

Fibre Channel Technologies "Current & Future"

Dr. M. K. Jibbe, LSI Corporation (ESG)
Tom Hammond-Doel, LSI Corporation (ESG)
Steven Wilson, Brocade

SNIA Legal Notice

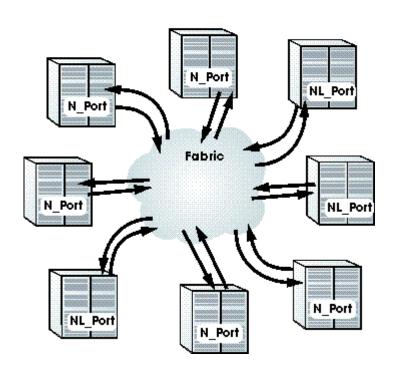
- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.

Abstract

The objectives of this tutorial are:

- Provide the user with a Primer on Fibre Channel
- Project the market outlook and roadmap of Fibre Channel
- Share what is New in Fibre Channel Standards for Protocols APIs, and Management.

What can FC provide today?

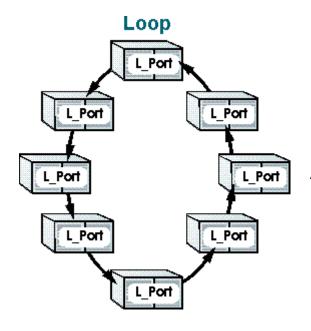


- Flexible, Scalable relative to Topologies, Speed,
 Performance, Distance, Node connectivity and Low cost
- Communication and Data Overhead (Framing, Data Communication, Latency, Efficiency, Routing Control, and Access Control),
- 3. Redundancy, Availability, and Failover,
- 4. Applicability in SAN with large IT User Base

FC Topologies

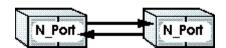
Fabric
NL-Port can be attached to a Fabric

Switched Fabric


Up to 2^24 ports in a switched interconnect

Multiple concurrent communications for high aggregate throughout

- Fibre channel supports a 24-bit address space
 - ✓ Provides 2 ^2⁴ addresses
 - ✓FC routing is done based on the **Domain ID portion of the NPort ID assigned on** login (24-bit addressing consisting of Domain ID, Area ID, and Device ID)
- FC Device ports are uniquely identified by a WWPN (world wide port name or Identifier)
 Address lookup is provided by the Fabric Switch using the Name Server portion of Directory Services


FC Topologies

Arbitrated Loop → **Up to 127 ports on a shared loop**

Point to Point

Point-to-Point → **Two ports on a dedicated link**

Topology Comparison

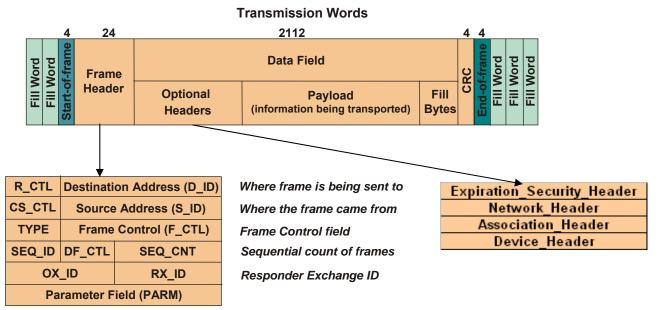
Attribute	Point to Point	Arbitrated Loop	Switched Fabric
Number of ports	2	2 to 127	Up to 2 ²⁴
Maximum bandwidth	Link rate times 2	Link rate times 2	Link rate times number of ports
Bandwidth allocation	Dedicated	Shared by all loop ports	Managed by fabric
Address assignment	N_Port Login	Loop initialization and Fabric Login	Fabric Login
Number of concurrent circuits	1	1	Number of port pairs (number of ports/2)
Effect of port failure	Point-to-point link fails	Loop fails (port bypass function required)	Link between switch and port fails
Concurrent maintenance	Link is down	May be disruptive to entire loop	Link between switch and port is down
Expansion	Add additional point-to-point links	Attach loop to fabric	Expand fabric
Redundancy/High Availability	Add redundant port and point-to-point links	Use dual loops and dual-ported devices	Use redundant switches
Link rates supported	All	All (all devices on loop must be same rate)	All (fabric may support mixed rates)
Media types supported	All	All	All
Classes of service supported	All	Class-1, -2 -3	All
Frame delivery order	In order	In order	Note 1
Access to interconnect medium	n Dedicated	Arbitration	Dedicated
Cost per port	Port cost	Port cost + loop function (+hub if used)	Port cost + fabric port

Note 1: Frame Delivery Ordering is switch implementation dependent

Flexibility and Scalability

- Uses a common transport mechanism to support:
 - Physical interface types: Multi/Single Mode Fiber, and Copper
 - Traditional Channels: SCSI, IPI3, SBCCS, and HIPPI
 - Traditional Networks: IP, IEEE 802, and ATM
- High-speed -100/200/400/800/1200 MB/s, Reliable data transmission:
 - 100/200/400/800/1200 MB/s
 - BER < 10-12
- Provide scalability of performance and cost
- Encourage industry support through open standards
- Designed to fulfill the needs of SANs

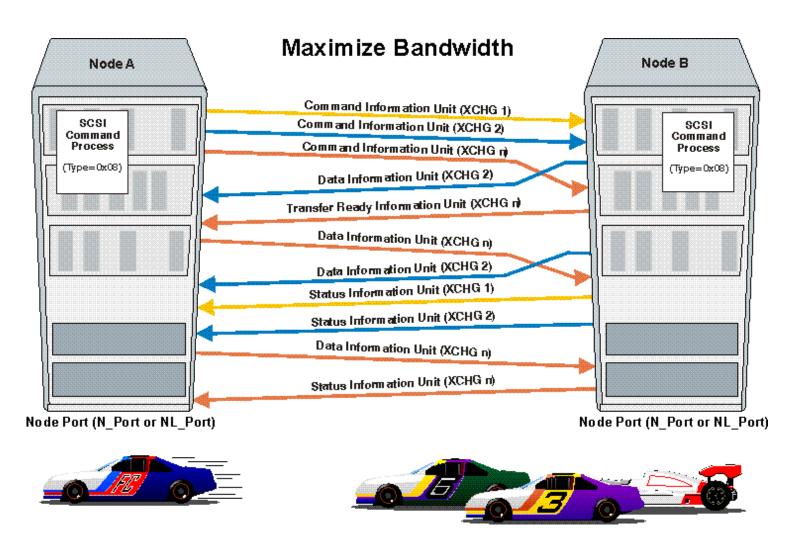
Maximum Distance



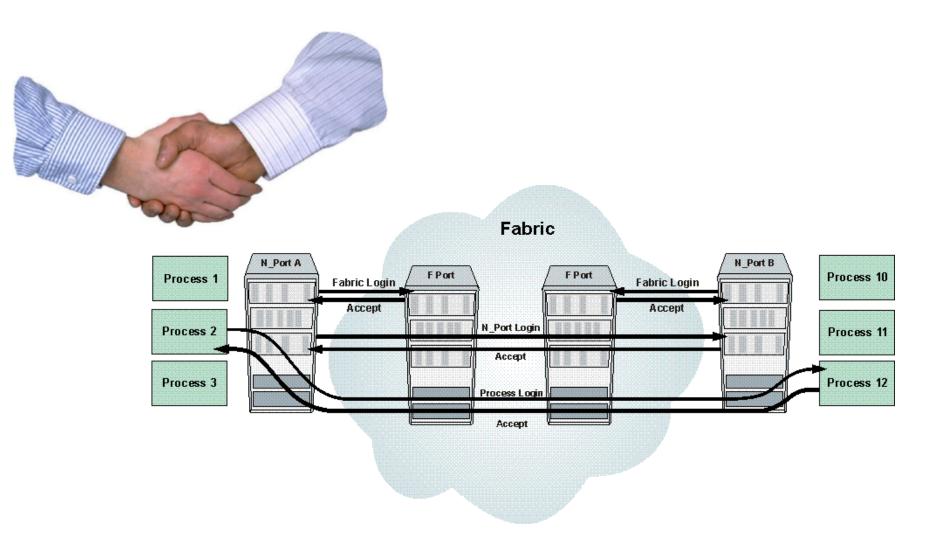
Media Type	Transmitter	Speed	Distance	Variant
Electrical	ECL/PECL	400 MB/s	0m – 10m (typical)	400-DF-EL-S
(Differential)		200 MB/s	0m - 10m (typical)	200-DF-EL-S
		100 MB/s	0m - 30m (typical)	100-DF-EL-S
		400 MB/s	2m - > 50km	400-SM-LL-V
	1550 nm. Long wave laser	200 MB/s	2m - > 50km	200-SM-LL-V
9 um. single-Mode Fiber		100 MB/s	2m - > 50km	100-SM-LL-V
		800 MB/s	2m - 10km	800-SM-LC-L
	1330 nm. Long wave laser	800 MB/s	2m - 1.4km	800-SM-LC-I
		400 MB/s	2m – 2km	400-SM-LL-I
		200 MB/s	2m - 2km	200-SM-LL-I
		100 MB/s	2m - 10km	100-SM-LL_L
			2m – 2km	100-SM-LL-V
		800 MB/s	0.5m -150m	800-M5-SN-I
50 um. Multi-Mode Fibre		800 MB/s	0.5m -50m	800-M5-SN-S
		400 MB/s	0.5m -175m	400-M5-SN-I
		200 MB/s	0.5m -300m	200-M5-SN-I
	850 nm. Short wave laser	100 MB/s	0.5m -500m	100-M5-SN-I
		800 MB/s	0.5m -21m	800-M6-SN-S
62.5 um. Multi-Mode Fibre		400 MB/s	0.5m -70m	400-M6-SN-I
		200 MB/s	0.5m -1500m	200-M6-SN-I
		100 MB/s	0.5m -300m	100-M6-SN-I

- ♦ 2 Km distance with Multi- mode Fibre
- 10 Km distance with Single Mode Fibre
- > 5000 Km distance with FC over IP

Frames



- Frame type and content/function
 Class-specific control information
 Protocol Type in this frame
 Sequence this frame belongs to
 Originator Exchange ID
 Multi-purpose parameter field
- Flexibility
 - Fly by Frame handling
 - Out of order
- Speed
- Routing


Data Traffic with Exchanges

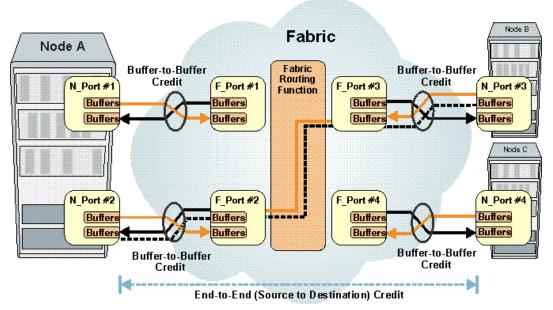
Establishing Operating Environment

Flow Control: Access Control, Latency, and Efficiency

Login Buffer to Buffer

- Node to Fabric
- Fabric to Node

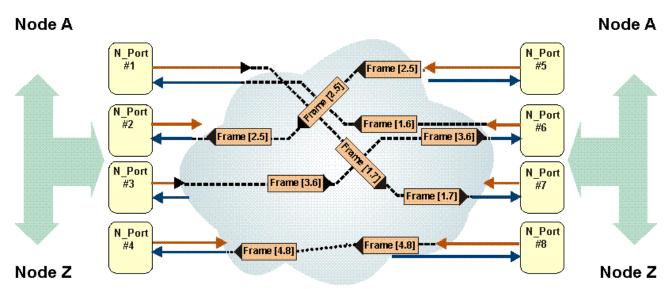
Login Node to Node


Flow control is credit based

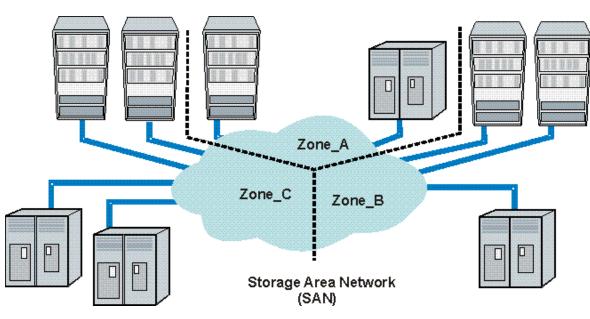
- Buffer-To-Buffer Credit
- . Class 3: No END-to-END
- · Control pace of frame transmission
- Each R_RDY received increments the available BB_Credit value

Latency

 Across a single switch, average latencies are less than 400 nanoseconds.

