
UTC Document Register L2/14-127

Standardizing the order of Arabic combining marks

Roozbeh Pournader, Google Inc.
May 2, 2014

Summary
The combining class of the combining characters used in the Arabic script has been
creating problems for sequences with multiple combining marks since Unicode 2.0.
The present document specifies some of the problems and proposes a solution.

Proposal
1. Specify that the order specified in Algorithm A or an equivalent algorithm

should be used when displaying character sequences with multiple Arabic
combining marks.

2. Specify that when the algorithm does not result in a preferred order, U+034F
COMBINING GRAPHEME JOINER (CGI) should be used to request a different
order.

Algorithm A
Definition: The Modifier Combining Marks (MCM), is the set of combining marks
listed below:

U+0654 ARABIC HAMZA ABOVE
U+0655 ARABIC HAMZA BELOW
U+0658 ARABIC MARK NOON GHUNNA
U+06DC ARABIC SMALL HIGH SEEN
U+06E3 ARABIC SMALL LOW SEEN
U+06E7 ARABIC SMALL HIGH YEH
U+06E8 ARABIC SMALL HIGH NOON
U+08F3 ARABIC SMALL HIGH WAW

Input: the sequence of Arabic combining characters with ccc ≠ 0 with an optional
base character or another character of ccc = 0.

Output: a canonically equivalent sequence of Arabic combining marks, in their real
logical order, which could be used for rendering.

Steps:

1. Convert the input sequence to Normalization Form D (NFD).

1

2. Divide the resulting sequence into groups of the same combining class.
3. Output all the characters in MCM at the beginning of the group that has

ccc=220 (below marks), keeping their relative order.
4. Output all the characters in MCM at the beginning of the group that has

ccc=230 (above marks), keeping their relative order.
5. Output all the characters in the group that has ccc=33 (shadda), keeping their

relative order.
6. Output the remaining characters, keeping their relative order.

Sample run
Here is a very artificial test case, just to demonstrate the algorithm:

inp: 0618 0619 064E 064F 0654 0658 0653 0654 0651 0656 0651 065C 0655 0650

ccc: 30 31 30 31 230 230 230 230 33 220 33 220 220 32

MCM: Yes Yes Yes Yes

out: 0654 0658 0651 0651 0618 064E 0619 064F 0650 0656 065C 0655 0653 0654

ccc: 230 230 33 33 30 30 31 31 32 220 220 220 230 230

MCM: Yes Yes Yes Yes

Background
The combining classes of Arabic combining characters in Unicode are “weird”. Here
is a breakdown of the existing classes:

27: fathatan, open fathatan
28: dammatan, open dammatan
29: kasratan, open kasratan
30: fatha, small fatha
31: damma, small damma
32: kasra, small kasra
33: shadda
34: sukun
35: superscript alef
220: all other below combining marks
230: all other above combining marks

What that means, is when a sequence of combining characters from at least two
different classes, the order is not specified in Unicode. This is what the Unicode Core
Specification says on the subject: “The Unicode Standard does not specify a sequence
order in case of multiple harakat applied to the same Arabic base character, as there
is no possible ambiguity of interpretation.” (version 6.2, section 8.2, page 253).

2

Unfortunately, the last part of that sentence is not true. The order is indeed
ambiguous, as the following examples show:

In the right example, the small high seen is seen below the sukun, while in the left
example, it is seen over it. The examples are indeed from the same document
(Al-Hilâlî and Khân 1996), just two pages away. The small high seen has different
roles: in the right sample it is a hint that the base letter, sad, should be pronounced as
if it was a seen; in the left sample, it is a pause-related hint.

Even if such contrastive examples didn’t exist, the order would still have been
unclear, since some characters of the combining class 230 (like hamza) are rendered
below a fatha (ccc=30), while others of the same class (like most Quranic marks) are
rendered above a fatha. This means that extensive research would be needed for
rendering engines and/or fonts, easily leading to different findings and thus loss of
interchangeability of Arabic text.

Some cases are “obvious” to speakers of languages written in the Arabic script. For
example, a shadda always comes before a damma. But as we go further down the list
of Arabic combining marks, less information is available. The best location to
provide such information is indeed the Unicode Standard itself.

Questions & Answers
● Why this algorithm? The author believes it to be the simplest algorithm that

keeps user expectations, stays within the stability requirements of Unicode,
renders all canonically equivalent sequences the same way, and doesn’t break
orthographies yet unknown to the author.

● Your algorithm puts a damma over a hamza above. What if my
orthography needs to put the hamza above over the damma? The algorithm
provides the most expected output for most users of the Arabic script, which
want the damma over the hamza above. You would need to encode your text as
<damma, CGJ, hamza above>.

● As you said, SMALL HIGH SEEN can happen both below a sukun or above a
sukun. Why is it in MCM? The author needed to make a decision here. The
orthographies that use the character both ways would need to use in a CGJ in
one of the cases anyway. But it appears that most Quranic orthographies use
the character as an MCM only, so we put it in MCM.

