
Imperative Programming Languages (IPL)

© Definitions:

• The imperative (or procedural) paradigm is the
closest to the structure of actual computers.

• It is a model that is based on moving bits around
and changing machine state

• Programming languages based on the imperative
paradigm have the following characteristics:

� The basic unit of abstraction is the PROCEDURE,

whose basic structure is a sequence of statements
that are executed in succession, abstracting the way
that the program counter is incremented so as to
proceed through a series of machine instructions
residing in sequential hardware memory cells.

� The sequential flow of execution can be modified

by conditional and looping statements (as well as by
the very low-level goto statement found in many
imperative languages), which abstract the
conditional and unconditional branch instructions
found in the underlying machine instruction set.

� Variables play a key role, and serve as abstractions
of hardware memory cells. Typically, a given
variable may assume many different values of the
course of the execution of a program, just as a
hardware memory cell may contain many different
values. Thus, the assignment statement is a very
important and frequently used statement.

© Examples of imperative languages:

• FORTRAN, Algol, COBOL, Pascal, C (and to
some extent C++), BASIC, Ada - and many
more.

© PL/I

• PL/I (1963-5): was one of the few languages that attempted
to be a general purpose language, rather than aiming at a
particular category of programming.

• PL/I incorporated a blend of features from FORTRAN,
ALGOL, and COBOL, plus allowed programmers to create
concurrent tasks, handle run-time exceptions, use recursive
procedures, and use pointers.

• The language development was closely tied to the
development of the IBM/360, a line of "general use"
computers.

• The main problems with the language were its large size
and the interaction of so many complex features.

© Simula 67:

• SIMULA 67: yet another descendant of ALGOL, SIMULA
was the first language to support data abstraction, through the
class concept.

© Pascal:

• PASCAL (1971): an extension of the ALGOL languages, it
survived as a teaching language for structured programming,
it still has widespread (though rapidly declining) use in the
teaching community, but comparatively little commercial use.

• It has stronger type and error checking than Fortran or C
and more restrictive syntax, hence enforces some fundamental
programming concepts better than C (perhaps).

© C:

• C (1972): C presented relatively little that was new or
remarkable in terms of programming language design, but
used and combined established features in a very effective
manner for programming.

• It was designed for systems programming, and initially
spread through close ties with UNIX.

• C has numerous and powerful operators, and extensive
libraries of supporting function.

• It has (comparatively) little in the way of type checking,
which makes the language more flexible for the experienced
user but more dangerous for the inexperienced.

© Ada

• Ada (1975-1983): Ada, like COBOL, had its development
sponsored by the Department of Defense, and survived as a
language largely because of mandated use by the DoD.

• In design, Ada’s developers tried to incorporate everything
known about software engineering to that time. It supports
object oriented programming, concurrency, exception
handling, etc.

• The design and implementation of the language suffered
through being perhaps too ambitious.

© IPL Characteristics:

• Variable and Storage
• Commands:

á Assignments
á Procedure call
á Sequential commands
á Collateral commands
á Conditional commands
á Iterative commands
á Block commands

© Assignments

• Simple assignment:

x = y +1;

• Multiple assignment:

v1=v2=v3=v4=200;

• Simultaneous assignment:

n1,n2,n3,n4 =m1,m2,m3,m4

• Operator-assignment commands:

m +=n

© Procedure Calls

• The effect of a procedure call is to apply a procedure
abstraction to some arguments

• The net effect of a procedure call is to update variables
(local or global).

© Sequential commands

• Much of imperative languages are concerned with
control flow, making sure that commands are executed in
a specific order.

• A sequential command is a set of commands executed
sequentially.

• In the sequential command:

 ‘C1; C2;’

C2 is executed after C1 is finished.

© Collateral commands

• A computation is deterministic if we can predict in
advance exactly which sequence of steps will be
followed. Otherwise the sequence is nondeterministic.

• A collateral command is a set of

nondeterministic commands.

• In the command:

‘C1; C2;’

C1 and C2 are executed in no particular order.

© Conditional commands

• A conditional command has a number of
subcommands, from which exactly one
is chosen to be executed.

• Example: the most elementary if command:
if E then

C1
else

C2
end if;

• Conditional commands can also be
nondeterministic:

If E1 then C1
 | E2 then C2
 …
 | En then Cn
end if;

• Nondeterministic conditional commands are
available in concurrent programming
languages (such as Ada).

• Another conditional command is the Case
statement.

© Iterative commands

• An iterative command, also known as loop,
has a set of commands that is to be executed
repeatedly and some kind of phrases that
determines when the iteration will stop.

• Control variable in the definite loops:

o Predefined variable
o The loop declares the variable
o The initial value is atomic or

comes an expression.

• Two types of iterations:
á Definite (For loop)
á Undefinite (While loop)

© Side-effects in IPL

• In some IPL, the evaluation of expressions has
the side effect of updating variables.

/* A program in C-like syntax, with side-effects
*/
int i=1;
main() {
 int y = 5;
 printf("%d\n",f(y)+g(y));
 printf("%d\n",g(y)+f(y));
}
int f(int x) {
 i = i*2;
 return i*x;
}
int g(int x) {
 return i*x;
}

• The two printf statements will not print the
same answer. This means that, for this program

f(y) + g(y) is different from g(y) + f(y)

Is it bad programming?
or

side-effect of f on variable i?

© What is wrong with side-effects in sequential
execution ?

• Program is not readable: The result from a
function depends on what happened during the
execution of another function.

• Reusability: A program fragment depends
on a global environment

• Correctness of a program becomes almost
impossible

• Good programming: ensure that side-effects
never occur.
• How can we enforce programmers to avoid
side-effect?

© How can side-effects be avoided ?

� The problem is destructive assignment.

� Whenever a statement like

x = 8;

is executed then the old value of x is destroyed and
the new value, 8, substituted. To be safe this implies
that the previous value of x cannot be needed again.

� So to avoid side-effects, abolish destructive

assignment!

© Is there an alternative to imperative
programming languages ?

Other programming paradigms.

Case Study - C

© History

• Kernighan and Ritche designers

• language designed to implement operating
system (Unix)

• terse, compact, but can write really fast code

• free, ported with Unix

© types (minor difference with Pascal)

• static typing

• weak typing

• standard primitive types - but no booleans

• enumerated types (in ANSI C)

• composite types

• arrays

• records (structs)

• variant records (unions)

• no sets

© expressions

• literals

• aggregate expressions (a[] = {2, 3, 4})

• function calls (limited to returning primitive
types, so composite values are not first-class)

• conditional expression ((2 < 3)? 1 : 0)

• constants (in ANSI C) and variables

© storage

• classic run-time storage model

• selective and total updating of composite

© Variables

• static and dynamic arrays

• heap storage for values allocated by calling
malloc()

• “uncontrolled use” of pointers, pointer craziness

© Commands

• structured programming constructs (e.g., if-then-
else, for-loop)

• assignment is an expression

• multiple, composite assignment

• procedure (void functions) and function calls

© Bindings

• static scoping

• nested name spaces (can declare vars after a {)

• new-type and type declarations

• new-variable, but not variable declarations

• limited recursive declarations

© Abstractions

• user-defined function and procedure abstractions

• built-in selector abstractions only

• parameter passing call-by-value and call-by-
pointer

• eager evaluation of parameters

© encapsulations

• no packages, objects, ADTs

© type systems

• built-in operator overloading/coercion

• type coercion via casting

• no user-defined overloading

• no polymorphic types

• no parameterised types

© sequencers

• gotos

• escapes via returns

• break escapes from containing block

• no exception handlers (setjmp, longjmp are in
library)