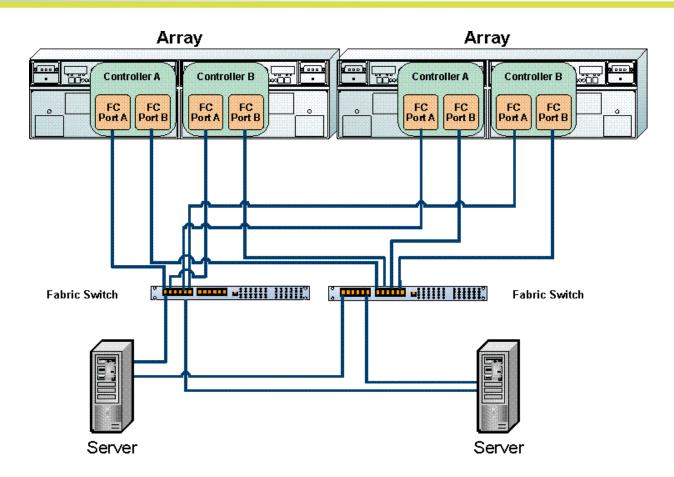


FC Routing



- Connect Any to Any
- Maximize Connectivity
- Simplex and Duplex

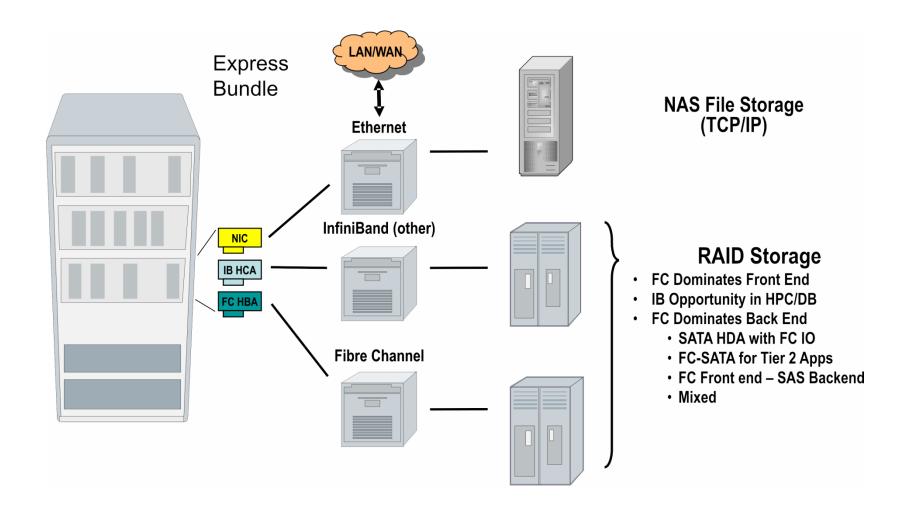
FC Access Control


Provide Accessibility

Soft Zoning: Employs the Name Server to limit the information returned to an initiator in response to a query. Devices in the zone can be identified by World Wide Node Name, World Wide Port Name, or domain/port of the switch the device is connected to.

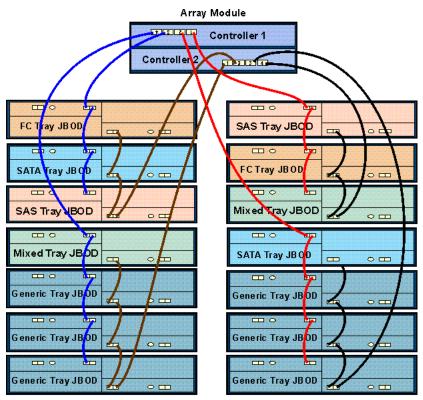
Hard Zoning: Enforced by the Fabric. switches monitor the communications and block any frames that do not comply with the effective zone configuration. This blocking is performed at the transmit side of the port where the destination device is located.

Redundancy, Availability, and Failover



- Multi-Path
- Full Redundancy
- Path Failover

FC Products Dominant in Enterprise Datacenter

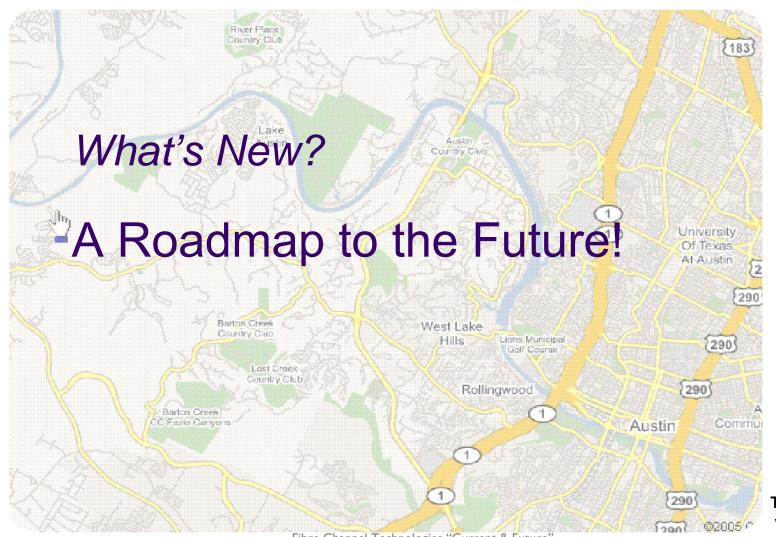


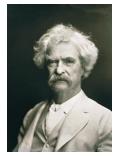
Detailed RAID Storage: Array Module with Different Drive Technologies

There's a lot more under the Fibre Channel hood than appearances reveal:

Array Module with Different Drive Tray Types

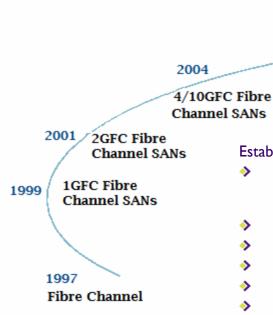
FC Product Performance – IOPS: Host Interface – Drive Interface

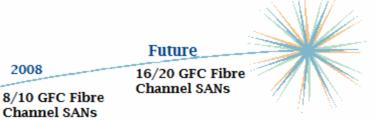

Array Host Interface


	Drive Type	Dual 4 GFC	Quad 4 GFC	Future Dual 8 GFC
Burst I/O rate cache reads (512 byte)		125K	125K	200K
Sustained I/O rate disk reads (4k – R5)	FC	40k	40k	80K
	SAS			70K
	SATA			I2K
Sustained I/O rate disk writes (4k- R5) - CMD	FC	9k	9k	I5K
	SAS	8K	10K	I2K
	SATA	2K	2K	4K
Number of drives required for benchmark test and code thread	FC, SAS, / SATA	96D / 8T	96D / 8T	96D / 8T

- FC continues to evolve with different technologies

Fibre Channel is Here to Stay.





