ステレオ投影 ステレオ投影の概要

ステレオ投影

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/21 14:06 UTC 版)

地球を、北極を接点とする平面に、ステレオ投影した図
球面を球面の下の平面に、北極からステレオ投影する3次元の説明図

stereographic projection の訳語は分野によって異なる。ステレオ投影は主に物理学機械工学において用いられる。数学においては写像という意味で立体射影あるいはステレオグラフ射影、地図学では図法という意味で平射図法またはステレオ図法と呼ばれる。このように訳語が異なってはいるが、内容は全て同一視できる。

ステレオ投影は、数学的には写像として定義される。定義域は、球面から光源の一点を除いたところである。写像は滑らかかつ全単射である。また、等角写像、すなわち角度が保存される。一方、長さや面積は保存されない。これはとくに光源点付近では顕著である。

すなわち、ステレオ投影は、いくらかの避けられない妥協を含む、球面を平面に描く方法である。実際面では、コンピュータや、ウルフネットまたはステレオネットと呼ばれるグラフ用紙英語版などを使って、投影図が描かれる。

歴史

ステレオ投影は、ヒッパルコスクラウディオス・プトレマイオスに知られていたが、おそらくもっと早くから古代エジプトでも知られていた。これはもともと、平球投影(英語:planisphere projection[1])として知られていた[2]。プトレマイオスの著書 "Planisphaerium英語版" は、ステレオ投影についてかかれた現存する最古の文書である。この投影の最も重要な使い方は星図を表すことであった。[2] 星座早見盤の英語 planisphere のように、今でもそのような図にこの言葉が使われる。

最初の世界地図は、1507年にグアルテリアス・ラドによって、ステレオ投影を基にそれぞれの半球を円盤に投影して描かれたと言われている[3]。ステレオ投影の赤道面への投影するという特徴は、17世紀18世紀東半球西半球の地図を描くのに利用された[4]

フランソワ・デギュイヨンが、彼の1613年の作品"Opticorum libri sex philosophis juxta ac mathematicis utiles"(哲学者と数学者に等しく役立つ6冊の光学の本)で、この投影にステレオ投影と名付けた[5]

数学的な定義

単位球面の北極から平面 z = 0 への立体射影を表した断面図P の像が P′ である。

この節では、単位球面を北極から赤道を通る平面に投影する場合を扱う。その他の場合は後述

三次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N ≔ (0, 0, 1) を"北極"とし、M を球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道" はこの平面と球面の交線である。

M 上の任意の点 P に対して、NP を通る直線が一意的に存在し、この直線は平面 z = 0 とちょうど一点 P′ で交わる。P立体射影による像を、その点 P′ と定義する。

球面上の直交座標 (x, y, z) と平面上の (X, Y) を用いると、立体射影とその逆写像は、次の式で与えられる。

平面上の10×10の正方格子は、球の上では歪んでいる。格子線は射影後も互いに垂直だが、格子内の正方形の面積は北極に近いほど縮んでいる。
平面上の半径 5 の極格子は、球の上で歪んでいる。格子曲線は射影後も互いに垂直だが、格子内の面積は北極に近いほど縮んでいる。

立体射影は等角写像、つまり曲線同士が互いに交わる角度を保存する(図参照)。しかし、面積は保存しない。一般に球面の領域の面積は平面に射影した面積に等しくない。XY-座標での面積要素は次のようになる:

単位円 X2 + Y2 = 1 では、面積の歪みは見られない。(0, 0) の近くでは4倍に歪められ、無限遠点の近くではいくらでも小さくなる。

角度と面積をともに保存する球面から平面への写像は存在しない。仮にあるとすれば、それは局所等長写像で、ガウス曲率を保存しているはずである。しかし球面と平面はガウス曲率が異なるので、これは不可能である。

立体射影の等角性は、いくつかの有用な幾何学的性質を意味する。光源点を「通らない」球面上の円は、平面上の円に射影される。光源点を「通る」球面上の円は、平面上の直線に射影される。このような直線は、無限遠点を通る円や無限大の半径を持つ円とみなされる事がある。

平面上のすべての直線は、立体射影の逆写像により球面上の円に写されると、光源点(無限遠点)で交わるようになる。平面上の平行線は、平面上では交わることはないが、球面上に投影されると光源点で接する。このように、平面上のすべての直線は、球面上のどこかで交わる—2点で横断的に交わるか、あるいは無限遠点で接するかである。(似たような性質は実射影平面でも成り立つが、交点の関係はそれとは違っている。)


球面上の等角航路を平面上に写した曲線は次の式で表される。

ここで Β は、等角航路の方位角である。よって等角航路は、等角螺旋になる。等角航路が常に子午線と同じ角度で交わるのと同じように、この螺旋は平面上の放射線(子午線の投影像)に常に同じ角度で交わる。


  1. ^ 訳注:本文中にもあるように、planisphereは「星図」の古い呼び名なので、星図投影とも読める。
  2. ^ a b Snyder (1993).
  3. ^ According to (Snyder 1993), although he acknowledges he did not personally see it
  4. ^ Snyder (1989).
  5. ^ According to (Elkins, 1988) who references Eckert, "Die Kartenwissenschaft", Berlin 1921, pp 121--123
  6. ^ Wulff, George, Untersuchungen im Gebiete der optischen Eigenschaften isomorpher Kristalle: Zeits. Krist.,36, l-28 (1902)
  7. ^ Cf. Apostol (1974) p. 17.
  8. ^ Cf. Pedoe (1988).
  9. ^ Cf. Shafarevich (1995).
  10. ^ 河瀬和重 (2014): Lambert正角円錐図法及びその極限としての平射図法の座標換算式に係る包括的導出に関する研究, 平成25年度調査研究年報, 国土地理院技術資料A4-No.12, 80–83
  11. ^ 月の地形図 国土地理院サイト






ステレオ投影と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ステレオ投影」の関連用語

ステレオ投影のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ステレオ投影のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのステレオ投影 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS