにより、記録紙の帯電していない箇所に黒色粉が付く(現像、定着)[58]

マルチスタイラスによる静電記録

マルチスタイラスは32本の針状電極を微細間隔で一直線に並べてブロック化したものである。そのブロックを64個並べて1列2,048本とし、静電記録紙に密着させる。白・黒の信号により金属針の電圧をオンオフして記録紙に帯電させて潜像をつくる。記録紙を現像器に通すと帯電した箇所に黒色微細粉が付く。その記録紙をローラに通して圧力をかけ、黒色微細粉を紙の繊維間に押し込んで定着させる[59]

感熱記録

感熱記録紙は熱により黒色を発色する。FAXの場合は8個/mmの間隔で横一線に並べた発熱体(サーマルヘッド)を記録紙に密着させて画像を得る。多くの普及型FAXで採用されている。構造が簡単でコストが安いが、記録紙が長期保存により退色する短所がある。

レーザーによる電子写真式記録

感光ドラムを「帯電」させ、レーザーで照射すると、照射された箇所の電荷が放電して電荷像(潜像)を作る。帯電させた黒色の微細な粉末(トナー)を感光ドラムに近づけると電荷のない部分にのみトナーが付着する(「現像」)。感光ドラムに用紙を押しつけて、トナーを用紙に「転写」する。ドラムを通過した用紙に強いフラッシュ光を当てトナーを用紙に溶着させて「定着」をする。印字品質が良く印刷速度が速いが、複雑な構造で、コストが高い。現在ではレーザー・プリンタで使用されている。

熱転写方式の普通紙記録

普通紙の上にフィルム状の熱転写リボンを重ねて発熱体(サーマルヘッド)に接触させると、熱が加わった箇所にリボンの色(FAXの場合は黒)が転写される。初期のFAXはロール紙が使用されていたが、最近ではA4またはB4サイズのカット紙(市販のコピー用紙〈普通紙〉)が使用されている。また印刷はカット紙の普及に伴い、多くは各社純正品、ないしはそれを模した互換品のロール式インクリボンが用いられているが、メーカーによっては複合機インクジェットプリンター)により、専用のインクカートリッジを用いる場合もある[60]

データの圧縮

1次元符号化方式(MH)

1ラインごとに画像データを処理してデータを圧縮する符号化方式である。一般の文書の画素データ(pel)は黒または白の連続が多いことを利用したデータの圧縮方法である。黒(または白)画素の連続した数(ランレングスという)をコードに変換して送信し、受信側で元の画素に復元する。出現頻度の高いランレングスから順番に短いコードに変換して、画像データを符号化することにより、送信データを短く(圧縮)することができ、送信時間を短縮することができる。FAXでは従来の1/6になりA4原稿を約1分で電送できる。

1980年CCITTにおいて、G3規格の中でMH(Modified Huffman)符号化方式としてランレングスに対するコードが標準化され、「1次元符号化方式」として制定された[61]

二次元圧縮方式RAC

文字や簡単な図形が中心の原稿は、画像データの上の行と下の行はほとんど同じで、変化は少ない。この性質を利用してデータ量の大幅な圧縮を図ったのがRAC(Relative Address Coding)である。RACは下の画像データを一段上のデータ(参照ライン)と比較して、変化している箇所を検出し、その位置を符号化してデータ圧縮をする方式である。

参照ラインのデータが圧縮なしの場合にMR(Modified Read)方式、参照ラインのデータがMH方式(上記「1次元符号化方式」)で圧縮されている場合はMMR(Modified Modified Read)方式という。1980年CCITTによるG3規格の中では上記「1次元符号化方式」のオプションとして「2次元符号化方式」として制定された[62]

2ライン一括符号化方式

1次元符号化方式(MH)は“白”と“黒”の2種の変化であるが、この方式は二ラインの“白・白”、“白・黒”、“黒・白”、“黒・黒”の4つの組み合わせがある。この組み合わせの変化とランレングスのデータを送信する。「2走査線一括ランレングス符号化方式」とも呼ばれている[63]

ALDC(自動線密度切り替え)

ファクシミリのG3規格には「標準モード」とオプションとして「ファインモード」がある。標準モードでは装置の縦方向(副走査)はmm当たり3.85ライン、ファインモードで7.7ラインであり解像度が良い。しかし、ファインモードはデータ量が2倍で、伝送時間が2倍長くなるという短所がある。ALDC(Adaptive Line Dencity Control)は、複雑な図や細かい文字かどうかを送信データのランレングスで判定してファインモードと標準モードに自動的に切り替える機能である[64][65]

通信関係

蓄積交換システム

FAXの送信データを蓄積交換装置に送ってメモリーし、後宛先FAXに送信する。1979年に商品化された蓄積交換装置は現在のFAXへ継承されている下記のように多数の機能を実現している[66][67][68][69]

自動送信
OMRシートやワンタッチキーにより自動送信する
同報サービス
複数のFAXに同一電文を送信する
列信サービス
受信した複数枚の原稿を纏めて送信する
優先サービス
優先度の高い電文を先に宛先のFAXに送信する
代表サービス
複数のFAXをグループ化して、一つの電話番号で送信し、空いているFAXで受信できる
機密保護サービス
受信側FAXのパスワード入力により送信する
代行サービス
宛先のFAXが障害等で受信できない場合、予め設定されている他のFAXへ送信、又はメモリーに一時蓄積する
通信証明サービス
送信が完了した文書に送信済みスタンプを、受信した文書に受信時間等を印字する
トレースサービス
電文の状態を追跡させる

上記の機能は1982年にはフロッピー・ディスク内蔵のファクシミリに受け継がれ、1986年にはRAMを画像メモリーとしたファクシミリ引き継がれた。

順次自動ポーリング受信

受信側のFAXから要求して送信側FAXのデータを送信させる機能である。受信側FAXのキー操作により、登録されたFAXに接続し、文書等を送信させて受信する。電話料金が安価になる遠距離・夜間等の通信に利用された。1980年に実用化された。その後、1984年以降では、メモリーを内蔵するFAXが商品化され、同報装置無しでこの機能を実現した[65]

スーパー電送方式

FAXの画像データをメモリに蓄積し、宛先のFAXのメモリに高速で伝送する。1982年に世界で初めてフロッピーディスク内蔵のFAXが商品化され、A4サイズを世界最高速の9秒で電送(G3規格は1分)した。この方式を「スーパー伝送」と呼んだ。電話回線を利用してのファイル転送の先駆けとなった[70][71]

中継同報

同報先の1台のFAXにデータを送信し、そのFAXから近隣のFAXに同報する。国際回線や東京・大阪間等の遠隔地の多数のFAXに同報する場合に効率が良く、低コストで伝送できるシステムである。1982年に商品化された[72]

ECM(Error Correction Mode : 誤り訂正)

FAXの画像データを圧縮して送信する際、途中の通信回線でノイズやひずみ等でデータが間違った場合、受信した画像が大きく乱れる。この対策として、受信データの間違いを修正する方法がECMである。FAXの画像データを分割して、その一つ一つの後に数ビットの補正データを附加して送信する。受信側では受信した画像データと補正データを照合して、正しく受信した場合はそのまま、エラーを起こしたデータに対しては補正データにより修正して印刷する。1987年(昭和62年)にCCITTがG3規格のオプションとして採用した[73]