The report of my death was an exaggeration.

Speed

Established in late 1980s, first standardized by ANSI T11 in 1994

- 8GFC & 10GFC TODAY! 16GFC & 20GFC in 18 month.
 - ISL rates to keep step with edge rates at 2.5x-3x bandwidth premium over edge rates
 - 4G edge uses 10G ISL, 8G edge uses 10G ISL, 16G edge uses 20G ISL, etc..
- \$9.9B Fibre Channel SAN Market in 2007 & growing faster than total storage market
- Over 50% of all external storage is FC and over 90% of all SAN is FC
- **>** TB of FC: 604K 2005, 1.4M 2007, forecast to hit 4.4M Terabytes of FC storage by 2010 (50% CAGR)
- FC Switch and HBA port count growing at 35% CAGR
- 8GFC at the same price as 4 GFC, 2GFC and 1Gb/s Ethernet **>**
- 8 GFC is plug-compatible with 1, 2 and 4GFC (devices auto negotiate w/o user intervention)
- Applications are driving higher data rates (i.e. Video, back-up times; more data to backup, less time to do it)
- R/W operations on 8GFC HBAs show dramatic improvements with 98% real utilization on saturated lines
- Serial SCSI; FCP protocol

2008

- Minimal error rates for network technology
- Credit-based flow control (no dropped frames)

FCIA Fibre Channel Speed Roadmap

D	1	C	<u> </u>	7	×
\Box	1		H		

	Product	Throughput	Line Rate	T11 Spec Technically	Market Availability
	Naming	(MBps)	(GBaud)†	Completed (Year)‡	(Year)‡
	1GFC	200	1.0625	1996	1997
	2GFC	400	2.125	2000	2001
_	4GFC	800	4.25	2003	2005
Base2*	8GFC	1600	8.5	2006	2008
	16GFC	3200	17	2009	2011
	32GFC	6400	34	2012	Market Demand
	64GFC	12800	68	2016	Market Demand
	128GFC	25600	136	2020	Market Demand
Base10**	10GFC	2400	10.52	2003	2004
	20GFC	4800	21.04	2008	2008
	40GFC	9600	42.08	2009	2011
	80GFC	19200	84.16	TBD	Market Demand
	100GFC	24000	105.2	TBD	Market Demand
	160GFC	38400	168.32	TBD	Market Demand
FCoE***	1GFCoE	240	1.25	2008	Market Demand
	10GFCoE	2400	10.52	2008	2009
	40GFCoE	9600	42.08	TBD	Market Demand
	100GFCoE	24000	105.2	TBD	Market Demand

†Line Rate: All Base2 speeds are single-lane serial stream. Base10 and FCoE rates listed are equivalent data rates for serial stream methodologies. However, final output speed is generated with aggregated methodologies. 22

^{*}Base2 used throughout all applications for Fibre Channel infrastructure and devices. Each speed maintains backward compatibility at least two previous generations (I.e., 8GFC backward compatible to 4GFC and 2GFC)

^{**}Base10 is for ISLs, core connections, and other high speed applications demanding maximum bandwidth. Except for 100GFC (which follow Ethernet standards and compatibility guidelines), each Base10 speed is expected to be compatible at least one previous generation.

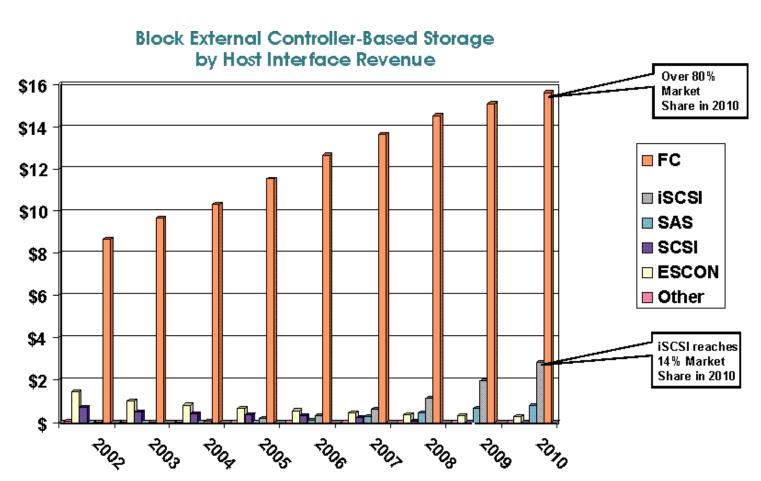
^{***}FCoE: Fibre Channel over Ethernet tunnels FC through Ethernet and is compatible with all existing Fibre Channel fabric environments. FCoE ports follow Ethernet standards and compatibility guidelines.

FCIA "Condensed" Roadmap (Speed GFC or GFCoE)

→ FC-Base2 (Edge, Backend, and ISL)

- IGFC, 2GFC, 4GFC shipping today
- 8GFC Ship to OEMs
- 16GFC, 32GFC, 64GFC, 128GFC

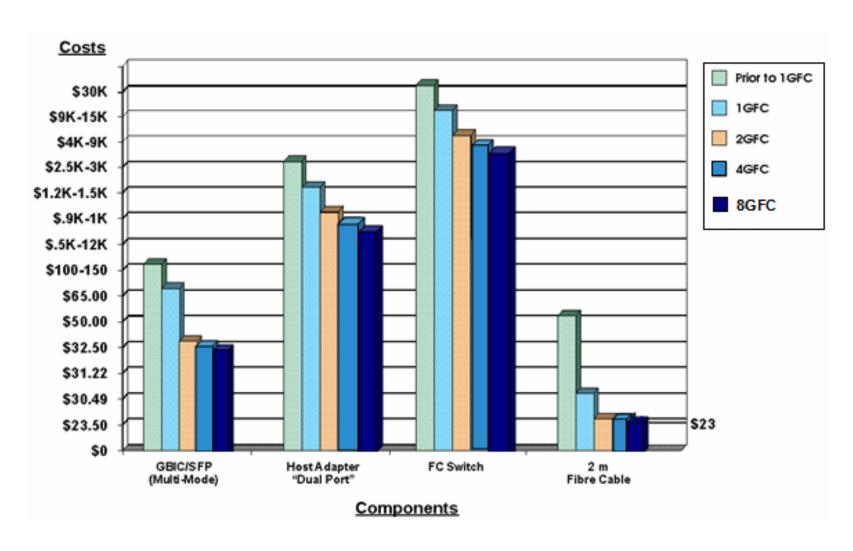
FC-Base I 0 (ISL)


- 10GFC shipping today
- 20GFC ships in 6-12 months
- 40GFC, 80GFC, 160GFC
 - > 100GFC under study (leverage IEEE 802.3 work)

FCoE (Datacenter)

- Current standard in work in T11 Uses Ethernet RJ45 Cat5/6 copper)
- IOGFCoE in early demonstrations today
- IGFCoE, 40GFCoE and I00GFCoE based on market demand

Continuous SAN Market Growth



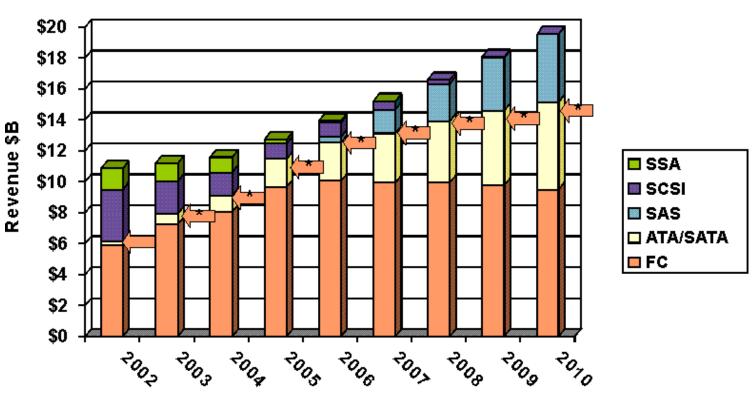
Source: Gartner External Controller-Based Disk Storage WW 2006-2010, 6 October 2006 (FICON included in Fibre Channel)

Current Cost Comparison Table

Fibre Channel's Continuous Evolution

FC has been the major storage system interconnect since the mid 90s

FC dominates the SAN and external storage market place


How will FC continue to Meet customers' evolving needs?

- Faster speeds
- Bandwidth/Cost leadership
- Investment protection
- Additional capabilities: FCOE
- Lower cost solutions
- Simplified solutions (Plug-n-play)
 - · FC-SCM

Continuous Back-End Market Growth

Block External Controller-Based Disk Storage by HDD Interface Revenue

Source: Gartner External Controller-Based Disk Storage WW 2006-2010, 6 October 2006 (FICON Included in Fibre Channel)

^{*} Estimate of FC+SATA over FC Infrastructure. Source: FCIA

Fibre Channel Is Being Improved According To Real Customer Requirements

New Standards For:

- Management And Ease Of Use
- Operational Flexibility and Scalability
- Security

Management Improvements

- Fabric Device Management Interface
 - HBA Information Can Be Retrieved From The Fabric
- Fibre Channel Open Management
 - SMI-S
 - SNMP MIB Development
- Improvements to the Fabric Configuration Server
 - Advanced Topology Discovery and Bulk Data Retrieval
- Common Transport
 - Session Semantics Have Been Added
- Diagnostic Tools
 - FC Trace Route and Ping

Operational Flexibility and Scalability

♦ FAIS: Fabric Application Interface Specification

Allows fabric to host certain applications

Event Server

More Granular Event Registration

Virtual Channels

Enables Traffic Differentiation On Links

Enhanced Commit Service

Fabric Locking More Granular

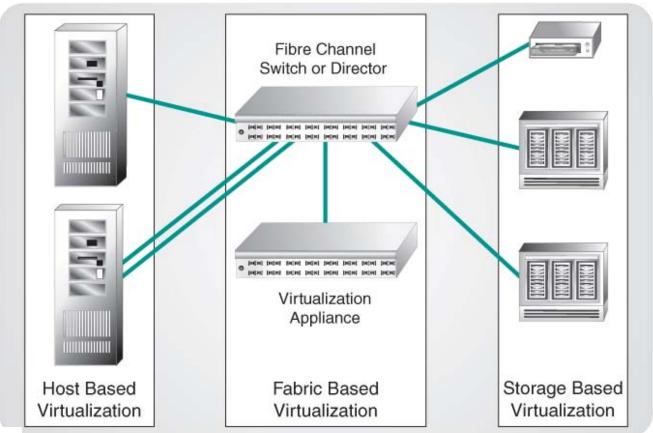
Operational Flexibility and Scalability

Frame Tagging

Enables Virtual Fabrics

Routing Architectures and Models

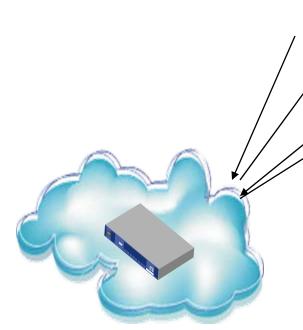
 Allows Devices On Distinct Fabrics To Communicate Without a Merge


Simplified Configurations and Management

 Devices compliant to this profile will provide streamlined functionality, be interoperable by default, and require little or no management.
 Supports the SMB markets.

Storage Virtualization

Three types of storage virtualization



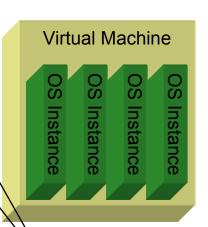
Check out SNIA Tutorial: Virtualization I - What, Why, Where and How?

NPort_ID Virtualization (NPIV)

FLOGI (FFFFFE, HWWNN, HWWPN) FLOGI ACC: Base PID: 0xddaa00

FDISC (SID=0, VWWNN1, VWWPN1)

FDISC ACC: VPID0: 0xddaa01

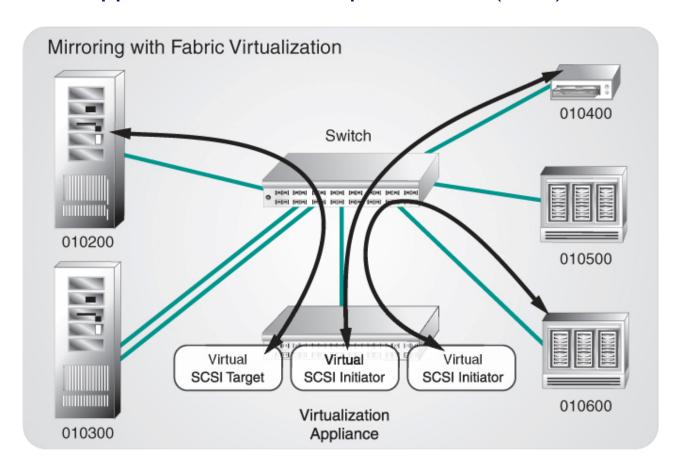

FDISC (SID=0, VWWNN2, VWWPN2)
FDISC ACC: VPID: 0xddaa02

FDISC (SID=0, VWWNN3, VWWPN3)

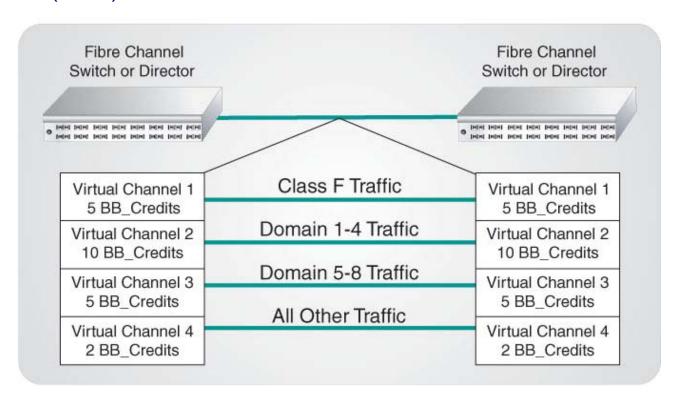
FDISC ACC: VPID: 0xddaa03

FDISC (SID=0, VWWNN4, VWWPN4)

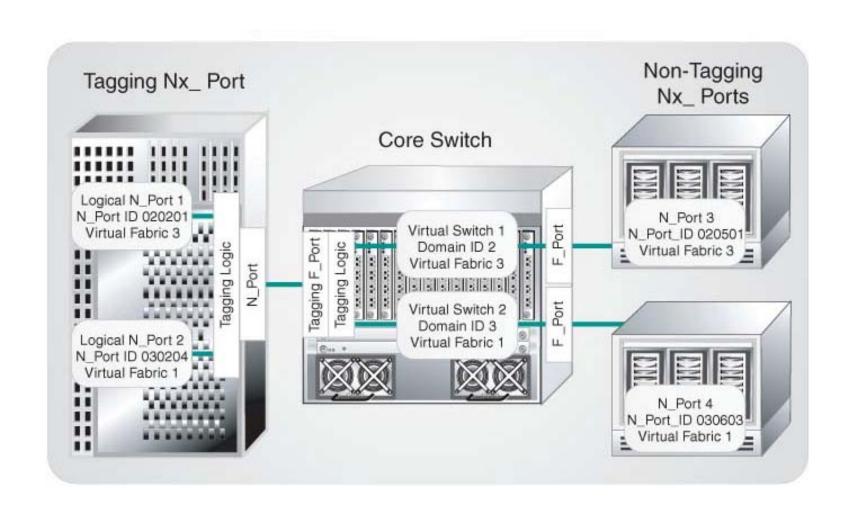
FDISC ACC: VPID: 0xddaa04



Fabric Based Virtualization

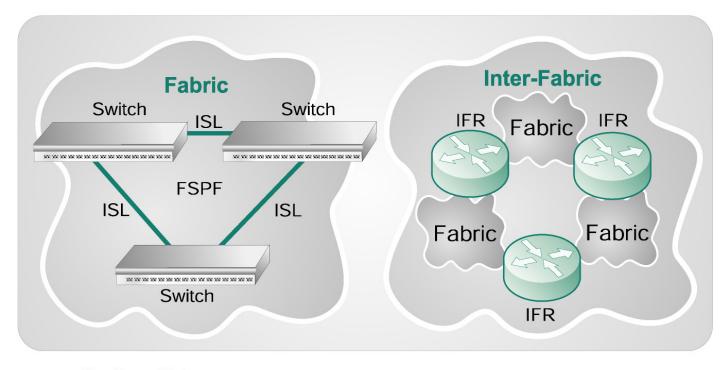

→ FC-Fabric Application Interface Specification (FAIS)

Virtual Channels



ISL buffer credits are assigned to traffic flows to provide Quality of Service (QoS) between switches

Virtual Fabric Tagging



Inter-Fabric Routing

Fabrics and Inter-Fabrics

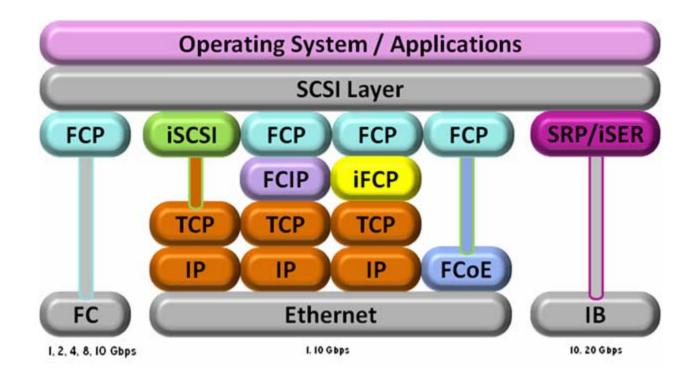
Fibre Channel Link

Layer 2 – Switching

FSPF = Fabric Shortest Path First ISL = Inter-Switch Link Layer 3 - Routing

IFR = Inter-Fabric Router Simple Routing

Security



- FC-SP Is An Approved INCITS Standard
- Provides a Security Framework for FC Environments
 - Infrastructure (Passwords, PKI, Secrets)
 - Authentication (FCAP, DH-CHAP, FCPAP)
 - Authorization (Security Policies)
 - Data Integrity (Hash, Keyed-Hash, Signatures, ESP)
 - Confidentiality (ESP)
 - Policy Distribution

FCOE

Fibre Channel: The Storage of Business

Dominates the SAN market today

Fibre Channel has a clear roadmap to provide:

- Higher performance
- · Additional capabilities (Security, Tiered Storage, Intelligence...)
- Enablers for new markets

Easy to learn, use and implement

Protects and future proofs storage investments

Comprehensive end to end solution

Fibre Channel Meets the Challenge

Q&A / Feedback

Please send any questions or comments on this presentation to SNIA: <u>tracknetworking@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Dr. M. K. Jibbe
Skip Jones
Steve Wilson
Tom Hammond-Doel
Howard Goldstein
Robert Peglar