コンクリート 製造

コンクリート

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/10/31 01:25 UTC 版)

製造

米国アラバマ州バーミングハムのコンクリート工場(1936年撮影)

コンクリートを材料を混合して生産する場所で分類すると、バッチャープラント(生コン工場)で生産される「レディーミクストコンクリート」(ready mixed concrete)と、建設現場で生産される「現場練りコンクリート」に大別される。一般に使われているのはレディーミクストコンクリートである。レディーミクストコンクリートはトラックミキサアジテータートラック、レディーミクストコンクリート運搬車)によって現場に運ばれる。現場練りコンクリートは、ごく少量か逆に非常に大量のコンクリートを必要とする場合に現場で混合されて作られる。ごく少量のコンクリートを必要とする場合は手作業や小型のミキサで練られ、非常に大量のコンクリートを必要とする場合は建設現場内にバッチャープラントと同様の、サイトプラントと呼ばれる施設を建設して行う。

現場練りコンクリートの調製にあたっては、たとえば医師薬剤師に対して処方箋で薬剤の配合比率を指示するのと同じように、設計者から施工者に対してコンクリート材料の混合比を指示されることがある。設計者などによって仕様書などで行われるこれら混合比の指示を示方(しほう)といい、指示された配合割合を示方配合(しほうはいごう)という。

施工

かぶり厚の図

型枠組み

コンクリートは固まるまでの形状を保つために型枠と呼ばれる仮設備を組んでおき、打込み後、硬化するまでの所定時間を型枠内で養生する必要がある。型枠組みは大規模になると「型枠工事」と呼ばれる。型枠は一般に「せき板」と呼ばれるコンクリートに接する板状部品とそれを直接支える「リブ」から構成され、これらの他にも型枠の支えとなる「横ばた」「縦ばた」が加わり、大規模な型枠ではこれに「根太」「大引」「支柱」といった支保工が加わる。せき板の内面には完成時にコンクリートが剥がれ易くするために油や樹脂が塗られる。せき板には合板が用いられることが多いが、アルミニウム、ステンレス、樹脂、紙、コンクリートが使われることもある。特殊なものでは、穴の空いたせき板の内面に布を張ることで余分な水や気泡が抜けるようにしたものや、あらかじめタイルをせき板の内面に貼り付けておくことで、後のタイル貼り作業を省くものもある。コンクリート壁などの施工では、Pコンや木コンと呼ばれる小さな部品とセパレータという金属棒で、両面のせき板の間隔を固定する方法が多く用いられる[14]

打込み

コンクリートの型枠への打設(打込み)の際には、コンクリートの均一性の確保と初期欠陥の防止が求められる。均一性の確保とは比重の異なる材料が分離することを防ぐことであり、そのためには常に攪拌しておき、打込み時に激しく落とさず打込み後も横移動させないようにすることである。

締固め

打込みの直後には十分な締固めを行い、未充填(空洞)、気泡、豆板(ジャンカ)、コールドジョイントなどが起きないようにする。締固め作業では、内部振動機や木づちによって内側や外側から適度な振動を与えることで、コンクリートを流動化させ、打込み時に行き渡らなかった隅々にまで流れるようにしながら、同時に、内部に含まれる空気の泡や余分な水分を浮かび上がらせる。十分な締固めを行うために、打込み時には40-50cm程の厚みまでの層状に積み重ねるようにして、厚みがある施工では打込みと締固めを何度も繰り返すことになる[注釈 2][注釈 3][14]

締固めが不足すると未充填箇所を生じてしまい、過剰な加振によって材料分離を生じることもある。さらに、凝固後に表面に多量の気泡状の孔を生じ強度や美観を損ねることになる。また、十分なかぶり(建築用語では「かぶり厚さ」)の確保が必要である。かぶりとは、鉄筋からコンクリート表面までの最短距離を指す。

仕上げ

ある程度凝結が進んだ段階で、美観的な意味や表面密度を高めて水密性を含む耐久性を高めるためにも、コンクリートの表面を平滑に仕上げる仕上げ作業が行われる。一般的には、スコップや鋤簾(じょれん)で荒均し(あらならし)を行い、木ゴテを使って凹凸を修正する。最後に金ゴテやエンジン式のトロウェル、バイブレータなどで仕上げを行う[14]

経験や作業員が足りないと水勾配が取れないどころか平坦にすらならない仕上がりになる。またコンクリート強度を上げすぎたり季節(夏場は凝固が早く進む)により仕上げが難しくなる。充填漏れや仕上げのしやすさから一概に「コンクリートは高強度がいい」と言えない点がある。

養生

コンクリートの凝結が適切に進むように保護する期間。一般的には散水養生が広く行われ表面乾燥と全体の熱を取る事で急速凝固を防ぐ事を目的とする。仕上げ後3~5時間ほどから行い1日数回、数日間水道ホースにて散水を行う。夏場は温度上昇が激しい為表面を流水するほど多く掛ける、型枠に散水し熱を下げるのもよい。しかし、表面の熱を急速に奪うとコンクリート内部との温度差により温度ひび割れが生じるため注意が必要である。むしろ、保温養生として散水あるいは湛水する場合も多い。

湿ったマットで表面を覆う湿潤養生を行う場合もある。大規模な施工では、内部の熱を逃がすための冷却管を使用することがあり、寒冷地での施工では氷点下となって内部の水が氷結・膨張するのを防ぐために保温することもある[14]

湿潤養生の期間として、土木学会は一般的なコンクリートで5日間、早強セメントの場合で3日間を示している。

管理された打継面

コンクリートは材料を混合した時点から凝結による固化が始まるため、その施工は迅速に行われなければならない。特に一度、打込み作業が始まった作業箇所ではコンクリートの層を短時間に積み上げてゆく事が求められるが、常にこの作業が無制限に続けられるとは限らず、時として計画的に作業は中断されることがある。このような場合に、次回の作業再開時に障害なく連続し繋がるように作られる面が「管理された打継面」であり、この管理された打継面を作るには、表面に浮いてくる余分なブリーディング水をレイタンスと呼ばれる不純物と共に洗い流して粗骨材を露出させておく方法や、一度固まった後でその表面を物理的に剥ぎ取ってレイタンスなどが含まれる表面層を取り去って粗骨材を露出させる方法がある。このような管理を行わずに固まったコンクリート面に次の打込み作業を行う打継ぎだけでは、コールドジョイントによる強度不足が生じる可能性が高い[14]

施工者の経験や技術によって、完成した製品の強度や仕上げの美しさに大きな違いが生じる。打放しコンクリート建築物では、常に外気・水・日光、そして視線に晒されるので、業者の慎重な選定が必要となる。

耐久性

耐用年数

コンクリート構造物の供用年数は壁の厚さに比例しており、ヨーロッパ中世及び近世時代の城壁や太平洋戦争時の配筋も無い壁の厚さ2メートルを越える建築物は未だ現役である。しかし日本の旧建築基準で建築された壁厚0.31メートル程度の建造物は普通50-60年程度といわれており、高度経済成長期に大量に建設された構造物の維持・管理が21世紀の日本の大きな課題となる。

建設省が1998年にまとめた「建設省総合技術開発プロジェクト」の報告書によると、セメントに混入する水を50%以下まで減らし、鉄筋のかぶり厚を十分に取り、収縮や凍結を抑制する添加剤を加えることで、500年以上といった半永久的な耐久性を確保することが可能である。ただ、こうした施工を行うと工期が延びてコストも増大するため、そこまでの耐久性を想定して鉄筋コンクリート構造物を建設することは少ない。

変状種類

複合的要因による劣化事象

  1. 中性化
  2. 塩害
  3. アルカリ骨材反応アルカリシリカ反応・アルカリ炭酸塩反応・アルカリシリケート反応)
  4. 凍害
  5. 化学的腐食
  6. 疲労
  7. 風化老化
  8. 火災

劣化要因

コンクリートはメンテナンスフリーの材料と称される時代があったが、実際には様々な原因によって劣化を生じる。以下に主な劣化機構を挙げる。

  • 荷重の増大と設計
    1. 社会的ニーズに伴い、重量や頻度などの疲労荷重が増大した
    2. 地震波浪などの外力の解明が、かつては不十分であった
    3. 構造物設計時に過度に経済性を追求した
    4. 許容応力度の変化に象徴されるように、蓄積技術に変化が生じた
  • 建築環境の影響
    1. 凍結防止剤、海水などに含まれる塩化物によって、塩化物イオンが鉄筋コンクリート中の鋼材を腐食させる(塩害
    2. 二酸化炭素によって、コンクリートがアルカリから中性化し、鉄筋コンクリート中の鋼材の不動態被膜が失われる
    3. 温度湿度の変化によって伸縮し、コンクリートにひび割れが入る
    4. 酸性雨によって、セメント水和物の化学変化による軟化や破壊が起こる
    5. その他、社会変化
  • 材料の品質と選択
    1. アルカリ骨材反応によってある反応性物質が膨張し、コンクリートにひび割れを生じる
    2. セメントの品質
    3. 海産骨材の不適切な使用(洗浄の不十分な海砂を細骨材として用いるなど)により、塩化物イオンが大量にコンクリート中に含まれる
  • 人員(現場作業員)の質
    実際に施工する人員の工法にたいする無知、怠慢によるもの。

注釈

  1. ^ セメントに対する水の比率をある程度まで減ずる事ができるという意味は、コンクリート中でセメント水和物を得るだけの水があればコンクリートは十分に固まるという意味であり、それ以上の水は流動性に確保のために加えられている。水はコンクリートに流動性を与えるのには安価で良いが、時間と共に蒸発すると固化したセメントや骨材の間に間隙を作る事になるため、強度低下の要因となる。高強度のコンクリートを得るには、セメント水和物への反応に必要な量の水だけを加えるようにして、失われる流動性を補うためにセメント粒子を分散させる減水剤と呼ばれる混和剤や、蒸発せずに流動性がありそれ自身も化学反応によって固化する、高炉スラグ微粉末、フライアッシュ、シリカフュームなどを加えている。こういった混和剤の使用によって最大200N/mm2程度の高強度コンクリートが作られている。
  2. ^ 締固め作業での過剰な振動は、材料の分離を招いてコンクリートの均一性が損なわれるので、避けられなければならない。
  3. ^ コールドジョイントが起きないようにするために、打ち重ねの層は2-2.5時間以上の間をあけないように計画的な作業管理が求められ、それ以上の時間間隔があく場合には「管理された打継面」にする。

出典

  1. ^ a b c d e f g h i j k l m 基礎講座シリーズ コンクリートの基礎講座”. 一般財団法人建材試験センター. 2020年8月15日閲覧。
  2. ^ 一般財団法人セメント協会
  3. ^ 身体防水について(はじめに)
  4. ^ a b コンクリートの歴史
  5. ^ “コンクリ、2000年の計 火山灰で耐久力アップ”. 日本経済新聞朝刊. (2017年3月19日). http://www.nikkei.com/article/DGKKZO14203070X10C17A3MY1000/ 
  6. ^ The Roman Pantheon: The Triumph of Concrete
  7. ^ Lancaster, Lynne (2005), Concrete Vaulted Construction in Imperial Rome. Innovations in Context, Cambridge University Press, ISBN 978-0-511-16068-4
  8. ^ D.S. Robertson: Greek and Roman Architecture, Cambridge, 1969, p. 233
  9. ^ Henry Cowan: The Masterbuilders, New York 1977, p. 56, ISBN 978-0-471-02740-9
  10. ^ Robert Mark, Paul Hutchinson: "On the Structure of the Roman Pantheon", Art Bulletin, Vol. 68, No. 1 (1986), p. 26, fn. 5
  11. ^ https://web.archive.org/web/20110221204004/http://www.allacademic.com/meta/p_mla_apa_research_citation/0/2/0/1/2/p20122_index.html
  12. ^ http://www.djc.com/special/concrete/10003364.htm
  13. ^ 現代の戦場で最も効果的な兵器は「コンクリート」”. GIGAZINE (2016年11月17日). 2017年2月13日閲覧。
  14. ^ a b c d e f 土木学会関西支部編、『コンクリートなんでも小事典』、講談社、2008年12月20日第1刷発行、ISBN 9784062576246


「コンクリート」の続きの解説一覧




コンクリートと同じ種類の言葉


品詞の分類

名詞(物)唐錦  呉織  コンクリート  心臓  八重畳

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「コンクリート」の関連用語

コンクリートのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



コンクリートのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのコンクリート (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2022 GRAS Group, Inc.RSS