モデムフォールバック・ステップアップ

電話回線経由の電気信号にはノイズや歪みがあり、送信したデータが正しく伝わらないことがある。FAXの画像データを送信した場合、データにエラーがあると画像が乱れ、ひどい場合には文字が読み取れない場合がある。高速伝送は送信時間を短縮できるがノイズや歪みの影響を受けやすい。低速での伝送は比較的にノイズや歪みの影響が少ない。モデムは伝送速度の切り替え機能があるが、当初は自動切り替えの機能を持っていなかった。モデムフォールバックは受信側で電話回線の状況を計測し(SQD : Signal Quality Detection)、品質が良くない場合には伝送速度を下げて品質を確保する機能である。この手法(フォールバック)は現在でもADSL等で採用されている。ステップアップはこの逆で、品質が良い場合に伝送速度を上げる方式である[65]

機能

自動診断機能

FAXは読取部、記録部、シーケンス制御部、データ圧縮・復元部、伝送制御部、モデム部で構成されている。自己診断プログラムにより各ユニットの機能の自動チェック、パターン発生器によるテスト、折り返し伝送テストができ、操作パネルにその結果を表示する。1979年に商品化されたFAXに採用された[74]

受信側FAXに対応した縮小送信

スキャナで読み込んだB4やA3サイズの原稿のデータを、宛先のFAXの記録紙のサイズに合わせて(A3→A4・B4、B4→A4)データ変換して送信する[75]

相手側番号表示

誤接続の防止をするために送信側のFAXに宛先FAXの電話番号を表示する[75]

省電力

自動受信待機時は主電源をOFFにし、受信の時点で自動的にONにすることで、大幅な省電力化が図られる[76]