● Don’t the kasra and kasra-like characters behave weird around shadda or
hamza? Shouldn’t the algorithm take care of that? It should, and it does.

3

kasra-like character are ligated with a shadda or hamza in some styles and
appear just below them instead of below the base letter, but they still logically
follow the shadda or hamza.

● What are the Modifier Combining Marks? These are combining characters
that modify the base letter before them, and because of that, should remain
close to the letter when they are followed by tashkil. These are not exactly
i’jam, but the next closest thing to i’jam.

● Why NFD and not NFC? To make sure sequences such as <superscript alef,
madda> always results in the same ordering, independent of the base letter. If
the algorithm used NFC, the sequence <alef, superscript alef, madda> would
have resulted in a different order than <lam, superscript alef, madda>.

● Is there anything controversial about this proposal? This proposal received
some early feedback in October 2013 on the HarfBuzz mailing list. There was
some discussion about the difference in the identity of U+0653 ARABIC
MADDAH ABOVE and U+06E4 ARABIC SMALL HIGH MADDA and if the normal
madda should belong in MCM. After some offline discussion with Tom Milo,
the author decided to keep them in the same group outside MCM, and consider
the two characters size variants of each other.

● What about the sukun alternate forms? There are three sukun-like shapes
encoded at U+06DF..06E1 that are used in some Quranic orthographies to
denote different things which are not always a sukun. Fortunately, their
canonical combining class is 230, so we don’t need to worry much about their
ordering in presence of other combining marks. Unfortunately, they won’t be
treated like a normal sukun in all theoretically possible cases. But this does
not create a real world problem, as users who create the data simply have
more flexibility with the alternate sukuns than with the normal sukun. The
author prefers not to change the algorithm to make them equivalent, as that
would make the algorithm unnecessarily complex and make the usage of CGJ
more frequent.

● Would your proposal break existing implementations? Most probably not.
The author has been very careful. Unless the implementation is not complying
with Unicode, which we can’t do much about anyway.

● What about dotted circles in some implementations? The author thinks it’s
not a very good idea to insert dotted circles in a text rendering engine, since
something that appears invalid today to a rendering engine designer may
actually be valid text in some lesser known orthography of a minority
language or the Quran. (For example, Microsoft Windows’s text rendering
engine, described in Microsoft Typography 2014, appears to disallow
combination of certain Quranic marks that are known to appear with each
other in the Quran.)

Such spell-checking processes are best implemented at a higher level than a
rendering engine. Also, a dotted circle insertion algorithm that would display

4

all canonically equivalent sequences the same way is hard to design and the
result may be counter-intuitive for its users.

Still, the algorithm could easily be extended for implementations that may
wish to insert such marks (such as the one described Microsoft Typography
2014) by applying the algorithm first and then inserting the dotted circles.

● Can we improve the algorithm in future versions of the standard? We better
not, or we may change the rendering of data that assumes its implementation.
(There are ways to extend the algorithm for new characters while keeping the
existing data stable. One would be adding new characters to the MCM. Another
would be putting them in a new combining class or group like MCM and add a
step to the algorithm to take care of them.)

● But what if we missed some character that should really belong in MCM?
The author tried his best to handle all the cases he could find, across various
minority languages and Quranic orthographies, but he may have missed
some cases (and some cases are impossible to capture anyway). The best way
to handle those interchangeably is to use a CGJ in the Unicode representation.

● What are the best combining classes for Arabic combining characters
encoded in the future? For most characters, 220 and 230. For alternative
versions of the basic tashkil, the same combining class as the tashkil could be
used, but very very carefully.

● How else can we use Algorithm A? The algorithm is very useful for
backspacing, when there is no external information available about the order
used when entering the text.

● Can we just generate our Arabic data in the same order as the output of
Algorithm A would be and not worry about having such an algorithm in
software? You can do that, but then you can’t correctly render or handle data
coming from somebody else, including data in normalized forms.

● Why do I need the CGJ again? Because the default order of Algorithm A is not
perfect (mostly for cases we don’t know about, but still). You may want to
modify the order of some marks that have different combining classes.

Bibliography
1. Muhammad Taqî-ud-Dîn Al-Hilâlî and Muhammad Muhsin Khân (translators)

1417 AH (=1996 CE). The Noble Qur’an: English Translation of the meanings and
commentary. King Fahd Complex For The Printing of The Holy Qur’an. ISBN
9960-770-15-X.

2. Microsoft Typography 2014. “Developing OpenType Fonts for Arabic Script.”
http://www.microsoft.com/typography/OpenTypeDev/arabic/intro.htm

3. The Unicode Consortium. 2013. The Unicode Standard Version 6.2 – Core
Specification.

5

http://www.google.com/url?q=http%3A%2F%2Fwww.microsoft.com%2Ftypography%2FOpenTypeDev%2Farabic%2Fintro.htm&sa=D&sntz=1&usg=AFQjCNF1Pgr4YVoJcL4fcFrhEZXXWttsKg