注釈

  1. ^ 当時は機械が設置されている環境の室温や湿度を管理する発想自体が無かった。

出典

  1. ^ 日本国語大辞典,世界大百科事典内言及, ASCII jpデジタル用語辞典,デジタル大辞泉,百科事典マイペディア,世界大百科事典 第2版,ブリタニカ国際大百科事典 小項目事典,日本大百科全書(ニッポニカ),精選版. “ファクシミリとは”. コトバンク. 2021年2月17日閲覧。
  2. ^ a b c d e f 日本放送協会. “なんで日本はFAXなんだい?”. NHKニュース. 2021年8月3日閲覧。[リンク切れ]
  3. ^ 日経クロステック(xTECH). “中小企業の8割が「ファクスで受発注」の現実、DX時代に日本の競争力が失われる”. 日経クロステック(xTECH). 2021年11月2日閲覧。
  4. ^ a b c http://www.iieej.org/vfax/data/archive/ARC_A21.htm
  5. ^ a b c http://library.thinkquest.org/04oct/01649/fax.htm
  6. ^ http://www.iieej.org/vfax/data/tutorial/tutorial.index.htm
  7. ^ a b c d http://monoshiri-kagakuhaku.com/mechanism/fax/column.html
  8. ^ a b c d e f http://www.thehistoryof.net/history-of-fax-machines.html
  9. ^ a b en:Frederick Bakewell
  10. ^ a b en:Pantelegraph
  11. ^ a b c http://www.iieej.org/vfax/data/archive/ARC_A22.htm
  12. ^ http://faxmac.blogspot.com/2009/08/1898-hummels-telediagraph.html
  13. ^ http://www.acmi.net.au/AIC/KORN_BIO.html
  14. ^ en:Édouard Belin
  15. ^ en:Hellschreiber
  16. ^ http://www.hffax.de/history/html/hellschreiber.html
  17. ^ 丹羽保次郎小林正次無線寫眞電送の一方式」『電氣學會雜誌』第50巻第501号、電氣學會、1930/02/04.、343-355頁、doi:10.11526/ieejjournal1888.50.343 
  18. ^ 昭和初期の電信・ファクシミリに関する報文集ファイル名
  19. ^ 4.同期検定装置の発明について_財団法人 安藤研究所
  20. ^ http://www.iieej.org/vfax/data/rekisi/REK_R3.html
  21. ^ http://www.nec.co.jp/profile/empower/history/1928.html
  22. ^ http://time-az.com/main/detail/5471
  23. ^ 読売新聞昭和11年6月21日夕刊による
  24. ^ a b http://www.tanken.com/fax.html
  25. ^ http://www.iieej.org/vfax/data/tech/E-24.htm
  26. ^ a b c https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/s51/html/s51a01030202.html
  27. ^ a b c https://warp.ndl.go.jp/info:ndljp/pid/261763/www.museum.uec.ac.jp/collection/original/327.html
  28. ^ 第1部 第3章 2 ファクシミリ通信の成長と課題」『昭和51年版 通信白書』 郵政省、1976年12月, 88 - 97ページ
  29. ^ ITU-T Recommendation T-1 Standardization of Phototelegraph http://www.itu.int/rec/T-REC-T.1-198811-I/en
  30. ^ a b c d e f [1]
  31. ^ ITU-T Recommendation T-2 Standardization of Group 1 facsimile apparatus for document transmission
  32. ^ http://nemesis.lonestar.org/reference/telecom/modems/protocols.html
  33. ^ http://www.kogures.com/hitoshi/history/tushin-kaisen/index.html#teishinsyou
  34. ^ ITU-T Recommendation T-3・T-30 Standardization of Group 2 facsimile apparatus for document transmission
  35. ^ ITU-T Recommendation T-4 Standardization of Group 3 facsimile terminals for document transmission http://www.itu.int/rec/T-REC-T.4-200307-I/en
  36. ^ ITU-T Recommendation T-563 Terminal characteristics for Group 4 facsimile apparatus http://www.itu.int/rec/T-REC-T.563-199610-I/en
  37. ^ http://jdream2.jst.go.jp/jdream/action/JD71001Disp?APP=jdream&action=reflink&origin=JGLOBAL&versiono=1.0&lang-japanese&db=JSTPlus&doc=81A0064988&fulllink=no&md5=dedf17a7a962a45152adc057f18d426d
  38. ^ http://www.hct.ecl.ntt.co.jp/library/F/NTA01.html
  39. ^ FUJITSU Vol.32 No.7 (1981) ファクシミリ通信システム用端末装置(MF-1形ファクシミリ)(p97)
  40. ^ 総務省資料 p.5
  41. ^ Japan’s reliance on fax machines lambasted by coronavirus doctor” (英語). The Independent (2020年5月6日). 2024年4月8日閲覧。
  42. ^ 河野行革相要請の「ファクス廃止」、霞が関が抵抗…「国会対応で必要」など反論400件 : 政治 : ニュース”. 読売新聞オンライン (2021年7月26日). 2021年8月3日閲覧。
  43. ^ 外務省、“ほぼ”FAX廃止→原則メールに 企業では意外と現役?”. ITmedia ビジネスオンライン. 2022年6月23日閲覧。
  44. ^ 芸能人の発表なぜFAX? ビーカイブ 2017年9月27日
  45. ^ 通信利用動向調査(世帯編)』(プレスリリース)総務省、2018年5月25日https://www.soumu.go.jp/johotsusintokei/statistics/statistics05b1.html2018年9月16日閲覧 
  46. ^ FAXは日本だけ? まだあるガラパゴスに市場も注目”. 日本経済新聞 (2015年6月13日). 2021年10月24日閲覧。
  47. ^ まだまだ世界で人気? いまだに「FAX」を使い続けるワケ”. IT media (2020年8月20日). 2021年10月24日閲覧。
  48. ^ ニューヨーク・タイムズが報じた米国FAXの現状”. プレジデント (2020年8月3日). 2021年10月24日閲覧。
  49. ^ Dictionary.com | Meanings & Definitions of English Words” (英語). Dictionary.com (2024年4月7日). 2024年4月8日閲覧。
  50. ^ [2]
  51. ^ [3]
  52. ^ a b en:Frederick Bakewell
  53. ^ 雑誌 FUJITSU Vol.22 No.2 (1971) 高速ファクシミリ用オプチカルファイバー管とその応用339 (p83)
  54. ^ 画像電子学会誌 第6巻 第3号 (1977) 富士通高速ファクシミリ (FACOM-6556,6557) (P160)
  55. ^ 雑誌FUJITSU Vol.31 No.2 (1980) ファクシミリ蓄積交換システム[川崎重工業(株)における摘要事例]219 (p63)
  56. ^ http://web.canon.jp/technology/pdf/tech2011.pdf#search='Cds セルフォックレンズ ファクシミリ
  57. ^ 雑誌 FUJITSU Vol.22 No.2 (1971) 高速ファクシミリ用オプチカルファイバー管とその応用333 (p77)
  58. ^ 雑誌 FUJITSU Vol.22 No.2 (1971) 高速ファクシミリ用オプチカルファイバー管とその応用341 (p85)
  59. ^ 雑誌 FUJITSU Vol.31 No.4 (1980) 高速デジタルファクシミリFACOM FAX600シリーズ 561 (p77)
  60. ^ 普通、感熱、インクジェット?FAXの印刷方式と用紙の選び方!
  61. ^ ITU-T Recommendation T-4 Standardization of Group 3 facsimile terminals for document transmission http://www.itu.int/rec/T-REC-T.4-200307-I/en
  62. ^ FACSIMILE CODING SCHEMES AND CODING CONTROL FUNCTIONS FOR GROUP 4 FACSIMILE APPARATUS http://www.itu.int/rec/T-REC-T.6-198811-I
  63. ^ FUJITSU 1972年(昭和47年) Vol.23 No.7 ファクシミリ信号の帯域圧縮方式 日下田九十九、大山哲政、星野啓右、加藤均
  64. ^ 昭和52年度電子通信学会総合全国大会 1025 (p5-106) 高速ファクシミリにおける線密度自動選択について 及川清、飯塚良雄、斎藤寛康、山本充
  65. ^ a b c FUJITSU 1980年(昭和55年) Vol.31 No.4 高速デジタルファクシミリ FACOM FAX600 シリーズ 556 (p72)
  66. ^ 昭和51年電気四学会連合大会 204 (p5-69) 電話網用ファクシミリ端末 石井淳、森田徹郎
  67. ^ 1979年6月26日電子通信学会SE79-27 (P17) ファクシミリ蓄積交換システム 荻田悦弘、栗田満男、井上健治、森田徹郎
  68. ^ 昭和54年画像電子学会予稿 ファクシミリ蓄積交換システムの概要 荻田悦弘、栗田満男、喜多村彰三、森田徹郎
  69. ^ FUJITSU 1980年(昭和55年) Vol.31 No.2 (P53) ファクシミリ蓄積交換システム
  70. ^ FUJITSU 1983年(昭和58年) Vol.34 No.3 ファクシミリ通信システム 479
  71. ^ FUJITSU 1984年(昭和59年) Vol.35 No.1 スーパーファクシミリFACOM FAX700 (p92)
  72. ^ FUJITSU 1984年(昭和59年) Vol.35 No.1 スーパーファクシミリFACOM FAX700 (p94)
  73. ^ http://www.itu.int/rec/T-REC-T.4-200307-I/en
  74. ^ FUJITSU 1980年(昭和55年) Vol.31 No.2 (P64) ファクシミリ蓄積交換システム
  75. ^ a b FUJITSU 1980年(昭和55年) Vol.31 No.4 高速デジタルファクシミリ FACOM FAX600 シリーズ 552 (p68)
  76. ^ FUJITSU 1981年(昭和56年) Vol.32 No.2 高速デジタルファクシミリ FACOM FAX610 シリーズ 372 (p218)






ファクシミリと同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ファクシミリ」の関連用語


2
fax jack デジタル大辞泉
100% |||||

3
ファクス デジタル大辞泉
100% |||||




7
ファックス デジタル大辞泉
92% |||||


9
G3FAX デジタル大辞泉
78% |||||

10
G4FAX デジタル大辞泉
78% |||||

ファクシミリのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ファクシミリのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのファクシミリ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS