
Mitsuba Documentation
Version 0.4.5

Wenzel Jakob

November 11, 2013

Contents Contents

Contents

I. Using Mitsuba 7

1. About Mitsuba 7

2. Limitations 8

3. License 8

4. Compiling the renderer 9
4.1. Common steps . 9

4.1.1. Build configurations . 9
4.1.2. Selecting a configuration . 10

4.2. Compilation flags . 10
4.3. Building on Debian or Ubuntu Linux . 11

4.3.1. Creating Debian or Ubuntu Linux packages 12
4.3.2. Releasing Ubuntu packages . 12

4.4. Building on Fedora Core . 13
4.4.1. Creating Fedora Core packages . 13

4.5. Building on Arch Linux . 13
4.5.1. Creating Arch Linux packages . 14

4.6. Building on Windows . 14
4.6.1. Integration with the Visual Studio interface 15

4.7. Building on Mac OS X . 15

5. Basic usage 16
5.1. Interactive frontend . 16
5.2. Command line interface . 16

5.2.1. Passing parameters . 18
5.2.2. Writing partial images to disk . 19
5.2.3. Rendering an animation . 19

5.3. Direct connection server . 19
5.4. Utility launcher . 20

5.4.1. Tonemapper . 20

6. Scene file format 22
6.1. Property types . 24

6.1.1. Numbers . 24
6.1.2. Strings . 24
6.1.3. Color spectra . 24
6.1.4. Vectors, Positions . 26
6.1.5. Transformations . 26

6.2. Animated transformations . 27
6.3. References . 28

2

Contents Contents

6.4. Including external files . 29
6.5. Aliases . 29

7. Miscellaneous topics 30
7.1. A word about color spaces . 30

7.1.1. Spectral rendering . 30

8. Plugin reference 31
8.1. Shapes . 32

8.1.1. Cube intersection primitive (cube) . 34
8.1.2. Sphere intersection primitive (sphere) . 35
8.1.3. Cylinder intersection primitive (cylinder) 37
8.1.4. Rectangle intersection primitive (rectangle) 38
8.1.5. Disk intersection primitive (disk) . 39
8.1.6. Wavefront OBJ mesh loader (obj) . 40
8.1.7. PLY (Stanford Triangle Format) mesh loader (ply) 43
8.1.8. Serialized mesh loader (serialized) . 44
8.1.9. Shape group for geometry instancing (shapegroup) 46
8.1.10. Geometry instance (instance) . 47
8.1.11. Hair intersection shape (hair) . 48
8.1.12. Height field intersection shape (heightfield) 50

8.2. Surface scattering models . 51
8.2.1. Smooth diffuse material (diffuse) . 54
8.2.2. Rough diffuse material (roughdiffuse) . 55
8.2.3. Smooth dielectric material (dielectric) . 56
8.2.4. Thin dielectric material (thindielectric) 58
8.2.5. Rough dielectric material (roughdielectric) 59
8.2.6. Smooth conductor (conductor) . 62
8.2.7. Rough conductor material (roughconductor) 64
8.2.8. Smooth plastic material (plastic) . 67
8.2.9. Rough plastic material (roughplastic) . 70
8.2.10. Smooth dielectric coating (coating) . 73
8.2.11. Rough dielectric coating (roughcoating) . 75
8.2.12. Bump map modifier (bump) . 77
8.2.13. Modified Phong BRDF (phong) . 78
8.2.14. Anisotropic Ward BRDF (ward) . 79
8.2.15. Mixture material (mixturebsdf) . 81
8.2.16. Blended material (blendbsdf) . 82
8.2.17. Opacity mask (mask) . 83
8.2.18. Two-sided BRDF adapter (twosided) . 84
8.2.19. Diffuse transmitter (difftrans) . 85
8.2.20. Hanrahan-Krueger BSDF (hk) . 86
8.2.21. Irawan & Marschner woven cloth BRDF (irawan) 88

8.3. Textures . 89
8.3.1. Bitmap texture (bitmap) . 90
8.3.2. Checkerboard (checkerboard) . 93

3

Contents Contents

8.3.3. Procedural grid texture (gridtexture) . 94
8.3.4. Scaling passthrough texture (scale) . 95
8.3.5. Vertex color passthrough texture (vertexcolors) 96
8.3.6. Wireframe texture (wireframe) . 97
8.3.7. Curvature texture (curvature) . 98

8.4. Subsurface scattering models . 99
8.4.1. Dipole-based subsurface scattering model (dipole) 100

8.5. Participating media . 103
8.5.1. Homogeneous participating medium (homogeneous) 104
8.5.2. Heterogeneous participating medium (heterogeneous) 106

8.6. Phase functions . 108
8.6.1. Isotropic phase function (isotropic) . 109
8.6.2. Henyey-Greenstein phase function (hg) . 110
8.6.3. Rayleigh phase function (rayleigh) . 111
8.6.4. Kajiya-Kay phase function (kkay) . 112
8.6.5. Micro-flake phase function (microflake) . 113
8.6.6. Mixture phase function (mixturephase) . 114

8.7. Volume data sources . 115
8.7.1. Constant-valued volume data source (constvolume) 116
8.7.2. Grid-based volume data source (gridvolume) 117
8.7.3. Caching volume data source (volcache) . 119

8.8. Emitters . 120
8.8.1. Point light source (point) . 121
8.8.2. Area light (area) . 122
8.8.3. Spot light source (spot) . 123
8.8.4. Directional emitter (directional) . 124
8.8.5. Collimated beam emitter (collimated) . 125
8.8.6. Skylight emitter (sky) . 126
8.8.7. Sun emitter (sun) . 129
8.8.8. Sun and sky emitter (sunsky) . 130
8.8.9. Environment emitter (envmap) . 131
8.8.10. Constant environment emitter (constant) 132

8.9. Sensors . 133
8.9.1. Perspective pinhole camera (perspective) 134
8.9.2. Perspective camera with a thin lens (thinlens) 136
8.9.3. Orthographic camera (orthographic) . 138
8.9.4. Telecentric lens camera (telecentric) . 139
8.9.5. Spherical camera (spherical) . 140
8.9.6. Irradiance meter (irradiancemeter) . 141
8.9.7. Radiance meter (radiancemeter) . 142
8.9.8. Fluence meter (fluencemeter) . 143
8.9.9. Perspective pinhole camera with radial distortion (perspective_rdist) . 144

8.10. Integrators . 145
8.10.1. Ambient occlusion integrator (ao) . 148
8.10.2. Direct illumination integrator (direct) . 149
8.10.3. Path tracer (path) . 150

4

Contents Contents

8.10.4. Simple volumetric path tracer (volpath_simple) 152
8.10.5. Extended volumetric path tracer (volpath) 153
8.10.6. Bidirectional path tracer (bdpt) . 154
8.10.7. Photon map integrator (photonmapper) . 158
8.10.8. Progressive photon mapping integrator (ppm) 160
8.10.9. Stochastic progressive photon mapping integrator (sppm) 161
8.10.10. Primary Sample Space Metropolis Light Transport (pssmlt) 162
8.10.11. Path Space Metropolis Light Transport (mlt) 164
8.10.12. Energy redistribution path tracing (erpt) . 166
8.10.13. Adjoint particle tracer (ptracer) . 168
8.10.14. Adaptive integrator (adaptive) . 169
8.10.15. Virtual Point Light integrator (vpl) . 170
8.10.16. Irradiance caching integrator (irrcache) . 171

8.11. Sample generators . 173
8.11.1. Independent sampler (independent) . 174
8.11.2. Stratified sampler (stratified) . 175
8.11.3. Low discrepancy sampler (ldsampler) . 176
8.11.4. Halton QMC sampler (halton) . 177
8.11.5. Hammersley QMC sampler (hammersley) . 180
8.11.6. Sobol QMC sampler (sobol) . 182

8.12. Films . 184
8.12.1. High dynamic range film (hdrfilm) . 185
8.12.2. Tiled high dynamic range film (tiledhdrfilm) 188
8.12.3. Low dynamic range film (ldrfilm) . 189
8.12.4. MATLAB / Mathematica film (mfilm) . 191

8.13. Reconstruction filters . 192
8.13.1. Reconstruction filter comparison 1: frequency attenuation and aliasing . . . 193
8.13.2. Reconstruction filter comparison 2: ringing 194
8.13.3. Specifying a reconstruction filter . 194

II. Development guide 195

9. Code structure 195

10. Coding style 195

11. Designing a custom integrator plugin 198
11.1. Basic implementation . 198
11.2. Visualizing depth . 201
11.3. Nesting . 203

12. Parallelization layer 204

13. Python integration 211
13.0.1. Accessing signatures in an interactive Python shell 211

13.1. Basics . 212

5

Contents Contents

13.2. Recipes . 213
13.2.1. Loading a scene . 213
13.2.2. Rendering a loaded scene . 213
13.2.3. Rendering over the network . 214
13.2.4. Constructing custom scenes from Python . 214
13.2.5. Taking control of the logging system . 216
13.2.6. Rendering a turntable animation with motion blur 217

14. Acknowledgments 219

15. License 221
15.1. Preamble . 221
15.2. Terms and Conditions . 222

6

1. About Mitsuba

Part I.
UsingMitsuba
Disclaimer: This is manual documents the usage, file format, and internal design of the Mitsuba
rendering system. It is currently a work in progress, hence some parts may still be incomplete or
missing.

1. About Mitsuba

Mitsuba is a research-oriented rendering system in the style of PBRT (www.pbrt.org), from which
it derives much inspiration. It is written in portable C++, implements unbiased as well as biased
techniques, and contains heavy optimizations targeted towards current CPU architectures. Mitsuba
is extremely modular: it consists of a small set of core libraries and over 100 different plugins that
implement functionality ranging from materials and light sources to complete rendering algorithms.

In comparison to other open source renderers, Mitsuba places a strong emphasis on experimental
rendering techniques, such as path-based formulations of Metropolis Light Transport and volumetric
modeling approaches. Thus, it may be of genuine interest to those who would like to experiment with
such techniques that haven’t yet found their way into mainstream renderers, and it also provides a
solid foundation for research in this domain.

Other design considerations are:

Performance: Mitsuba provides optimized implementations of the most commonly used render-
ing algorithms. By virtue of running on a shared foundation, comparisons between them can better
highlight the merits and limitations of different approaches. This is in contrast to, say, comparing two
completely different rendering products, where technical information on the underlying implemen-
tation is often intentionally not provided.

Robustness: In many cases, physically-based rendering packages force the user to model scenes
with the underlying algorithm (specifically: its convergence behavior) in mind. For instance, glass
windows are routinely replaced with light portals, photons must be manually guided to the relevant
parts of a scene, and interactions with complex materials are taboo, since they cannot be importance
sampled exactly. One focus of Mitsuba will be to develop path-space light transport algorithms, which
handle such cases more gracefully.

Scalability: Mitsuba instances can be merged into large clusters, which transparently distribute and
jointly execute tasks assigned to them using only node-to-node communcation. It has successfully
scaled to large-scale renderings that involved more than 1000 cores working on a single image. Most
algorithms in Mitsuba are written using a generic parallelization layer, which can tap into this cluster-
wide parallelism. The principle is that if any component of the renderer produces work that takes
longer than a second or so, it at least ought to use all of the processing power it can get.

The renderer also tries to be very conservative in its use of memory, which allows it to handle large
scenes (>30 million triangles) and multi-gigabyte heterogeneous volumes on consumer hardware.

Realism and accuracy: Mitsuba comes with a large repository of physically-based reflectance mod-
els for surfaces and participating media. These implementations are designed so that they can be
used to build complex shader networks, while providing enough flexibility to be compatible with

7

www.pbrt.org

3. License 2. Limitations

a wide range of different rendering techniques, including path tracing, photon mapping, hardware-
accelerated rendering and bidirectional methods.

The unbiased path tracers in Mitsuba are battle-proven and produce reference-quality results that
can be used for predictive rendering, and to verify implementations of other rendering methods.

Usability: Mitsuba comes with a graphical user interface to interactively explore scenes. Once
a suitable viewpoint has been found, it is straightforward to perform renderings using any of the
implemented rendering techniques, while tweaking their parameters to find the most suitable settings.
Experimental integration into Blender 2.5 is also available.

2. Limitations

Mitsuba can be used to solve many interesting light transport problems. However, there are some
inherent limitations of the system that users should be aware of:

(i) Wave Optics: Mitsuba is fundamentally based on the geometric optics toolbox, which means
that it generally does not simulate phenomena that arise due to the wave properties of light
(diffraction, for instance).

(ii) Polarization: Mitsuba does not account for polarization. In other words, light is always assumed
to be randomly polarized. This can be a problem for some predictive rendering applications.

(iii) Numerical accuracy: The accuracy of any result produced with this system is constrained by
the underlying floating point computations.

For instance, an intricate scene that can be rendered without problems, may produce the wrong
answer when all objects are translated away from the origin by a large distance, since floating
point numbers are spaced less densely at the new position. To avoid these sorts of pitfalls, it is
good to have a basic understanding of the IEEE-754 standard.

3. License

Mitsuba is free software and can be redistributed and modified under the terms of the GNU General
Public License (Version 3) as provided by the Free Software Foundation.

Remarks:
• Being a “viral” license, the GPL automatically applies to all derivative work. Amongst other things,

this means that without express permission, Mitsuba’s source code is off-limits to companies that

develop rendering software not distributed under a compatible license.

8

4. Compiling the renderer 4. Compiling the renderer

4. Compiling the renderer

To compile Mitsuba, you will need a recent C++ compiler (e.g. GCC 4.2+ or Visual Studio 2010)
and some additional libraries, which Mitsuba uses internally. Builds on all supported platforms are
done using a unified system based on SCons (http://www.scons.org), which is a Python-based
software construction tool. The exact process is different depending on which operating system is
used and will be explained in the following subsections.

4.1. Common steps

To get started, you will need to download a recent version of the Mitsuba source code. Before doing
this, ensure that you have read the licensing agreement (Section 15), and that you abide by its contents.
Note that, being a “viral” license, the GPL automatically applies to derivative work. Amongst other
things, this means that Mitsuba’s source code is off-limits to those who develop rendering software
not distributed under a compatible license.

Check that the Mercurial (http://mercurial.selenic.com/) versioning system1 is installed,
which is required to fetch the most recent source code release. Begin by entering the following at the
command prompt (or run an equivalent command from a graphical Mercurial frontend):

$ hg clone https://www.mitsuba-renderer.org/hg/mitsuba

This should dowload a full copy of the main repository.

4.1.1. Build configurations

Common to all platforms is that a build configuration file must be selected. Several options are avail-
able on each operating system:

Linux: On Linux, there are two supported configurations:

build/config-linux-gcc.py: Optimized single precision GCC build. The resulting binaries in-
clude debug symbols for convenience, but these can only be used for relatively high-level de-
bugging due to the enabled optimizations.

build/config-linux-gcc-debug.py: Non-optimized single precision GCC build with debug
symbols. When compiled with this configuration, Mitsuba will run extremely slowly. Its main
use is to track down elusive bugs.

Windows: On Windows, builds can either be performed using the Visual Studio 20102 compiler or
Intel XE Composer (on top of Visual Studio 2010). Note that Visual Studio 2010 Service Pack 1 must
be installed or the resulting binaries will crash.

build/config-{win32, win64}-{msvc2010, msvc2010-debug}.py: Create 32 or 64 bit bi-
naries using Microsoft Visual C++ version 2010. The configurations with the suffix -debug
will include debug symbols in all binaries, which run very slowly.

1
On Windows, you might want to use the convenient TortoiseHG shell extension (http://tortoisehg.bitbucket.
org/) to run the subsequent steps directly from the Explorer.

2
No other Visual Studio versions are currently supported.

9

http://www.scons.org
http://mercurial.selenic.com/
http://tortoisehg.bitbucket.org/
http://tortoisehg.bitbucket.org/

4. Compiling the renderer 4.2. Compilation flags

build/config-{win32, win64}-icl.py: Create 32 or 64 bit release binaries using Intel XE Com-
poser (on top of Visual Studio 2010). Versions XE 2012 and 2013 are known to work.

Mac OS: On Mac OS, builds can either be performed using the the XCode 4 llvm-gcc toolchain
or Intel XE Composer. It is possible to target MacOS 10.6 (Snow Leopard) or 10.7 (Lion) as the oldest
supported operating system release. In both cases, XCode must be installed along with the supple-
mentary command line tools.

config-macos{10.6, 10.7}-gcc-{x86,x86_64,universal}.py: Create Intel 32 bit, 64 bit,
or universal binaries using the llvm-gcc toolchain.

config-macos{10.6, 10.7}-icl-{x86,x86_64}.py: Create Intel 32 bit or 64 bit binaries us-
ing the Intel XE Composer toolchain. Versions XE 2012 and 2013 are known to work.

Note that the configuration files assume that XCode was installed in the /Applications folder. They
must be be manually updated when this is not the case.

4.1.2. Selecting a configuration

Having chosen a configuration, copy it to the main directory and rename it to config.py, e.g.:

$ cp build/config-linux-gcc.py config.py

4.2. Compilation flags

There are several flags that affect the behavior of Mitsuba and must be specified at compile time. These
usually don’t need to be changed, but if you want to compile Mitsuba for spectral rendering, or to use
double precision for internal computations then the following may be useful. Otherwise, you may
skip ahead to the subsection that covers your operating system.

To change the compilation flags, open the config.py file that was just copied and look up the
CXXFLAG parameter. The following options are available:

MTS_DEBUG Enable assertions etc. Usually a good idea, and enabled by default (even in release
builds).

MTS_KD_DEBUG Enable additional checks in the kd-tree. This is quite slow and mainly useful to track
down bugs when they are suspected.

MTS_KD_CONSERVE_MEMORY Use a more compact representation for triangle geometry (at the cost
of speed). This flag causes Mitsuba to use the somewhat slower Moeller-Trumbore triangle
intersection method instead of the default Wald intersection test, which has an overhead of 48
bytes per triangle. Off by default.

MTS_SSE Activate optimized SSE routines. On by default.

MTS_HAS_COHERENT_RT Include coherent ray tracing support (depends on MTS_SSE). This flag is
activated by default.

10

4. Compiling the renderer 4.3. Building on Debian or Ubuntu Linux

MTS_DEBUG_FP Generated NaNs and overflows will cause floating point exceptions, which can be
caught in a debugger. This is slow and mainly meant as a debugging tool for developers. Off by
default.

SPECTRUM_SAMPLES=⟨..⟩ This setting defines the number of spectral samples (in the 368-830 nm
range) that are used to render scenes. The default is 3 samples, in which case the renderer
automatically turns into an RGB-based system. For high-quality spectral rendering, this should
be set to 30 or higher. Refer also to Section 7.1.

SINGLE_PRECISION Do all computation in single precision. This is normally sufficient and there-
fore used as the default setting.

DOUBLE_PRECISION Do all computation in double precision. This flag is incompatible withMTS_SSE,
MTS_HAS_COHERENT_RT, and MTS_DEBUG_FP.

MTS_GUI_SOFTWARE_FALLBACK Causes the GUI to use a software fallback instead of the hardware-
accelerated realtime preview. This is useful when the binary will be executed over a remote link
using a protocol such as RDP (which does not provide the requisite OpenGL features).

All of the default configurations files located in the build directory use the flags SINGLE_PRECISION,
SPECTRUM_SAMPLES=3, MTS_DEBUG, MTS_SSE, as well as MTS_HAS_COHERENT_RT.

4.3. Building on Debian or Ubuntu Linux

You’ll first need to install a number of dependencies. It is assumed here that you are using a recent
version of Ubuntu Linux (Precise Pangolin / 12.04 LTS or later), hence some of the package may be
named differently if you are using Debian Linux or another Ubuntu version.

First, run

$ sudo apt-get install build-essential scons mercurial qt4-dev-tools libpng12-dev
libjpeg-dev libilmbase-dev libxerces-c-dev libboost-all-dev libopenexr-dev
libglewmx-dev libxxf86vm-dev libpcrecpp0 libeigen3-dev libfftw3-dev

To get COLLADA support, you will also need to install the collada-dom packages or build them
from scratch. Here, we install the x86_64 binaries and development headers that can be found on
the Mitsuba website (at http://www.mitsuba-renderer.org/releases/current)

$ sudo dpkg --install collada-dom_*.deb

To start a regular build, run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to paral-
lelize the build by appending -j core count to the scons command. If all goes well, SCons should
finish successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you first have to import it into your shell environment:

$ source setpath.sh

Having set up everything, you can now move on to Section 5.

11

http://www.mitsuba-renderer.org/releases/current

4. Compiling the renderer 4.3. Building on Debian or Ubuntu Linux

4.3.1. Creating Debian or Ubuntu Linux packages

The preferred way of redistristributing executables on Debian or Ubuntu Linux is to create .deb pack-
age files. To make custom Mitsuba packages, it is strongly recommended that you work with a pristine
installation of the target operating system3. This can be done as follows: first, install debootstrap
and download the most recent operating system release to a subdirectory. The following example is
based on Ubuntu 12.04 LTS (“Precise Pangolin”), but the steps are almost identical for other versions
of Ubuntu or Debian Linux.

$ sudo apt-get install debootstrap
$ sudo debootstrap --arch amd64 precise precise-pristine

Next, chroot into the created directory, enable the multiverse package repository, and install the
necessary tools for creating package files:

$ sudo chroot precise-pristine
$ echo "deb http://archive.ubuntu.com/ubuntu precise universe" >> /etc/apt/sources.
list

$ apt-get update
$ apt-get install debhelper dpkg-dev pkg-config

Now, you should be able to set up the remaining dependencies as described in Section 4.3. Once this
is done, check out a copy of Mitsuba to the root directory of the chroot environment, e.g.

$ hg clone https://www.mitsuba-renderer.org/hg/mitsuba

To start the compilation process, enter

$ cd mitsuba
$ cp -R data/linux/debian debian
$ dpkg-buildpackage -nc

After everything has been built, you should find the created package files in the root directory.

4.3.2. Releasing Ubuntu packages

To redistribute Ubuntu packages over the Internet or a local network, it is convenient to put them
into an apt-compatible repository. To prepare such a repository, put the two deb-files built in the
last section, as well as the collada-dom deb-files into a public directory made available by a HTTP
server and inside it, run

path-to-htdocs$ dpkg-scanpackages path/to/deb-directory /dev/null | gzip -9c >
path/to/deb-directory/Packages.gz

This will create a respository index file named Packages.gz. Note that you must execute this com-
mand in the root directory of the HTTP server’s web directory and provide the relative path to the
package files – otherwise, the index file will specify the wrong package paths. Finally, the whole di-
rectory can be uploaded to some public location and then referenced by placing a line following the
pattern

deb http://<path-to-deb-directory> ./

3
Several commercial graphics drivers “pollute” the OpenGL setup so that the compiled Mitsuba binaries can only be

used on machines using the same drivers. For this reason, it is better to work from a clean boostrapped install.

12

4. Compiling the renderer 4.4. Building on Fedora Core

into the /etc/apt/sources.list file. This setup is convenient for distributing a custom Mitsuba
build to many Debian or Ubuntu machines running (e.g. to nodes in a rendering cluster).

4.4. Building on Fedora Core

You’ll first need to install a number of dependencies. It is assumed here that you are using FC15, hence
some of the package may be named differently if you are using another version.

First, run

$ sudo yum install mercurial gcc-c++ scons boost-devel qt4-devel OpenEXR-devel
xerces-c-devel python-devel glew-devel libpng-devel libjpeg-devel collada-dom-
devel eigen3-devel fftw-devel

Afterwards, simply run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-
allelize the build by appending -j core count to the command. If all goes well, SCons should finish
successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you first have to import it into your shell environment:

$ source setpath.sh

Having set up everything, you can now move on to Section 5.

4.4.1. Creating Fedora Core packages

To create RPM packages, you will need to install the RPM development tools:

$ sudo yum install rpmdevtools

Once this is done, run the following command in your home directory:

$ rpmdev-setuptree

and create a Mitsuba source package in the appropriate directory:

$ ln -s mitsuba mitsuba-0.4.5
$ tar czvf rpmbuild/SOURCES/mitsuba-0.4.5.tar.gz mitsuba-0.4.5/.

Finally, rpmbuilder can be invoked to create the package:

$ rpmbuild -bb mitsuba-0.4.5/data/linux/fedora/mitsuba.spec

After this command finishes, its output can be found in the directory rpmbuild/RPMS.

4.5. Building on Arch Linux

You’ll first need to install a number of dependencies:

$ sudo pacman -S gcc xerces-c glew openexr boost libpng libjpeg qt scons mercurial
python fftw

13

4. Compiling the renderer 4.6. Building on Windows

For COLLADA support, you will also have to install the collada-dom library. For this, you can either
install the binary package available on the Mitsuba website, or you can compile it yourself using the
PKGBUILD supplied with Mitsuba, i.e.

$ cd <some-temporary-directory>
$ cp <path-to-mitsuba>/data/linux/arch/collada-dom/PKGBUILD .
$ makepkg PKGBUILD
<..compiling..>
$ sudo pacman -U <generated package file>

Finally, Eigen 3 must be installed. Again, there is a binary package on the Mitsuba website and the
corresponding PKGBUILD can be obtained here: http://aur.archlinux.org/packages.php?
ID=47884. Once all dependencies are taken care of, simply run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-
allelize the build by appending -j core count to the command. If all goes well, SCons should finish
successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you first have to import it into your shell environment:

$ source setpath.sh

Having set up everything, you can now move on to Section 5.

4.5.1. Creating Arch Linux packages

Mitsuba ships with a PKGBUILD file, which automatically builds a package from the most recent repos-
itory version:

$ makepkg data/linux/arch/mitsuba/PKGBUILD

4.6. Building on Windows

Compiling Mitsuba’s dependencies on Windows is a laborious process; for convenience, there is a
repository that provides them in precompiled form. To use this repository, clone it using Mercurial
and rename the directory so that it forms the dependencies subdirectory inside the main Mitsuba
directory, i.e. run something like

C:\>cd mitsuba
C:\mitsuba\>hg clone https://www.mitsuba-renderer.org/hg/dependencies_windows
C:\mitsuba\>rename dependencies_windows dependencies

There are a few other things that need to be set up: make sure that your installation of Visual Studio
is up to date, since Mitsuba binaries created with versions prior to Service Pack 1 will crash.

Next, you will need to install Python 2.6.x (www.python.org) and SCons4 (http://www.scons.
org, any 2.x version will do) and ensure that they are contained in the %PATH% environment variable
so that entering scons on the command prompt (cmd.exe) launches the build system.
4
Note that on someWindowsmachines, the SCons installer generates a warning about not finding Python in the registry.

In this case, you can instead run python setup.py install within the source release of SCons.

14

http://aur.archlinux.org/packages.php?ID=47884
http://aur.archlinux.org/packages.php?ID=47884
www.python.org
http://www.scons.org
http://www.scons.org

4. Compiling the renderer 4.7. Building on Mac OS X

Having installed all dependencies, run the “Visual Studio 2010 Command Prompt” from the Start
Menu (x86 for 32-bit or x64 for 64bit), navigate to the Mitsuba directory, and simply run

C:\mitsuba\>scons

In the case that you have multiple processors, you might want to parallelize the build by appending
the option -j core count to the scons command.

If all goes well, the build process will finish successfully after a few minutes. Note that in comparison
to the other platforms, you don’t have to run the setpath.sh script at this point. All binaries are
automatically copied into the dist directory, and they should be executed directly from there.

4.6.1. Integration with the Visual Studio interface

Basic Visual Studio 2010 integration with support for code completion exists for those who develop
Mitsuba code on Windows. To use the supplied projects, simply double-click on one of the two
files build/mitsuba-msvc2010.sln and build/mitsuba-msvc2010.sln. These Visual Studio
projects still internally use the SCons-based build system to compile Mitsuba; whatever build config-
uration is selected within Visual Studio will be used to pick a matching configuration file from the
build directory.

4.7. Building on Mac OS X

Remarks:
• Unfortunately, OpenMP is not available when compiling using the regular clang toolchain (it is

available when using Intel XE Composer). This will cause the following parts of Mitsuba to run

single-threaded: bitmap resampling (i.e. MIP map generation), blue noise point generation in the

dipole plugin, as well as the ppm and sppm plugins.

Compiling Mitsuba’s dependencies on Mac OS is a laborious process; for convenience, there is a
repository that provides them in precompiled form. To use this repository, clone it using Mercurial
and rename the directory so that it forms the dependencies subdirectory inside the main Mitsuba
directory, i.e. run something like

$ cd mitsuba
$ hg clone https://www.mitsuba-renderer.org/hg/dependencies_macos
$ mv dependencies_macos dependencies

You will also need to install SCons (>2.0.0, available at www.scons.org) and a recent release of
XCode, including its command-line compilation tools. Next, run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-
allelize the build by appending -j core count to the command. If all goes well, SCons should finish
successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you first have to import it into your shell environment:

$ source setpath.sh

15

5. Basic usage 5. Basic usage

5. Basic usage

The rendering functionality of Mitsuba can be accessed through a command line interface and an
interactive Qt-based frontend. This section provides some basic instructions on how to use them.

5.1. Interactive frontend

To launch the interactive frontend, run Mitsuba.app on MacOS, mtsgui.exe on Windows, and
mtsgui on Linux (after sourcing setpath.sh). You can also drag and drop scene files onto the
application icon or the running program to open them. A quick video tutorial on using the GUI can
be found here: http://vimeo.com/13480342.

5.2. Command line interface

The mitsuba binary is an alternative non-interactive rendering frontend for command-line usage
and batch job operation. To get a listing of the parameters it supports, run the executable without
parameters:

$ mitsuba

Listing 1 shows the output resulting from this command. The most common mode of operation is to
render a single scene, which is provided as a parameter, e.g.

$ mitsuba path-to/my-scene.xml

It is also possible to connect to network render nodes, which essentially lets Mitsuba parallelize over
additional cores. To do this, pass a semicolon-separated list of machines to the -c parameter.

$ mitsuba -c machine1;machine2;... path-to/my-scene.xml

There are two different ways in which you can access render nodes:

• Direct: Here, you create a direct connection to a running mtssrv instance on another machine
(mtssrv is the Mitsuba server process). From the the performance standpoint, this approach
should always be preferred over the SSH method described below when there is a choice be-
tween them. There are some disadvantages though: first, you need to manually start mtssrv
on every machine you want to use.

And perhaps more importantly: the direct communication protocol makes no provisions for
a malicious user on the remote side. It is too costly to constantly check the communication
stream for illegal data sequences, so Mitsuba simply doesn’t do it. The consequence of this is
that you should only use the direct communication approach within trusted networks.

For direct connections, you can specify the remote port as follows:

$ mitsuba -c machine:1234 path-to/my-scene.xml

When no port is explicitly specified, Mitsuba uses default value of 7554.

• SSH: This approach works as follows: The renderer creates a SSH connection to the remote
side, where it launches a Mitsuba worker instance. All subsequent communication then passes

16

http://vimeo.com/13480342

5. Basic usage 5.2. Command line interface

Mitsuba version 0.4.5, Copyright (c) 2013 Wenzel Jakob
Usage: mitsuba [options] <One or more scene XML files>
Options/Arguments:
-h Display this help text

-D key=val Define a constant, which can referenced as "$key" in the scene

-o fname Write the output image to the file denoted by "fname"

-a p1;p2;.. Add one or more entries to the resource search path

-p count Override the detected number of processors. Useful for reducing
the load or creating scheduling-only nodes in conjunction with
the -c and -s parameters, e.g. -p 0 -c host1;host2;host3,...

-q Quiet mode - do not print any log messages to stdout

-c hosts Network rendering: connect to mtssrv instances over a network.
Requires a semicolon-separated list of host names of the form

host.domain[:port] for a direct connection
or

user@host.domain[:path] for a SSH connection (where
"path" denotes the place where Mitsuba is checked
out -- by default, "~/mitsuba" is used)

-s file Connect to additional Mitsuba servers specified in a file
with one name per line (same format as in -c)

-j count Simultaneously schedule several scenes. Can sometimes accelerate
rendering when large amounts of processing power are available
(e.g. when running Mitsuba on a cluster. Default: 1)

-n name Assign a node name to this instance (Default: host name)

-t Test case mode (see Mitsuba docs for more information)

-x Skip rendering of files where output already exists

-r sec Write (partial) output images every 'sec' seconds

-b res Specify the block resolution used to split images into parallel
workloads (default: 32). Only applies to some integrators.

-v Be more verbose

-w Treat warnings as errors

-z Disable progress bars

For documentation, please refer to http://www.mitsuba-renderer.org/docs.html

Listing 1: Command line options of the mitsuba binary

17

5. Basic usage 5.2. Command line interface

through the encrypted link. This is completely secure but slower due to the encryption over-
head. If you are rendering a complex scene, there is a good chance that it won’t matter much
since most time is spent doing computations rather than communicating
Such an SSH link can be created simply by using a slightly different syntax:
$ mitsuba -c username@machine path-to/my-scene.xml

The above line assumes that the remote home directory contains a Mitsuba source directory
named mitsuba, which contains the compiled Mitsuba binaries. If that is not the case, you
need to provide the path to such a directory manually, e.g:
$ mitsuba -c username@machine:/opt/mitsuba path-to/my-scene.xml

For the SSH connection approach to work, you must enable passwordless authentication. Try
opening a terminal window and running the command ssh username@machine (replace
with the details of your remote connection). If you are asked for a password, something is not
set up correctly — please see http://www.debian-administration.org/articles/152
for instructions.
On Windows, the situation is a bit more difficult since there is no suitable SSH client by default.
To get SSH connections to work, Mitsuba requires plink.exe (from PuTTY) to be on the
path. For passwordless authentication with a Linux/OSX-based server, convert your private
key to PuTTY’s format using puttygen.exe. Afterwards, start pageant.exe to load and
authenticate the key. All of these binaries are available from the PuTTY website.
It is possible to mix the two approaches to access some machines directly and others over SSH.

When doing many network-based renders over the command line, it can become tedious to specify
the connections every time. They can alternatively be loaded from a text file where each line contains
a separate connection description as discussed previously:
$ mitsuba -s servers.txt path-to/my-scene.xml

where servers.txt e.g. contains
user1@machine1.domain.org:/opt/mitsuba
machine2.domain.org
machine3.domain.org:7346

5.2.1. Passing parameters

Any attribute in the XML-based scene description language can be parameterized from the command
line. For instance, you can render a scene several times with different reflectance values on a certain
material by changing its description to something like
<bsdf type="diffuse">

<spectrum name="reflectance" value="$reflectance"/>
</bsdf>

and running Mitsuba as follows:
$ mitsuba -Dreflectance=0.1 -o ref_0.1.exr scene.xml
$ mitsuba -Dreflectance=0.2 -o ref_0.2.exr scene.xml
$ mitsuba -Dreflectance=0.5 -o ref_0.5.exr scene.xml

18

http://www.debian-administration.org/articles/152

5. Basic usage 5.3. Direct connection server

5.2.2. Writing partial images to disk

When doing lengthy command line renders on Linux or OSX, it is possible to send a signal to the
process using

$ killall -HUP mitsuba

This causes the renderer to write out the partially finished image, after which it continues rendering.
This can sometimes be useful to check if everything is working correctly.

5.2.3. Rendering an animation

The command line interface is ideally suited for rendering large amounts of files in batch operation.
You can simply pass in the files using a wildcard in the filename.

If you’ve already rendered a subset of the frames and you only want to complete the remainder,
add the -x flag, and all files with existing output will be skipped. You can also let the scheduler work
on several scenes at once using the -j parameter — this is especially useful when parallelizing over
multiple machines: as some of the participating machines finish rendering the current frame, they
can immediately start working on the next one instead of having to wait for all other cores to finish.
Altogether, you might start the with parameters such as the following

$ mitsuba -xj 2 -c machine1;machine2;... animation/frame_*.xml

Note that this requires a shell capable of expanding the asterisk into a list of filenames. The default
Windows shell cmd.exe does not do this—however, the PowerShell supports the following syntax:

dir frame_*.xml | % { <path to mitsuba.exe> $_ }

5.3. Direct connection server

A Mitsuba compute node can be created using the mtssrv executable. By default, it will listen on
port 7554:

$ mtssrv
..
maxwell: Listening on port 7554.. Send Ctrl-C or SIGTERM to stop.

Type mtssrv -h to see a list of available options. If you find yourself unable to connect to the server,
mtssrv is probably listening on the wrong interface. In this case, please specify an explicit IP address
or hostname:

$ mtssrv -i maxwell.cs.cornell.edu

As advised in Section 5.2, it is advised to run mtssrv only in trusted networks.
One nice feature of mtssrv is that it (like the mitsuba executable) also supports the -c and -s

parameters, which create connections to additional compute servers. Using this feature, one can
create hierarchies of compute nodes. For instance, the root mttsrv instance of such a hierarchy
could share its work with a number of other machines running mtssrv, and each of these might also
share their work with further machines, and so on...

The parallelization over such hierarchies happens transparently—when connecting a renderering
process to the root node, it sees a machine with hundreds or thousands of cores, to which it can
submit work without needing to worry about how exactly it is going to be spread out in the hierarchy.

19

5. Basic usage 5.4. Utility launcher

Such hierarchies are mainly useful to reduce communication bottlenecks when distributing large
resources (such as scenes) to remote machines. Imagine the following hypothetical scenario: you
would like to render a 50MB-sized scene while at home, but rendering is too slow. You decide to
tap into some extra machines available at your workplace, but this usually doesn’t make things much
faster because of the relatively slow broadband connection and the need to transmit your scene to
every single compute node involved.

Using mtssrv, you can instead designate a central scheduling node at your workplace, which ac-
cepts connections and delegates rendering tasks to the other machines. In this case, you will only
have to transmit the scene once, and the remaining distribution happens over the fast local network
at your workplace.

5.4. Utility launcher

When working on a larger project, one often needs to implement various utility programs that per-
form simple tasks, such as applying a filter to an image or processing a matrix stored in a file. In a
framework like Mitsuba, this unfortunately involves a significant coding overhead in initializing the
necessary APIs on all supported platforms. To reduce this tedious work on the side of the program-
mer, Mitsuba comes with a utility launcher called mtsutil.

The general usage of this command is

$ mtsutil [options] <utility name> [arguments]

For a listing of all supported options and utilities, enter the command without parameters.

5.4.1. Tonemapper

One particularly useful utility that shall be mentioned here is the batch tonemapper, which loads
EXR/RGBE images and writes tonemapped 8-bit PNG/JPGs. This can save much time when one has
to process many high dynamic-range images such as animation frames using the same basic opera-
tions, e.g. gamma correction, changing the overall brightness, resizing, cropping, etc. The available
command line options are shown in Listing 2.

20

5. Basic usage 5.4. Utility launcher

$ mtsutil tonemap
Synopsis: Loads one or more EXR/RGBE images and writes tonemapped 8-bit PNG/JPGs
Usage: mtsutil tonemap [options] <EXR/RGBE file (s)>
Options/Arguments:
-h Display this help text

-g gamma Specify the gamma value (The default is -1 => sRGB)

-m multiplier Multiply the pixel values by 'multiplier' (Default = 1)

-b r,g,b Color balance: apply the specified per-channel multipliers

-c x,y,w,h Crop: tonemap a given rectangle instead of the entire image

-s w,h Resize the output image to the specified resolution

-r x,y,w,h,i Add a rectangle at the specified position and intensity, e.g.
to make paper figures. The intensity should be in [0, 255].

-f fmt Request a certain output format (png/jpg, default:png)

-a Require the output image to have an alpha channel

-p key,burn Run Reinhard et al.'s photographic tonemapping operator. 'key'
between [0, 1] chooses between low and high-key images and
'burn' (also [0, 1]) controls how much highlights may burn out

-B fov Apply a bloom filter that simulates scattering in the human
eye. Requires the approx. field of view of the images to be
processed in order to compute a point spread function.

-x Temporal coherence mode: activate this flag when tonemapping
frames of an animation using the '-p' option to avoid flicker

-o file Save the output with a given filename

-t Multithreaded: process several files in parallel

The operations are ordered as follows: 1. crop, 2. bloom, 3. resize, 4. color
balance, 5. tonemap, 6. annotate. To simply process a directory full of EXRs
in parallel, run the following: 'mtsutil tonemap -t path-to-directory/*.exr'

Listing 2: Command line options of the mtsutil tonemap utility

21

6. Scene file format 6. Scene file format

6. Scene file format

Mitsuba uses a very simple and general XML-based format to represent scenes. Since the framework’s
philosophy is to represent discrete blocks of functionality as plugins, a scene file can essentially be
interpreted as description that determines which plugins should be instantiated and how they should
interface with each other. In the following, we’ll look at a few examples to get a feeling for the scope
of the format.

A simple scene with a single mesh and the default lighting and camera setup might look something
like this:

<?xml version="1.0" encoding="utf-8"?>
<scene version="0.4.5">

<shape type="obj">
<string name="filename" value="dragon.obj"/>

</shape>
</scene>

The scene version attribute denotes the release of Mitsuba that was used to create the scene. This
information allows Mitsuba to always correctly process the file irregardless of any potential future
changes in the scene description language.

This example already contains the most important things to know about format: you can have ob-
jects (such as the objects instantiated by the scene or shape tags), which are allowed to be nested
within each other. Each object optionally accepts properties (such as the string tag), which fur-
ther characterize its behavior. All objects except for the root object (the scene) cause the renderer
to search and load a plugin from disk, hence you must provide the plugin name using type=".."
parameter.

The object tags also let the renderer know what kind of object is to be instantiated: for instance, any
plugin loaded using the shape tag must conform to the Shape interface, which is certainly the case
for the plugin named obj (it contains a WaveFront OBJ loader). Similarly, you could write

<?xml version="1.0" encoding="utf-8"?>
<scene version="0.4.5">

<shape type="sphere">
<float name="radius" value="10"/>

</shape>
</scene>

This loads a different plugin (sphere) which is still a Shape, but instead represents a sphere configured
with a radius of 10 world-space units. Mitsuba ships with a large number of plugins; please refer to
the next chapter for a detailed overview of them.

The most common scene setup is to declare an integrator, some geometry, a sensor (e.g. a camera),
a film, a sampler and one or more emitters. Here is a more complex example:

<?xml version="1.0" encoding="utf-8"?>

<scene version="0.4.5">
<integrator type="path">

<!-- Path trace with a max. path length of 8 -->
<integer name="maxDepth" value="8"/>

</integrator>

22

6. Scene file format 6. Scene file format

<!-- Instantiate a perspective camera with 45 degrees field of view -->
<sensor type="perspective">

<!-- Rotate the camera around the Y axis by 180 degrees -->
<transform name="toWorld">

<rotate y="1" angle="180"/>
</transform>
<float name="fov" value="45"/>

<!-- Render with 32 samples per pixel using a basic
independent sampling strategy -->

<sampler type="independent">
<integer name="sampleCount" value="32"/>

</sampler>

<!-- Generate an EXR image at HD resolution -->
<film type="hdrfilm">

<integer name="width" value="1920"/>
<integer name="height" value="1080"/>

</film>
</sensor>

<!-- Add a dragon mesh made of rough glass (stored as OBJ file) -->
<shape type="obj">

<string name="filename" value="dragon.obj"/>

<bsdf type="roughdielectric">
<!-- Tweak the roughness parameter of the material -->
<float name="alpha" value="0.01"/>

</bsdf>
</shape>

<!-- Add another mesh -- this time, stored using Mitsuba's own
(compact) binary representation -->

<shape type="serialized">
<string name="filename" value="lightsource.serialized"/>
<transform name="toWorld">

<translate x="5" y="-3" z="1"/>
</transform>

<!-- This mesh is an area emitter -->
<emitter type="area">

<rgb name="radiance" value="100,400,100"/>
</emitter>

</shape>
</scene>

This example introduces several new object types (integrator, sensor, bsdf, sampler, film,
and emitter) and property types (integer, transform, and rgb). As you can see in the example,
objects are usually declared at the top level except if there is some inherent relation that links them to
another object. For instance, BSDFs are usually specific to a certain geometric object, so they appear
as a child object of a shape. Similarly, the sampler and film affect the way in which rays are generated

23

6. Scene file format 6.1. Property types

from the sensor and how it records the resulting radiance samples, hence they are nested inside it.

6.1. Property types

This section documents all of the ways in which properties can be supplied to objects. If you are more
interested in knowing which properties a certain plugin accepts, you should look at the next section
instead.

6.1.1. Numbers

Integer and floating point values can be passed as follows:

<integer name="intProperty" value="1234"/>
<float name="floatProperty" value="1.234"/>
<float name="floatProperty2" value="-1.5e3"/>

Note that you must adhere to the format expected by the object, i.e. you can’t pass an integer property
to an object, which expects a floating-point value associated with that name.

6.1.2. Strings

Passing strings is straightforward:

<string name="stringProperty" value="This is a string"/>

6.1.3. Color spectra

Depending on the compilation flags of Mitsuba (see Section 4.2 for details), the renderer internally
either represents colors using discretized color spectra (when SPECTRUM_SAMPLES is set to a value
other than 3), or it uses a basic linear RGB representation5. Irrespective of which internal representa-
tion is used, Mitsuba supports several different ways of specifying color information, which is then
converted appropriately.

The preferred way of passing color spectra to the renderer is to explicitly denote the associated
wavelengths of each value:

<spectrum name="spectrumProperty" value="400:0.56, 500:0.18, 600:0.58, 700:0.24"/>

This is a mapping from wavelength in nanometers (before the colon) to a reflectance or intensity value
(after the colon). Values in between are linearly interpolated from the two closest neighbors. A useful
shortcut to get a completely uniform spectrum, it is to provide only a single value:

<spectrum name="spectrumProperty" value="0.56"/>

Another (discouraged) option is to directly provide the spectrum in Mitsuba’s internal represen-
tation, avoiding the need for any kind of conversion. However, this is problematic, since the as-
sociated scene will likely not work anymore when Mitsuba is compiled with a different value of
SPECTRUM_SAMPLES. For completeness, the possibility is explained nonetheless. Assuming that the
360-830nm range is discretized into ten 47nm-sized blocks (i.e. SPECTRUM_SAMPLES is set to 10),
their values can be specified as follows:

5
The official releases all use linear RGB—to do spectral renderings, you will have to compile Mitsuba yourself.

24

6. Scene file format 6.1. Property types

<spectrum name="spectrumProperty" value=".2, .2, .8, .4, .6, .5, .1, .9, .4, .2"/>

Another convenient way of providing color spectra is by specifying linear RGB or sRGB values
using floating-point triplets or hex values:

<rgb name="spectrumProperty" value="0.2, 0.8, 0.4"/>
<srgb name="spectrumProperty" value="0.4, 0.3, 0.2"/>
<srgb name="spectrumProperty" value="#f9aa34"/>

When Mitsuba is compiled with the default settings, it internally uses linear RGB to represent col-
ors, so these values can directly be used. However, when configured for doing spectral rendering, a
suitable color spectrum with the requested RGB reflectance must be found. This is a tricky problem,
since there is an infinite number of spectra with this property.

Mitsuba uses a method by Smits et al. [42] to find a “plausible” spectrum that is as smooth as
possible. To do so, it uses one of two methods depending on whether the spectrum contains a unitless
reflectance value, or a radiance-valued intensity.

<rgb name="spectrumProperty" intent="reflectance" value="0.2, 0.8, 0.4"/>
<rgb name="spectrumProperty" intent="illuminant" value="0.2, 0.8, 0.4"/>

The reflectance intent is used by default, so remember to set it to illuminant when defining the
brightness of a light source with the <rgb> tag.

When spectral power or reflectance distributions are obtained from measurements (e.g. at 10nm
intervals), they are usually quite unwiedy and can clutter the scene description. For this reason, there
is yet another way to pass a spectrum by loading it from an external file:

<spectrum name="spectrumProperty" filename="measuredSpectrum.spd"/>

The file should contain a single measurement per line, with the corresponding wavelength in nanome-
ters and the measured value separated by a space. Comments are allowed. Here is an example:

This file contains a measured spectral power/reflectance distribution
406.13 0.703313
413.88 0.744563
422.03 0.791625
430.62 0.822125
435.09 0.834000
...

Finally, it is also possible to specify the spectral distribution of a black body emitter (Figure 1),
where the temperature is given in Kelvin.

<blackbody name="spectrumProperty" temperature="5000K"/>

Note that attaching a black body spectrum to the intensity property of a emitter introduces physi-
cal units into the rendering process of Mitsuba, which is ordinarily a unitless system6.

Specifically, the black body spectrum has units of power (W) per unit area (m−2) per steradian
(sr−1) per unit wavelength (nm−1). If these units are inconsistent with your scene description, you
may use the optional scale attribute to adjust them, e.g.:

6
Thismeans that the units of pixel values in a rendering are completely dependent on the units of the user input, including

the unit of world-space distance and the units of the light source emission profile.

25

6. Scene file format 6.1. Property types

Figure 1: A few simulated black body emitters over a range of temperature values

<!-- Scale black body radiance by a factor of 1/1000 -->
<blackbody name="spectrumProperty" temperature="5000K" scale="1e-3"/>

6.1.4. Vectors, Positions

Points and vectors can be specified as follows:

<point name="pointProperty" x="3" y="4" z="5"/>
<vector name="vectorProperty" x="3" y="4" z="5"/>

It is important that whatever you choose as world-space units (meters, inches, etc.) is used consis-
tently in all places.

6.1.5. Transformations

Transformations are the only kind of property that require more than a single tag. The idea is that,
starting with the identity, one can build up a transformation using a sequence of commands. For
instance, a transformation that does a translation followed by a rotation might be written like this:

<transform name="trafoProperty">
<translate x="-1" y="3" z="4"/>
<rotate y="1" angle="45"/>

</transform>

Mathematically, each incremental transformation in the sequence is left-multiplied onto the current
one. The following choices are available:

• Translations, e.g.

<translate x="-1" y="3" z="4"/>

• Counter-clockwise rotations around a specified axis. The angle is given in degrees, e.g.

26

6. Scene file format 6.2. Animated transformations

<rotate x="0.701" y="0.701" z="0" angle="180"/>

• Scaling operations. The coefficients may also be negative to obtain a flip, e.g.

<scale value="5"/> <!-- uniform scale -->
<scale x="2" y="1" z="-1"/> <!-- non-unform scale -->

• Explicit 4×4 matrices, e.g

<matrix value="0 -0.53 0 -1.79 0.92 0 0 8.03 0 0 0.53 0 0 0 0 1"/>

• lookat transformations — this is primarily useful for setting up cameras (and spot lights). The
origin coordinates specify the camera origin, target is the point that the camera will look
at, and the (optional) up parameter determines the “upward” direction in the final rendered
image. The up parameter is not needed for spot lights.

<lookat origin="10, 50, -800" target="0, 0, 0" up="0, 1, 0"/>

Cordinates that are zero (for translate and rotate) or one (for scale) do not explicitly have to
be specified.

6.2. Animated transformations

Most shapes, emitters, and sensors in Mitsuba can accept both normal transformations and animated
transformations as parameters. The latter is useful to render scenes involving motion blur (Figure 2).
The syntax used to specify these is slightly different:

<animation name="trafoProperty">
<transform time="0">
.. chained list of transformations as discussed above ..

</transform>

<transform time="1">
.. chained list of transformations as discussed above ..

</transform>

.. additional transformations (optional) ..
</animation>

Mitsuba then decomposes each transformation into a scale, translation, and rotation component
and interpolates7 these for intermediate time values. It is important to specify appropriate shutter
open/close times to the sensor so that the motion is visible.

7
Using linear interpolation for the scale and translation component and spherical linear quaternion interpolation for the

rotation component.

27

6. Scene file format 6.3. References

Figure 2: Beware the dragon: a triangle mesh undergoing linear motion with several keyframes (object cour-

tesy of XYZRGB)

6.3. References

Quite often, you will find yourself using an object (such as a material) in many places. To avoid having
to declare it over and over again, which wastes memory, you can make use of references. Here is an
example of how this works:

<scene version="0.4.5">
<texture type="bitmap" id="myImage">

<string name="filename" value="textures/myImage.jpg"/>
</texture>

<bsdf type="diffuse" id="myMaterial">
<!-- Reference the texture named myImage and pass it

to the BRDF as the reflectance parameter -->
<ref name="reflectance" id="myImage"/>

</bsdf>

<shape type="obj">
<string name="filename" value="meshes/myShape.obj"/>

<!-- Reference the material named myMaterial -->
<ref id="myMaterial"/>

</shape>
</scene>

By providing a unique id attribute in the object declaration, the object is bound to that identifier
upon instantiation. Referencing this identifier at a later point (using the <ref id="..."/> tag) will
add the instance to the parent object, with no further memory allocation taking place. Note that some
plugins expect their child objects to be named8. For this reason, a name can also be associated with
8
For instance, material plugins such as diffuse require that nested texture instances explicitly specify the parameter to

which they want to bind (e.g. “reflectance”).

28

6. Scene file format 6.4. Including external files

the reference.
Note that while this feature is meant to efficiently handle materials, textures, and participating

media that are referenced from multiple places, it cannot be used to instantiate geometry—if this
functionality is needed, take a look at the instance plugin.

6.4. Including external files

A scene can be split into multiple pieces for better readability. to include an external file, please use
the following command:

<include filename="nested-scene.xml"/>

In this case, the file nested-scene.xml must be a proper scene file with a <scene> tag at the
root. This feature is sometimes very convenient in conjunction with the -D key=value flag of the
mitsuba command line renderer (see the previous section for details). This lets you include differ-
ent parts of a scene configuration by changing the command line parameters (and without having to
touch the XML file):

<include filename="nested-scene-$version.xml"/>

6.5. Aliases

Sometimes, it can be useful to associate an object (e.g. a scattering model) with multiple identifiers.
This can be accomplished using the alias as=.. keyword:

<bsdf type="diffuse" id="myMaterial1"/>
<alias id="myMaterial1" as="myMaterial2"/>

After this statement, the diffuse scattering model will be bound to both identifiers “myMaterial1”
and “myMaterial2”.

29

7. Miscellaneous topics 7. Miscellaneous topics

7. Miscellaneous topics

7.1. A word about color spaces

When using one of the downloadable release builds of Mitsuba, or a version that was compiled with
the default settings, the renderer internally operates in RGB mode: all computations are performed
using a representation that is based on the three colors red, green, and blue.

More specifically, these are the intensities of the red, green, and blue primaries defined by the sRGB
standard (ITU-R Rec. BT. 709-3 primaries with a D65 white point). Mitsuba transparently converts
all input data (e.g. textures) into this space before rendering. This is an intuitive default which yields
fast computations and satisfactory results for most applications.

Low dynamic range images exported using the ldrfilm will be stored in a sRGB-compatible for-
mat that accounts for the custom gamma curves mandated by this standard. They should display as
intended across a wide range of display devices.

When saving high dynamic range output (e.g. OpenEXR, RGBE, or PFM), the computed radiance
values are exported in a linear form (i.e. without having the sRGB gamma curve applied to it), which
is the most common way of storing high dynamic range data. It is important to keep in mind that
other applications may not support this “linearized sRGB” space—in particular, the Mac OS preview
currently does not display images with this encoding correctly.

7.1.1. Spectral rendering

Some predictive rendering applications will require a more realistic space for interreflection compu-
tations. In such cases, Mitsuba can be switched to spectral mode. This can be done by compiling it
with the SPECTRUM_SAMPLES=n parameter (Section 4), where n is usually between 15 and 30.

Now, all input parameters are converted into color spectra with the specified number of discretiza-
tions, and the computation then proceeds using this space. The process of writing an output image
works differently: when spectral output is desired (hdrfilm, tiledhdrfilm, and mfilm support
this), Mitsuba creates special image files with many color channels (one per spectral band). Gener-
ally, other applications will not be able to display these images. The Mitsuba GUI can be used to view
them, however (simply drag & drop an image onto the application).

It is also possible to write out XYZ tristimulus values, in which case the spectral data is convolved
with the CIE 1931 color matching curves. This is most useful to users who want to do their own color
processing in a space with a wide gamut.

Finally, sRGB output is still possible. However, the color processing used in this case is fairly naïve:
out-of-gamut values are simply clipped. This is something that may be improved in the future (e.g.
by making use of a color management library like lcms2)

30

8. Plugin reference 8. Plugin reference

8. Plugin reference
The following subsections describe the available Mitsuba plugins, usually along with example render-
ings and a description of what each parameter does. They are separated into subsections covering
textures, surface scattering models, etc.

Each subsection begins with a brief general description. The documentation of a plugin always
starts on a new page and is preceded by a table similar to the one below:

Parameter Type Description

softRays boolean Try not to damage objects in the scene by shooting softer

rays (Default: false)

darkMatter float Controls the proportionate amount of dark matter present

in the scene. (Default: 0.83)

Suppose this hypothetical plugin is an integrator named amazing. Then, based on this description,
it can be instantiated from an XML scene file using a custom configuration such as:

<integrator type="amazing">
<boolean name="softerRays" value="true"/>
<float name="darkMatter" value="0.4"/>

</integrator>

In some cases9, plugins also indicate that they accept nested plugins as input arguments. These can
either be named or unnamed. If the amazing integrator also accepted the following two parameters

Parameter Type Description

(Nested plugin) integrator A nested integrator which does the actual hard work

puppies texture This must be used to supply a cute picture of puppies

then it can be instantiated e.g. as follows

<integrator type="amazing">
<boolean name="softerRays" value="true"/>
<float name="darkMatter" value="0.4"/>
<integrator type="path"/>
<texture name="puppies" type="bitmap">

<string name="filename" value="cute.jpg"/>
</texture>

</integrator>

or, if these were already instantiated previously and are now bound to the identifiers (Section 6)
myPathTracer and myTexture, the following also works:

<integrator type="amazing">
<boolean name="softerRays" value="true"/>
<float name="darkMatter" value="0.4"/>
<ref id="myPathTracer"/>
<ref name="puppies" id="myTexture"/>

</integrator>

9
Note that obvious parameters are generally omitted. For instance, all shape plugins accept a surface scattering plugin,

but this is left out from the documentation for brevity.

31

8. Plugin reference 8.1. Shapes

8.1. Shapes

This section presents an overview of the shape plugins that are released along with the renderer.
In Mitsuba, shapes define surfaces that mark transitions between different types of materials. For

instance, a shape could describe a boundary between air and a solid object, such as a piece of rock.
Alternatively, a shape can mark the beginning of a region of space that isn’t solid at all, but rather
contains a participating medium, such as smoke or steam. Finally, a shape can be used to create an
object that emits light on its own.

Shapes are usually declared along with a surface scattering model (named “BSDF”, see Section 8.2
for details). This BSDF characterizes what happens at the surface. In the XML scene description
language, this might look like the following:

<scene version="0.4.5">
<shape type="... shape type ...">

... shape parameters ...

<bsdf type="... bsdf type ...">
... bsdf parameters ..

</bsdf>

<!-- Alternatively: reference a named BSDF that
has been declared previously

<ref id="myBSDF"/>
-->

</shape>
</scene>

When a shape marks the transition to a participating medium (e.g. smoke, fog, ..), it is furthermore
necessary to provide information about the two media that lie at the interior and exterior of the shape.
This informs the renderer about what happens in the region of space surrounding the surface.

<scene version="0.4.5">
<shape type="... shape type ...">

... shape parameters ...

<medium name="interior" type="... medium type ...">
... medium parameters ...

</medium>

<medium name="exterior" type="... medium type ...">
... medium parameters ...

</medium>

<!-- Alternatively: reference named media that
have been declared previously

<ref name="interior" id="myMedium1"/>
<ref name="exterior" id="myMedium2"/>

-->
</shape>

</scene>

32

8. Plugin reference 8.1. Shapes

You may have noticed that the previous XML example dit not make any mention of surface scat-
tering models (BSDFs). In Mitsuba, such a shape declaration creates an index-matched boundary.
This means that incident illumination will pass through the surface without undergoing any kind of
interaction. However, the renderer will still uses the information available in the shape to correctly
account for the medium change.

It is also possible to create index-mismatched boundaries between media, where some of the light
is affected by the boundary transition:

<scene version="0.4.5">
<shape type="... shape type ...">

... shape parameters ...

<bsdf type="... bsdf type ...">
... bsdf parameters ..

</bsdf>

<medium name="interior" type="... medium type ...">
... medium parameters ...

</medium>

<medium name="exterior" type="... medium type ...">
... medium parameters ...

</medium>

<!-- Alternatively: reference named media and BSDF
instances that have been declared previously

<ref id="myBSDF"/>
<ref name="interior" id="myMedium1"/>
<ref name="exterior" id="myMedium2"/>

-->
</shape>

</scene>

This constitutes the standard ways in which a shape can be declared. The following subsections discuss
the available types in greater detail.

33

8. Plugin reference 8.1. Shapes

8.1.1. Cube intersection primitive (cube)

Parameter Type Description

toWorld transform or

animation
Specifies an optional linear object-to-world transformation.

(Default: none (i.e. object space = world space))

flipNormals boolean Is the cube inverted, i.e. should the normal vectors be

flipped? (Default: false, i.e. the normals point outside)

(a) Basic example (b) A textured and stretched cube with the default param-

eterization (Listing 3)

This shape plugin describes a simple cube/cuboid intersection primitive. By default, it creates a
cube between the world-space positions (−1,−1,−1) and (1, 1, 1). However, an arbitrary linear trans-
formation may be specified to translate, rotate, scale or skew it as desired. The parameterization of
this shape maps every face onto the rectangle [0, 1]2 in uv space.

<shape type="cube">
<transform name="toWorld">
<scale z="2"/>

</transform>

<bsdf type="diffuse">
<texture type="checkerboard" name="reflectance">
<float name="uvscale" value="6"/>

</texture>
</bsdf>

</shape>

Listing 3: Example of a textured and stretched cube

34

8. Plugin reference 8.1. Shapes

8.1.2. Sphere intersection primitive (sphere)

Parameter Type Description

center point Center of the sphere in object-space (Default: (0, 0, 0))

radius float Radius of the sphere in object-space units (Default: 1)

toWorld transform or

animation
Specifies an optional linear object-to-world transformation.

Note that non-uniform scales are not permitted! (Default:

none (i.e. object space = world space))

flipNormals boolean Is the sphere inverted, i.e. should the normal vectors be

flipped? (Default: false, i.e. the normals point outside)

(a) Basic example, see Listing 4 (b) A textured sphere with the default parameterization

This shape plugin describes a simple sphere intersection primitive. It should always be preferred
over sphere approximations modeled using triangles.

<shape type="sphere">
<transform name="toWorld">

<scale value="2"/>
<translate x="1" y="0" z="0"/>

</transform>
<bsdf type="diffuse"/>

</shape>

<shape type="sphere">
<point name="center" x="1" y="0" z="0"/>
<float name="radius" value="2"/>
<bsdf type="diffuse"/>

</shape>

Listing 4: Asphere can either be configured using a lineartoWorld transformation or thecenter andradius
parameters (or both). The above two declarations are equivalent.

When a sphere shape is turned into an area light source, Mitsuba switches to an efficient sampling
strategy [41] that has particularly low variance. This makes it a good default choice for lighting new
scenes (Figure 3).

35

8. Plugin reference 8.1. Shapes

(a) Spherical area light modeled using triangles (b) Spherical area light modeled using the sphere plugin

Figure 3: Area lights built from the combination of the area and sphere plugins produce renderings that
have an overall lower variance.

<shape type="sphere">
<point name="center" x="0" y="1" z="0"/>
<float name="radius" value="1"/>

<emitter type="area">
<blackbody name="intensity" temperature="7000K"/>

</emitter>
</shape>

Listing 5: Instantiation of a sphere emitter

36

8. Plugin reference 8.1. Shapes

8.1.3. Cylinder intersection primitive (cylinder)

Parameter Type Description

p0 point Object-space starting point of the cylinder’s centerline (De-

fault: (0, 0, 0))

p1 point Object-space endpoint of the cylinder’s centerline (Default:

(0, 0, 1))

radius float Radius of the cylinder in object-space units (Default: 1)

flipNormals boolean Is the cylinder inverted, i.e. should the normal vectors be

flipped? (Default: false, i.e. the normals point outside)

toWorld transform or

animation
Specifies an optional linear object-to-world transformation.

Note that non-uniform scales are not permitted! (Default:

none (i.e. object space = world space))

(a) Cylinder with the default one-sided shading (b) Cylinder with two-sided shading, see Listing 6

This shape plugin describes a simple cylinder intersection primitive. It should always be preferred
over approximations modeled using triangles. Note that the cylinder does not have endcaps – also,
it’s interior has inward-facing normals, which most scattering models in Mitsuba will treat as fully
absorbing. If this is not desirable, consider using the twosided plugin.

<shape type="cylinder">
<float name="radius" value="0.3"/>
<bsdf type="twosided">

<bsdf type="diffuse"/>
</bsdf>

</shape>

Listing 6: A simple example for instantiating a cylinder, whose interior is visible

37

8. Plugin reference 8.1. Shapes

8.1.4. Rectangle intersection primitive (rectangle)

Parameter Type Description

toWorld transform or

animation
Specifies a linear object-to-world transformation. It is al-

lowed to use non-uniform scaling, but no shear. (Default:

none (i.e. object space = world space))

flipNormals boolean Is the rectangle inverted, i.e. should the normal vectors be

flipped? (Default: false)

(a) Two rectangles configured as a reflective surface and

an emitter (Listing 7)

This shape plugin describes a simple rectangular intersection primitive. It is mainly provided as a
convenience for those cases when creating and loading an external mesh with two triangles is simply
too tedious, e.g. when an area light source or a simple ground plane are needed.

By default, the rectangle covers the XY-range [−1, 1] × [−1, 1] and has a surface normal that points
into the positive Z direction. To change the rectangle scale, rotation, or translation, use the toWorld
parameter.

<scene version="0.4.5">
<shape type="rectangle">

<bsdf type="diffuse"/>
</shape>
<shape type="rectangle">

<transform name="toWorld">
<rotate x="1" angle="90"/>
<scale x="0.4" y="0.3" z="0.2"/>
<translate y="1" z="0.2"/>

</transform>
<emitter type="area">

<spectrum name="intensity" value="3"/>
</emitter>

</shape>
<!-- ... other definitions ... -->

</scene>

Listing 7: A simple example involving two rectangle instances

38

8. Plugin reference 8.1. Shapes

8.1.5. Disk intersection primitive (disk)

Parameter Type Description

toWorld transform or

animation
Specifies a linear object-to-world transformation. Note that

non-uniform scales are not permitted! (Default: none (i.e.

object space = world space))

flipNormals boolean Is the disk inverted, i.e. should the normal vectors be

flipped? (Default: false)

(a) Rendering with an disk emitter and a textured disk,

showing the default parameterization. (Listing 8)

This shape plugin describes a simple disk intersection primitive. It is usually preferable over dis-
crete approximations made from triangles.

By default, the disk has unit radius and is located at the origin. Its surface normal points into the
positive Z direction. To change the disk scale, rotation, or translation, use the toWorld parameter.

<scene version="0.4.5">
<shape type="disk">

<bsdf type="diffuse">
<texture name="reflectance" type="checkerboard">

<float name="uvscale" value="5"/>
</texture>

</bsdf>
</shape>
<shape type="disk">

<transform name="toWorld">
<rotate x="1" angle="90"/>
<scale value="0.3"/>
<translate y="1" z="0.3"/>

</transform>
<emitter type="area">

<spectrum name="intensity" value="4"/>
</emitter>

</shape>
</scene>

Listing 8: A simple example involving two disk instances

39

8. Plugin reference 8.1. Shapes

8.1.6. Wavefront OBJ mesh loader (obj)

Parameter Type Description

filename string Filename of the OBJ file that should be loaded

faceNormals boolean When set to true, any existing or computed vertex normals

are discarded and face normals will instead be used during

rendering. This gives the rendered object a faceted apper-

ance. (Default: false)

maxSmoothAngle float When specified, Mitsuba will discard all vertex normals in

the input mesh and rebuild them in a way that is sensitive

to the presence of creases and corners. For more details on

this parameter, see below. Disabled by default.

flipNormals boolean Optional flag to flip all normals. (Default: false, i.e. the
normals are left unchanged).

flipTexCoords boolean Treat the vertical component of the texture as inverted?

Most OBJ files use this convention. (Default: true, i.e. flip
them to get the correct coordinates).

toWorld transform or

animation
Specifies an optional linear object-to-world transformation.

(Default: none (i.e. object space = world space))

(a) An example scene with both geometry and materials imported using the Wavefront OBJ mesh loader (Neu Rungholt

model courtesy of kescha, converted fromMinecraft to OBJ by Morgan McGuire)

This plugin implements a simple loader for Wavefront OBJ files. It handles meshes containing
triangles and quadrilaterals, and it also imports vertex normals and texture coordinates.

Loading an ordinary OBJ file is as simple as writing:

40

8. Plugin reference 8.1. Shapes

<shape type="obj">
<string name="filename" value="myShape.obj"/>

</shape>

Material import: When the OBJ file references a Wavefront material description (a .mtl file), Mit-
suba attempts to reproduce the material within and associate it with the shape. This is restricted to
fairly basic materials and textures, hence in most cases it will be preferable to override this behavior
by specifying an explicit Mitsuba BSDF that should be used instead. This can be done by passing it
as a child argument, e.g.

<shape type="obj">
<string name="filename" value="myShape.obj"/>
<bsdf type="roughplastic">

<rgb name="diffuseReflectance" value="0.2, 0.6, 0.3"/>
</bsdf>

</shape>

The mtlmaterial attributes that are automatically handled by Mitsuba include:

• Diffuse and glossy materials (optionally textured)

• Smooth glass and metal

• Textured transparency

• Bump maps

In some cases, OBJ files contain multiple objects with different associated materials. In this case,
the materials can be overwritten individually, by specifying the corresponding names. For instance,
if the OBJ file contains two materials named Glass and Water, these can be overwritten as follows

<shape type="obj">
<string name="filename" value="myShape.obj"/>
<bsdf name="Glass" type="dielectric">

<float name="intIOR" value="1.5"/>
</bsdf>
<bsdf name="Water" type="dielectric">

<float name="intIOR" value="1.333"/>
</bsdf>

</shape>

The maxSmoothAngle parameter: When given a mesh without vertex normals, Mitsuba will by
default create a smoothly varying normal field over the entire shape. This can produce undesirable
output when the input mesh contains regions that are intentionally not smooth (i.e. corners, creases).
Meshes that do include vertex normals sometimes incorrectly interpolate normals over such regions,
leading to much the same problem.

The maxSmoothAngle parameter can be issued to force inspection of the dihedral angle associated
with each edge in the input mesh and disable normal interpolation locally where this angle exceeds
a certain threshold value. A reasonable value might be something like 30 (degrees). The underlying

41

8. Plugin reference 8.1. Shapes

analysis is somewhat costly and hence this parameter should only be used when it is actually needed
(i.e. when the mesh contains creases or edges and does not come with valid vertex normals).

Remarks:
• The plugin currently only supports loading meshes constructed from triangles and quadrilaterals.

• Importing geometry via OBJ files should only be used as an absolutely last resort. Due to inherent

limitations of this format, the files tend to be unreasonably large, and parsing them requires signif-

icant amounts of memory and processing power. What’s worse is that the internally stored data is

often truncated, causing a loss of precision.

If possible, use the ply or serialized plugins instead. For convenience, it is also possible to

convert legacy OBJ files into .serialized files using the mtsimport utility. Using the resulting
output will significantly accelerate the scene loading time.

42

8. Plugin reference 8.1. Shapes

8.1.7. PLY (Stanford Triangle Format) mesh loader (ply)

Parameter Type Description

filename string Filename of the PLY file that should be loaded

faceNormals boolean When set to true, Mitsuba will use face normals when ren-

dering the object, which will give it a faceted apperance.

(Default: false)

maxSmoothAngle float When specified, Mitsuba will discard all vertex normals in

the input mesh and rebuild them in a way that is sensitive

to the presence of creases and corners. For more details on

this parameter, see page 41. Disabled by default.

flipNormals boolean Optional flag to flip all normals. (Default: false, i.e. the
normals are left unchanged).

toWorld transform or

animation
Specifies an optional linear object-to-world transformation.

(Default: none (i.e. object space = world space))

srgb boolean When set to true, any vertex colors will be interpreted as

sRGB, instead of linear RGB (Default: true).

(a) The PLY plugin is useful for loading large geometry.

(Dragon statue courtesy of XYZ RGB)

(b) The Stanford bunny loaded with faceNormals=true.
Note the faceted appearance.

This plugin implements a fast loader for the Stanford PLY format (both the ASCII and binary for-
mat). It is based on the libply library by Ares Lagae (http://people.cs.kuleuven.be/~ares.
lagae/libply). The current plugin implementation supports triangle meshes with optional UV
coordinates, vertex normals, and vertex colors.

When loading meshes that contain vertex colors, note that they need to be explicitly referenced in
a BSDF using a special texture named vertexcolors.

43

http://people.cs.kuleuven.be/~ares.lagae/libply
http://people.cs.kuleuven.be/~ares.lagae/libply

8. Plugin reference 8.1. Shapes

8.1.8. Serialized mesh loader (serialized)

Parameter Type Description

filename string Filename of the geometry file that should be loaded

shapeIndex integer A .serialized file may contain several separate meshes.

This parameter specifies which one should be loaded. (De-

fault: 0, i.e. the first one)

faceNormals boolean When set to true, any existing or computed vertex normals

are discarded and face normals will instead be used during

rendering. This gives the rendered object a faceted apper-

ance. (Default: false)

maxSmoothAngle float When specified, Mitsuba will discard all vertex normals in

the input mesh and rebuild them in a way that is sensitive

to the presence of creases and corners. For more details on

this parameter, see page 41. Disabled by default.

flipNormals boolean Optional flag to flip all normals. (Default: false, i.e. the
normals are left unchanged).

toWorld transform or

animation
Specifies an optional linear object-to-world transformation.

(Default: none (i.e. object space = world space))

The serialized mesh format represents the most space and time-efficient way of getting geometry
information into Mitsuba. It stores indexed triangle meshes in a lossless gzip-based encoding that
(after decompression) nicely matches up with the internally used data structures. Loading such files
is considerably faster than the ply plugin and orders of magnitude faster than the obj plugin.

Format description: The serialized file format uses the little endian encoding, hence all fields
below should be interpreted accordingly. The contents are structured as follows:

Type Content

uint16 File format identifier: 0x041C
uint16 File version identifier. Currently set to 0x0004

From this point on, the stream is compressed by the DEFLATE algorithm.
The used encoding is that of the zlib library.

uint32 An 32-bit integer whose bits can be used to specify the following flags:
0x0001 The mesh data includes per-vertex normals
0x0002 The mesh data includes texture coordinates
0x0008 The mesh data includes vertex colors
0x0010 Use face normals instead of smothly interpolated vertex nor-

mals. Equivalent to specifying faceNormals=true to the plugin.

0x1000 The subsequent content is represented in single precision
0x2000 The subsequent content is represented in double precision

string A null-terminated string (utf-8), which denotes the name of the shape.

44

8. Plugin reference 8.1. Shapes

uint64 Number of vertices in the mesh
uint64 Number of triangles in the mesh
array Array of all vertex positions (X, Y, Z, X, Y, Z, ...) specified in binary single

or double precision format (as denoted by the flags)
array Array of all vertex normal directions (X, Y, Z, X, Y, Z, ...) specified in

binary single or double precision format. When the mesh has no vertex
normals, this field is omitted.

array Array of all vertex texture coordinates (U, V, U, V, ...) specified in binary
single or double precision format. When the mesh has no texture coordi-
nates, this field is omitted.

array Array of all vertex colors (R, G, B, R, G, B, ...) specified in binary single or
double precision format. When the mesh has no vertex colors, this field
is omitted.

array Indexed triangle data ([i1, i2, i3], [i1, i2, i3], ..) specified in
uint32 or in uint64 format (the latter is used when the number of ver-
tices exceeds 0xFFFFFFFF).

Multiple shapes: It is possible to store multiple meshes in a single .serialized file. This is done
by simply concatenating their data streams, where every one is structured according to the above
description. Hence, after each mesh, the stream briefly reverts back to an uncompressed format,
followed by an uncompressed header, and so on. This is neccessary for efficient read access to arbitrary
sub-meshes.

End-of-file dictionary: In addition to the previous table, a .serialized file also concludes with
a brief summary at the end of the file, which specifies the starting position of each sub-mesh:

Type Content

uint64 File offset of the first mesh (in bytes)—this is always zero.
uint64 File offset of the second mesh
⋯ ⋯

uint64 File offset of the last sub-shape
uint32 Total number of meshes in the .serialized file

45

8. Plugin reference 8.1. Shapes

8.1.9. Shape group for geometry instancing (shapegroup)

Parameter Type Description

(Nested plugin) shape One ormore shapes that should bemade available for geom-

etry instancing

This plugin implements a container for shapes that should be made available for geometry instanc-
ing. Any shapes placed in a shapegroup will not be visible on their own—instead, the renderer will
precompute ray intersection acceleration data structures so that they can efficiently be referenced
many times using the instance plugin. This is useful for rendering things like forests, where only a
few distinct types of trees have to be kept in memory. An example is given below:

<!-- Declare a named shape group containing two objects -->
<shape type="shapegroup" id="myShapeGroup">

<shape type="ply">
<string name="filename" value="data.ply"/>
<bsdf type="roughconductor"/>

</shape>
<shape type="sphere">

<transform name="toWorld">
<scale value="5"/>
<translate y="20"/>

</transform>
<bsdf type="diffuse"/>

</shape>
</shape>

<!-- Instantiate the shape group without any kind of transformation -->
<shape type="instance">

<ref id="myShapeGroup"/>
</shape>

<!-- Create instance of the shape group, but rotated, scaled, and translated -->
<shape type="instance">

<ref id="myShapeGroup"/>
<transform name="toWorld">

<rotate x="1" angle="45"/>
<scale value="1.5"/>
<translate z="10"/>

</transform>
</shape>

Listing 9: An example of geometry instancing

46

8. Plugin reference 8.1. Shapes

8.1.10. Geometry instance (instance)

Parameter Type Description

(Nested plugin) shapegroup A reference to a shape group that should be instantiated

toWorld transform or

animation
Specifies an optional linear instance-to-world transforma-

tion. (Default: none (i.e. instance space = world space))

(a) Surface viewed from the top (b) Surface viewed from the bottom

Figure 4: A visualization of a fractal surface by Irving and Segerman. (a 2D Gospel curve developed up to

level 5 along the third dimension). This scene makes use of instancing to replicate similar structures

to cheaply render a shape that effectively consists of several hundred millions of triangles.

This plugin implements a geometry instance used to efficiently replicate geometry many times. For
details on how to create instances, refer to the shapegroup plugin.

Remarks:
• Note that it is not possible to assign a differentmaterial to each instance— thematerial assignment

specified within the shape group is the one that matters.

• Shape groups cannot be used to replicate shapes with attached emitters, sensors, or subsurface

scattering models.

47

8. Plugin reference 8.1. Shapes

8.1.11. Hair intersection shape (hair)

Parameter Type Description

filename string Filename of the hair data file that should be loaded

radius float Radius of the hair segments in world-space units (Default:

0.025, which assumes that the scene is modeled in millime-

ters.).

angleThreshold float For performance reasons, the plugin will merge adjacent

hair segments when the angle of their tangent directions is

below than this value (in degrees). (Default: 1).

reduction float When the reduction ratio is set to a value between zero and

one, the hair plugin stochastically culls this portion of the

input data (where 1 corresponds to removing all hairs). To

approximately preserve the appearance in renderings, the

hair radius is enlarged (see Cook et al. [6]). This parameter

is convenient for fast previews. (Default: 0, i.e. all geometry

is rendered)

toWorld transform Specifies an optional linear object-to-world transformation.

Note that non-uniform scales are not permitted! (Default:

none, i.e. object space = world space)

Figure 5: Aclose-up of the hair shape renderedwith a diffuse scatteringmodel (an actual hair scatteringmodel

will be needed for realistic apperance)

The plugin implements a space-efficient acceleration structure for hairs made from many straight
cylindrical hair segments with miter joints. The underlying idea is that intersections with straight
cylindrical hairs can be found quite efficiently, and curved hairs are easily approximated using a series
of such segments.

The plugin supports two different input formats: a simple (but not particularly efficient) ASCII
format containing the coordinates of a hair vertex on every line. An empty line marks the beginning
of a new hair. The following snippet is an example of this format:

48

8. Plugin reference 8.1. Shapes

.....
-18.5498 -21.7669 22.8138
-18.6358 -21.3581 22.9262
-18.7359 -20.9494 23.0256

-30.6367 -21.8369 6.78397
-30.7289 -21.4145 6.76688
-30.8226 -20.9933 6.73948
.....

There is also a binary format, which starts with the identifier “BINARY_HAIR” (11 bytes), followed
by the number of vertices as a 32-bit little endian integer. The remainder of the file consists of the
vertex positions stored as single-precision XYZ coordinates (again in little-endian byte ordering). To
mark the beginning of a new hair strand, a single +∞ floating point value can be inserted between
the vertex data.

49

8. Plugin reference 8.1. Shapes

8.1.12. Height field intersection shape (heightfield)

Parameter Type Description

shadingNormals boolean Use linearly interpolated shading normals over the height

field as opposed to discontinuous normals from the under-

lying bilinear patches? (Default: true, i.e. interpolate

smoothly varying normals)

flipNormals boolean Optional flag to flip all normals. (Default: false, i.e. the
normals are left unchanged).

toWorld transform Specifies an optional linear object-to-world transformation.

(Default: none, i.e. object space = world space)

width, height integer When the nexted texture is procedural (see below), this pa-

rameter specifies the resolution at which it should be raster-

ized to create a height field made of bilinear patches.

(Nested plugin) texture A nested texture that specifies the height field values. This

could be a bitmap-backed texture or one that is procedurally

defined. In the latter case, it will be rasterized using the res-

olution specified by the width and height arguments.

(a) Heigh field rendering of a mountain, see Listing 10

This plugin implements an efficient height field intersection shape, i.e. a two-dimensional plane
that is vertically displaced using height values loaded from a texture. Internally, the height field is
represented as a min-max mipmap [44], allowing cheap storage and efficient ray intersection queries.
It is generally preferable to represent height fields using this specialized plugin rather than converting
them into triangle meshes.

<shape type="heightfield">
<texture type="scale">

<float name="scale" value="0.5"/>
<texture type="bitmap">

<float name="gamma" value="1"/>
<string name="filename" value="mountain_profile.png"/>

</texture>
</texture>

</shape>

Listing 10: Declaring a height field from a monochromatic scaled bitmap texture

50

8. Plugin reference 8.2. Surface scattering models

8.2. Surface scattering models

Smooth plastic material (plastic)

...

Smooth di�use material (diffuse)

Smooth di�use transmitter (difftrans)

Smooth conducting material (conductor)

Di�use scattering

Rough/bumpy surface

Rough plastic material (roughplastic)

Smooth surface Exterior (normal-facing side)

Interior-facing side

Clear coating

Tinted layer

Scattering layer

Arbitrary BSDF?

Incident illumination

Scattered illumination
(secondary component)

Scattered illumination
(tertiary component)

Lobe shape/presence is up
to the nested model

Scattered illumination
(primary component)

Smooth dielectric material (dielectric)

Rough conducting material (roughconductor)Rough di�use material (roughdiffuse)

Smooth dielectric coating (coating)

?

Legend

?

?

Bump map modi�er (bump)

?

?

Rough dielectric material (roughdielectric)

?

?
Single-scattering layer (hk)

...

Figure 6: Schematic overview of the most important surface scattering models in Mitsuba (shown in the style

ofWeidlich andWilkie [52]). The arrows indicate possible outcomes of an interaction with a surface

that has the respective model applied to it.

Surface scattering models describe the manner in which light interacts with surfaces in the scene.
They conveniently summarize the mesoscopic scattering processes that take place within the material
and cause it to look the way it does. This represents one central component of the material system in
Mitsuba—another part of the renderer concerns itself with what happens in between surface interac-
tions. For more information on this aspect, please refer to Sections 8.5 and 8.4. This section presents
an overview of all surface scattering models that are supported, along with their parameters.

BSDFs

To achieve realistic results, Mitsuba comes with a library of both general-purpose surface scattering
models (smooth or rough glass, metal, plastic, etc.) and specializations to particular materials (woven
cloth, masks, etc.). Some model plugins fit neither category and can best be described as modifiers
that are applied on top of one or more scattering models.

Throughout the documentation and within the scene description language, the word BSDF is used
synonymously with the term “surface scattering model”. This is an abbreviation for Bidirectional Scat-

51

8. Plugin reference 8.2. Surface scattering models

tering Distribution Function, a more precise technical term.
In Mitsuba, BSDFs are assigned to shapes, which describe the visible surfaces in the scene. In

the scene description language, this assignment can either be performed by nesting BSDFs within
shapes, or they can be named and then later referenced by their name. The following fragment shows
an example of both kinds of usages:

<scene version="0.4.5">
<!-- Creating a named BSDF for later use -->
<bsdf type=".. BSDF type .." id="myNamedMaterial">

<!-- BSDF parameters go here -->
</bsdf>

<shape type="sphere">
<!-- Example of referencing a named material -->
<ref id="myNamedMaterial"/>

</shape>

<shape type="sphere">
<!-- Example of instantiating an unnamed material -->
<bsdf type=".. BSDF type ..">

<!-- BSDF parameters go here -->
</bsdf>

</shape>
</scene>

It is generally more economical to use named BSDFs when they are used in several places, since this
reduces Mitsuba’s internal memory usage.

Correctness considerations

A vital consideration when modeling a scene in a physically-based rendering system is that the used
materials do not violate physical properties, and that their arrangement is meaningful. For instance,

IOR = 1.33

IOR = 1.50
IOR = 1.00

Interior IOR Exterior IORSurface

1.33

1.33

1.00

1.50

1.50 1.00

(a) Slice through a glass
�lled with water

(b) Description using
 surfaces in Mitsuba

(c) Detailed IOR transitions

(normals in gray)

Figure 7: Some of the scatteringmodels inMitsuba need to know the indices of refraction on the exterior and

interior-facing side of a surface. It is therefore important to decompose the mesh into meaningful

separate surfaces corresponding to each index of refraction change. The example here shows such a

decomposition for a water-filled Glass.

52

8. Plugin reference 8.2. Surface scattering models

imagine having designed an architectural interior scene that looks good except for a white desk that
seems a bit too dark. A closer inspection reveals that it uses a Lambertian material with a diffuse
reflectance of 0.9.

In many rendering systems, it would be feasible to increase the reflectance value above 1.0 in such
a situation. But in Mitsuba, even a small surface that reflects a little more light than it receives will
likely break the available rendering algorithms, or cause them to produce otherwise unpredictable
results. In fact, the right solution in this case would be to switch to a different the lighting setup that
causes more illumination to be received by the desk and then reduce the material’s reflectance—after
all, it is quite unlikely that one could find a real-world desk that reflects 90% of all incident light.

As another example of the necessity for a meaningful material description, consider the glass model
illustrated in Figure 7. Here, careful thinking is needed to decompose the object into boundaries
that mark index of refraction-changes. If this is done incorrectly and a beam of light can potentially
pass through a sequence of incompatible index of refraction changes (e.g. 1.00 → 1.33 followed by
1.50 → 1.33), the output is undefined and will quite likely even contain inaccuracies in parts of the
scene that are far away from the glass.

53

8. Plugin reference 8.2. Surface scattering models

8.2.1. Smooth diffuse material (diffuse)

Parameter Type Description

reflectance spectrum or

texture
Specifies the diffuse albedo of the material (Default: 0.5)

(a) Homogeneous reflectance, see Listing 11 (b) Textured reflectance, see Listing 12

The smooth diffuse material (also referred to as “Lambertian”) represents an ideally diffuse material
with a user-specified amount of reflectance. Any received illumination is scattered so that the surface
looks the same independently of the direction of observation.

Apart from a homogeneous reflectance value, the plugin can also accept a nested or referenced
texture map to be used as the source of reflectance information, which is then mapped onto the shape
based on its UV parameterization. When no parameters are specified, the model uses the default of
50% reflectance.

Note that this material is one-sided—that is, observed from the back side, it will be completely
black. If this is undesirable, consider using the twosided BRDF adapter plugin.

<bsdf type="diffuse">
<srgb name="reflectance" value="#6d7185"/>

</bsdf>

Listing 11: A diffuse material, whose reflectance is specified as an sRGB color

<bsdf type="diffuse">
<texture type="bitmap" name="reflectance">

<string name="filename" value="wood.jpg"/>
</texture>

</bsdf>

Listing 12: A diffuse material with a texture map

54

8. Plugin reference 8.2. Surface scattering models

8.2.2. Rough diffuse material (roughdiffuse)

Parameter Type Description

reflectance spectrum or

texture
Specifies the diffuse albedo of the material. (Default: 0.5)

alpha spectrum or

texture
Specifies the roughness of the unresolved surface micro-

geometry using the root mean square (RMS) slope of the

microfacets. (Default: 0.2)

useFastApprox boolean This parameter selects between the full version of themodel

or a fast approximation that still retainsmost qualitative fea-

tures. (Default: false, i.e. use the high-quality version)

(a) Smooth diffuse surface (α = 0) (b) Very rough diffuse surface (α = 0.7)
Figure 8: The effect of switching from smooth to rough diffuse scattering is fairly subtle on this model—

generally, there will be higher reflectance at grazing angles, as well as an overall reduced contrast.

This reflectance model describes the interaction of light with a rough diffuse material, such as plas-
ter, sand, clay, or concrete, or “powdery” surfaces. The underlying theory was developed by Oren
and Nayar [35], who model the microscopic surface structure as unresolved planar facets arranged
in V-shaped grooves, where each facet is an ideal diffuse reflector. The model takes into account
shadowing, masking, as well as interreflections between the facets.

Since the original publication, this approach has been shown to be a good match for many real-
world materials, particularly compared to Lambertian scattering, which does not take surface rough-
ness into account.

The implementation in Mitsuba uses a surface roughness parameter α that is slightly different from
the slope-area variance in the original 1994 paper. The reason for this change is to make the parameter
α portable across different models (i.e. roughdielectric, roughplastic, roughconductor).

To get an intuition about the effect of the parameter α, consider the following approximate classifi-
cation: a value of α = 0.001−0.01 corresponds to a material with slight imperfections on an otherwise
smooth surface (for such small values, the model will behave identically to diffuse), α = 0.1 is rela-
tively rough, and α = 0.3 − 0.7 is extremely rough (e.g. an etched or ground surface).

Note that this material is one-sided—that is, observed from the back side, it will be completely
black. If this is undesirable, consider using the twosided BRDF adapter plugin.

55

8. Plugin reference 8.2. Surface scattering models

8.2.3. Smooth dielectric material (dielectric)

Parameter Type Description

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: bk7 / 1.5046)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

specular⤦
Transmittance

spectrum or

texture
Optional factor that can be used to modulate the specular

transmission component. Note that for physical realism,

this parameter should never be touched. (Default: 1.0)

(a) Air↔Water (IOR: 1.33) interface.

See Listing 13.

(b) Air↔Diamond (IOR: 2.419) (c) Air↔Glass (IOR: 1.504) interface

with absorption. See Listing 14.

This plugin models an interface between two dielectric materials having mismatched indices of re-
fraction (for instance, water and air). Exterior and interior IOR values can be specified independently,
where “exterior” refers to the side that contains the surface normal. When no parameters are given,
the plugin activates the defaults, which describe a borosilicate glass BK7/air interface.

In this model, the microscopic structure of the surface is assumed to be perfectly smooth, resulting
in a degenerate10 BSDF described by a Dirac delta distribution. For a similar model that instead
describes a rough surface microstructure, take a look at the roughdielectric plugin.

<shape type="...">
<bsdf type="dielectric">

<string name="intIOR" value="water"/>
<string name="extIOR" value="air"/>

</bsdf>
<shape>

Listing 13: A simple air-to-water interface

When using this model, it is crucial that the scene contains meaningful and mutually compatible
indices of refraction changes—see Figure 7 for a description of what this entails.

In many cases, we will want to additionally describe the medium within a dielectric material. This

10
Meaning that for any given incoming ray of light, the model always scatters into a discrete set of directions, as opposed

to a continuum.

56

8. Plugin reference 8.2. Surface scattering models

requires the use of a rendering technique that is aware of media (e.g. the volumetric path tracer). An
example of how one might describe a slightly absorbing piece of glass is shown below:

<shape type="...">
<bsdf type="dielectric">

<float name="intIOR" value="1.504"/>
<float name="extIOR" value="1.0"/>

</bsdf>

<medium type="homogeneous" name="interior">
<rgb name="sigmaS" value="0, 0, 0"/>
<rgb name="sigmaA" value="4, 4, 2"/>

</medium>
<shape>

Listing 14: A glass material with absorption (based on the Beer-Lambert law). This material can only be used

by an integrator that is aware of participating media.

Name Value Name Value

vacuum 1.0 bromine 1.661
helium 1.00004 water ice 1.31
hydrogen 1.00013 fused quartz 1.458
air 1.00028 pyrex 1.470
carbon dioxide 1.00045 acrylic glass 1.49
water 1.3330 polypropylene 1.49
acetone 1.36 bk7 1.5046
ethanol 1.361 sodium chloride 1.544
carbon tetrachloride 1.461 amber 1.55
glycerol 1.4729 pet 1.575
benzene 1.501 diamond 2.419
silicone oil 1.52045

Table 3: This table lists all supported material names along with along with their associated index of re-

fraction at standard conditions. These material names can be used with the plugins dielectric,
roughdielectric, plastic, roughplastic, as well as coating.

Remarks:
• Dispersion is currently unsupported but will be enabled in a future release.

57

8. Plugin reference 8.2. Surface scattering models

8.2.4. Thin dielectric material (thindielectric)

Parameter Type Description

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: bk7 / 1.5046)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

specular⤦
Transmittance

spectrum or

texture
Optional factor that can be used to modulate the specular

transmission component. Note that for physical realism,

this parameter should never be touched. (Default: 1.0)

This plugin models a thin dielectric material that is embedded inside another dielectric—for in-
stance, glass surrounded by air. The interior of the material is assumed to be so thin that its effect on
transmitted rays is negligible, Hence, light exits such a material without any form of angular deflec-
tion (though there is still specular reflection).

This model should be used for things like glass windows that were modeled using only a single
sheet of triangles or quads. On the other hand, when the window consists of proper closed geometry,
dielectric is the right choice. This is illustrated below:

(a) The dielectric plugin models

a single transition from one in-

dex of refraction to another

...

(b) The thindielectric plugin

models a pair of interfaces caus-

ing a transient index of refrac-

tion change

(c) Windows modeled using a single

sheet of geometry are the most

frequent application of this BSDF

Figure 9: An illustration of the difference between the dielectric and thindielectric plugins

The implementation correctly accounts for multiple internal reflections inside the thin dielectric at
no significant extra cost, i.e. paths of the type R, TRT , TR3T , .. for reflection and TT , TR2, TR4T , ..
for refraction, where T and R denote individual reflection and refraction events, respectively.

58

8. Plugin reference 8.2. Surface scattering models

8.2.5. Rough dielectric material (roughdielectric)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to

model the surface roughness.

(i) beckmann: Physically-based distribution derived

from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [48],

which ismeant to better handle the long tails observed

inmeasurements of ground surfaces. Renderingswith

this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-

derlyingmicrofacet theory, the use of this distribution

here leads to more realistic behavior than the sepa-

rately available phong plugin.

(iv) as: Anisotropic Phong-style microfacet distribution

proposed by Ashikhmin and Shirley [1].

alpha float or

texture
Specifies the roughness of the unresolved surface micro-

geometry. When the Beckmann distribution is used, this

parameter is equal to the root mean square (RMS) slope

of the microfacets. This parameter is only valid when

distribution=beckmann/phong/ggx. (Default: 0.1).

alphaU, alphaV float or

texture
Specifies the anisotropic roughness values along the tangent

and bitangent directions. These parameter are only valid

when distribution=as. (Default: 0.1).

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: bk7 / 1.5046)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

specular⤦
Transmittance

spectrum or

texture
Optional factor that can be used to modulate the specular

transmission component. Note that for physical realism,

this parameter should never be touched. (Default: 1.0)

This plugin implements a realistic microfacet scattering model for rendering rough interfaces be-
tween dielectric materials, such as a transition from air to ground glass. Microfacet theory describes
rough surfaces as an arrangement of unresolved and ideally specular facets, whose normal directions
are given by a specially chosen microfacet distribution. By accounting for shadowing and masking
effects between these facets, it is possible to reproduce the important off-specular reflections peaks
observed in real-world measurements of such materials.

This plugin is essentially the “roughened” equivalent of the (smooth) plugin dielectric. For very

59

8. Plugin reference 8.2. Surface scattering models

(a) Anti-glare glass (Beckmann, α = 0.02) (b) Rough glass (Beckmann, α = 0.1)

low values of α, the two will be identical, though scenes using this plugin will take longer to render
due to the additional computational burden of tracking surface roughness.

The implementation is based on the paper “Microfacet Models for Refraction through Rough Sur-
faces” by Walter et al. [48]. It supports several different types of microfacet distributions and has
a texturable roughness parameter. Exterior and interior IOR values can be specified independently,
where “exterior” refers to the side that contains the surface normal. Similar to the dielectric plugin,
IOR values can either be specified numerically, or based on a list of known materials (see Table 3 for
an overview). When no parameters are given, the plugin activates the default settings, which describe
a borosilicate glass BK7/air interface with a light amount of roughness modeled using a Beckmann
distribution.

To get an intuition about the effect of the surface roughness parameter α, consider the following
approximate classification: a value of α = 0.001− 0.01 corresponds to a material with slight imperfec-
tions on an otherwise smooth surface finish, α = 0.1 is relatively rough, and α = 0.3− 0.7 is extremely
rough (e.g. an etched or ground finish).

Please note that when using this plugin, it is crucial that the scene contains meaningful and mutu-
ally compatible index of refraction changes—see Figure 7 for an example of what this entails. Also,
note that the importance sampling implementation of this model is close, but not always a perfect a
perfect match to the underlying scattering distribution, particularly for high roughness values and
when the ggxmicrofacet distribution is used. Hence, such renderings may converge slowly.

Technical details

When rendering with the Ashikhmin-Shirley or Phong microfacet distributions, a conversion is used
to turn the specified α roughness value into the exponents of these distributions. This is done in a
way, such that the different distributions all produce a similar appearance for the same value of α.

The Ashikhmin-Shirley microfacet distribution allows the specification of two distinct roughness
values along the tangent and bitangent directions. This can be used to provide a material with a
“brushed” appearance. The alignment of the anisotropy will follow the UV parameterization of the
underlying mesh in this case. This also means that such an anisotropic material cannot be applied to
triangle meshes that are missing texture coordinates.

60

8. Plugin reference 8.2. Surface scattering models

(a) Ground glass (GGX, α=0.304, Listing 15) (b) Textured roughness (Listing 16)

<bsdf type="roughdielectric">
<string name="distribution" value="ggx"/>
<float name="alpha" value="0.304"/>
<string name="intIOR" value="bk7"/>
<string name="extIOR" value="air"/>

</bsdf>

Listing 15: Amaterial definition for ground glass

<bsdf type="roughdielectric">
<string name="distribution" value="beckmann"/>
<float name="intIOR" value="1.5046"/>
<float name="extIOR" value="1.0"/>

<texture name="alpha" type="bitmap">
<string name="filename" value="roughness.exr"/>

</texture>
</bsdf>

Listing 16: A texture can be attached to the roughness parameter

61

8. Plugin reference 8.2. Surface scattering models

8.2.6. Smooth conductor (conductor)

Parameter Type Description

material string Nameof amaterial preset, seeTable 4.(Default: Cu / copper)

eta, k spectrum Real and imaginary components of the material’s index of

refraction (Default: based on the value of material)

extEta float or

string
Real-valued index of refraction of the surrounding dielec-

tric, or a material name of a dielectric (Default: air)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

(a) Measured copper material (the default), rendered us-

ing 30 spectral samples between 360 and 830nm
(b) Measured gold material (Listing 17)

This plugin implements a perfectly smooth interface to a conducting material, such as a metal. For
a similar model that instead describes a rough surface microstructure, take a look at the separately
available roughconductor plugin.

In contrast to dielectric materials, conductors do not transmit any light. Their index of refraction
is complex-valued and tends to undergo considerable changes throughout the visible color spectrum.

To facilitate the tedious task of specifying spectrally-varying index of refraction information, Mit-
suba ships with a set of measured data for several materials, where visible-spectrum information was
publicly available11.

Note that Table 4 also includes several popular optical coatings, which are not actually conduc-
tors. These materials can also be used with this plugin, though note that the plugin will ignore any
refraction component that the actual material might have had. There is also a special material profile
named none, which disables the computation of Fresnel reflectances and produces an idealized 100%
reflecting mirror.

When using this plugin, you should ideally compile Mitsuba with support for spectral rendering
to get the most accurate results. While it also works in RGB mode, the computations will be more

11
These index of refraction values are identical to the data distributed with PBRT.They are originally from the Luxpop

database (www.luxpop.com) and are based on data by Palik et al. [36] and measurements of atomic scattering factors

made by the Center For X-Ray Optics (CXRO) at Berkeley and the Lawrence Livermore National Laboratory (LLNL).

62

www.luxpop.com

8. Plugin reference 8.2. Surface scattering models

approximate in nature. Also note that this material is one-sided—that is, observed from the back side,
it will be completely black. If this is undesirable, consider using the twosided BRDF adapter plugin.

<shape type="...">
<bsdf type="conductor">

<string name="material" value="Au"/>
</bsdf>

<shape>

Listing 17: Amaterial configuration for a smooth conductor with measured gold data

It is also possible to load spectrally varying index of refraction data from two external files containing
the real and imaginary components, respectively (see Section 6.1.3 for details on the file format):

<shape type="...">
<bsdf type="conductor">

<spectrum name="eta" filename="conductorIOR.eta.spd"/>
<spectrum name="k" filename="conductorIOR.k.spd"/>

</bsdf>
<shape>

Listing 18: Rendering a smooth conductor with custom data

Preset(s) Description Preset(s) Description

a-C Amorphous carbon Na_palik Sodium
Ag Silver Nb, Nb_palik Niobium
Al Aluminium Ni_palik Nickel
AlAs, AlAs_palik Cubic aluminium arsenide Rh, Rh_palik Rhodium
AlSb, AlSb_palik Cubic aluminium antimonide Se, Se_palik Selenium
Au Gold SiC, SiC_palik Hexagonal silicon carbide
Be, Be_palik Polycrystalline beryllium SnTe, SnTe_palik Tin telluride
Cr Chromium Ta, Ta_palik Tantalum
CsI, CsI_palik Cubic caesium iodide Te, Te_palik Trigonal tellurium
Cu, Cu_palik Copper ThF4, ThF4_palik Polycryst. thorium (IV) fluoride
Cu2O, Cu2O_palik Copper (I) oxide TiC, TiC_palik Polycrystalline titanium carbide
CuO, CuO_palik Copper (II) oxide TiN, TiN_palik Titanium nitride
d-C, d-C_palik Cubic diamond TiO2, TiO2_palik Tetragonal titan. dioxide
Hg, Hg_palik Mercury VC, VC_palik Vanadium carbide
HgTe, HgTe_palik Mercury telluride V_palik Vanadium
Ir, Ir_palik Iridium VN, VN_palik Vanadium nitride
K, K_palik Polycrystalline potassium W Tungsten
Li, Li_palik Lithium
MgO, MgO_palik Magnesium oxide
Mo, Mo_palik Molybdenum none No mat. profile (→ 100% reflecting mirror)

Table 4: This table lists all supported materials that can be passed into the conductor and roughconductor
plugins. Note that some of them are not actually conductors—this is not a problem, they can be

used regardless (though only the reflection component and no transmission will be simulated). In

most cases, there are multiple entries for each material, which represent measurements by different

authors.

63

8. Plugin reference 8.2. Surface scattering models

8.2.7. Rough conductor material (roughconductor)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to

model the surface roughness.

(i) beckmann: Physically-based distribution derived

from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [48],

which ismeant to better handle the long tails observed

inmeasurements of ground surfaces. Renderingswith

this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-

derlyingmicrofacet theory, the use of this distribution

here leads to more realistic behavior than the sepa-

rately available phong plugin.

(iv) as: Anisotropic Phong-style microfacet distribution

proposed by Ashikhmin and Shirley [1].

alpha float or

texture
Specifies the roughness of the unresolved surface micro-

geometry. When the Beckmann distribution is used, this

parameter is equal to the root mean square (RMS) slope

of the microfacets. This parameter is only valid when

distribution=beckmann/phong/ggx. (Default: 0.1).

alphaU, alphaV float or

texture
Specifies the anisotropic roughness values along the tangent

and bitangent directions. These parameter are only valid

when distribution=as. (Default: 0.1).

material string Nameof amaterial preset, seeTable 4.(Default: Cu / copper)

eta, k spectrum Real and imaginary components of the material’s index of

refraction (Default: based on the value of material)

extEta float or

string
Real-valued index of refraction of the surrounding dielec-

tric, or a material name of a dielectric (Default: air)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

This plugin implements a realistic microfacet scattering model for rendering rough conducting
materials, such as metals. It can be interpreted as a fancy version of the Cook-Torrance model and
should be preferred over heuristic models like phong and ward when possible.

Microfacet theory describes rough surfaces as an arrangement of unresolved and ideally specular
facets, whose normal directions are given by a specially chosenmicrofacet distribution. By accounting
for shadowing and masking effects between these facets, it is possible to reproduce the important off-
specular reflections peaks observed in real-world measurements of such materials.

This plugin is essentially the “roughened” equivalent of the (smooth) plugin conductor. For very
low values of α, the two will be identical, though scenes using this plugin will take longer to render

64

8. Plugin reference 8.2. Surface scattering models

(a) Rough copper (Beckmann, α = 0.1) (b) Vertically brushed aluminium (Ashikhmin-Shirley,

αu = 0.05, αv = 0.3), see Listing 19

due to the additional computational burden of tracking surface roughness.
The implementation is based on the paper “Microfacet Models for Refraction through Rough Sur-

faces” by Walter et al. [48]. It supports several different types of microfacet distributions and has a
texturable roughness parameter. To facilitate the tedious task of specifying spectrally-varying index of
refraction information, this plugin can access a set of measured materials for which visible-spectrum
information was publicly available (see Table 4 for the full list). There is also a special material profile
named none, which disables the computation of Fresnel reflectances and produces an idealized 100%
reflecting mirror.

When no parameters are given, the plugin activates the default settings, which describe copper
with a light amount of roughness modeled using a Beckmann distribution.

To get an intuition about the effect of the surface roughness parameter α, consider the following
approximate classification: a value of α = 0.001− 0.01 corresponds to a material with slight imperfec-
tions on an otherwise smooth surface finish, α = 0.1 is relatively rough, and α = 0.3− 0.7 is extremely
rough (e.g. an etched or ground finish). Values significantly above that are probably not too realistic.

<bsdf type="roughconductor">
<string name="material" value="Al"/>
<string name="distribution" value="as"/>
<float name="alphaU" value="0.05"/>
<float name="alphaV" value="0.3"/>

</bsdf>

Listing 19: Amaterial definition for brushed aluminium

Technical details

When rendering with the Ashikhmin-Shirley or Phong microfacet distributions, a conversion is used
to turn the specified α roughness value into the exponents of these distributions. This is done in a
way, such that the different distributions all produce a similar appearance for the same value of α.

65

8. Plugin reference 8.2. Surface scattering models

The Ashikhmin-Shirley microfacet distribution allows the specification of two distinct roughness
values along the tangent and bitangent directions. This can be used to provide a material with a
“brushed” appearance. The alignment of the anisotropy will follow the UV parameterization of the
underlying mesh in this case. This also means that such an anisotropic material cannot be applied to
triangle meshes that are missing texture coordinates.

When using this plugin, you should ideally compile Mitsuba with support for spectral rendering
to get the most accurate results. While it also works in RGB mode, the computations will be more
approximate in nature. Also note that this material is one-sided—that is, observed from the back side,
it will be completely black. If this is undesirable, consider using the twosided BRDF adapter.

66

...

8. Plugin reference 8.2. Surface scattering models

8.2.8. Smooth plastic material (plastic)

Parameter Type Description

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: polypropylene / 1.49)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

diffuse⤦
Reflectance

spectrum or

texture
Optional factor used tomodulate the diffuse reflection com-

ponent (Default: 0.5)

nonlinear boolean Account for nonlinear color shifts due to internal scatter-

ing? See the main text for details. (Default: Don’t account

for them and preserve the texture colors, i.e. false)

(a) A rendering with the default parameters (b) A rendering with custom parameters (Listing 20)

This plugin describes a smooth plastic-like material with internal scattering. It uses the Fresnel
reflection and transmission coefficients to provide direction-dependent specular and diffuse compo-
nents. Since it is simple, realistic, and fast, this model is often a better choice than the phong, ward,
and roughplastic plugins when rendering smooth plastic-like materials.

For convenience, this model allows to specify IOR values either numerically, or based on a list of
known materials (see Table 3 for an overview).

Note that this plugin is quite similar to what one would get by applying the coating plugin to the
diffusematerial. The main difference is that this plugin is significantly faster, while at the same time
causing less variance. Furthermore, it accounts for multiple interreflections inside the material (read
on for details), which avoids a serious energy loss problem of the aforementioned plugin combination.

67

8. Plugin reference 8.2. Surface scattering models

<bsdf type="plastic">
<srgb name="diffuseReflectance" value="#18455c"/>
<float name="intIOR" value="1.9"/>

</bsdf>

Listing 20: A shiny material whose diffuse reflectance is specified using sRGB

(a) Diffuse textured rendering (b) Plastic model, nonlinear=false (c) Plastic model, nonlinear=true

Figure 10: When asked to do so, this model can account for subtle nonlinear color shifts due to internal

scattering processes. The above images show a textured object first rendered using diffuse, then
plastic with the default parameters, and finally using plastic and support for nonlinear color

shifts.

Internal scattering

Internally, this is model simulates the interaction of light with a diffuse base surface coated by a thin
dielectric layer. This is a convenient abstraction rather than a restriction. In other words, there are
many materials that can be rendered with this model, even if they might not not fit this description
perfectly well.

20 %

80 %

(a) At the boundary, incident illumina-

tion is partly reflected and refracted

(b) The refracted portion scatters dif-

fusely at the base layer

40 %

60 %

(c) Someof the illumination undergoes

further internal scattering events

Figure 11: An illustration of the scattering events that are internally handled by this plugin

Given illumination that is incident upon such a material, a portion of the illumination is specu-
larly reflected at the material boundary, which results in a sharp reflection in the mirror direction
(Figure 11a). The remaining illumination refracts into the material, where it scatters from the diffuse
base layer. (Figure 11b). While some of the diffusely scattered illumination is able to directly refract
outwards again, the remainder is reflected from the interior side of the dielectric boundary and will
in fact remain trapped inside the material for some number of internal scattering events until it is
finally able to escape (Figure 11c).

Due to the mathematical simplicity of this setup, it is possible to work out the correct form of the
model without actually having to simulate the potentially large number of internal scattering events.

68

8. Plugin reference 8.2. Surface scattering models

Note that due to the internal scattering, the diffuse color of the material is in practice slightly dif-
ferent from the color of the base layer on its own—in particular, the material color will tend to shift
towards darker colors with higher saturation. Since this can be counter-intuitive when using bitmap
textures, these color shifts are disabled by default. Specify the parameter nonlinear=true to enable
them. Figure 10 illustrates the resulting change. This effect is also seen in real life, for instance a piece
of wood will look slightly darker after coating it with a layer of varnish.

69

...

8. Plugin reference 8.2. Surface scattering models

8.2.9. Rough plastic material (roughplastic)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to

model the surface roughness.

(i) beckmann: Physically-based distribution derived

from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [48],

which ismeant to better handle the long tails observed

inmeasurements of ground surfaces. Renderingswith

this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-

derlyingmicrofacet theory, the use of this distribution

here leads to more realistic behavior than the sepa-

rately available phong plugin.

alpha float or

texture
Specifies the roughness of the unresolved surface micro-

geometry. When the Beckmann distribution is used, this

parameter is equal to the root mean square (RMS) slope of

the microfacets. (Default: 0.1).

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: polypropylene / 1.49)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

diffuse⤦
Reflectance

spectrum or

texture
Optional factor used tomodulate the diffuse reflection com-

ponent (Default: 0.5)

nonlinear boolean Account for nonlinear color shifts due to internal scatter-

ing? See the plastic plugin for details. (Default: Don’t ac-

count for them and preserve the texture colors, i.e. false)

This plugin implements a realistic microfacet scattering model for rendering rough dielectric ma-
terials with internal scattering, such as plastic. It can be interpreted as a fancy version of the Cook-
Torrance model and should be preferred over heuristic models like phong and ward when possible.

Microfacet theory describes rough surfaces as an arrangement of unresolved and ideally specular
facets, whose normal directions are given by a specially chosenmicrofacet distribution. By accounting
for shadowing and masking effects between these facets, it is possible to reproduce the important off-
specular reflections peaks observed in real-world measurements of such materials.

This plugin is essentially the “roughened” equivalent of the (smooth) plugin plastic. For very
low values of α, the two will be identical, though scenes using this plugin will take longer to render
due to the additional computational burden of tracking surface roughness.

For convenience, this model allows to specify IOR values either numerically, or based on a list of

70

8. Plugin reference 8.2. Surface scattering models

(a) Beckmann, α = 0.1 (b) GGX, α = 0.3

known materials (see Table 3 on page 57 for an overview). When no parameters are given, the plugin
activates the defaults, which describe a white polypropylene plastic material with a light amount of
roughness modeled using the Beckmann distribution.

Like the plastic material, this model internally simulates the interaction of light with a diffuse
base surface coated by a thin dielectric layer (where the coating layer is now rough). This is a con-
venient abstraction rather than a restriction. In other words, there are many materials that can be
rendered with this model, even if they might not not fit this description perfectly well.

The simplicity of this setup makes it possible to account for interesting nonlinear effects due to
internal scattering, which is controlled by the nonlinear parameter. For more details, please refer
to the description of this parameter given in the the plastic plugin section on page 67.

To get an intuition about the effect of the surface roughness parameter α, consider the following
approximate classification: a value of α = 0.001− 0.01 corresponds to a material with slight imperfec-
tions on an otherwise smooth surface finish, α = 0.1 is relatively rough, and α = 0.3− 0.7 is extremely
rough (e.g. an etched or ground finish). Values significantly above that are probably not too realistic.

(a) Diffuse textured rendering (b) Textured rough plastic model and

nonlinear=false
(c) Textured rough plastic model and

nonlinear=true

Figure 12: When asked to do so, this model can account for subtle nonlinear color shifts due to internal scat-

tering processes. The above images show a textured object first rendered using diffuse, then
roughplasticwith the default parameters, and finally using roughplastic and support for non-
linear color shifts.

71

8. Plugin reference 8.2. Surface scattering models

(a) Wood material with smooth horizontal stripes (b) Amaterial with imperfections at a much smaller scale

than what is modeled e.g. using a bump map.

Figure 13: The ability to texture the roughness parameter makes it possible to render materials with a struc-

tured finish, as well as “smudgy” objects.

<bsdf type="roughplastic">
<string name="distribution" value="beckmann"/>
<float name="intIOR" value="1.61"/>
<spectrum name="diffuseReflectance" value="0"/>
<!-- Fetch roughness values from a texture and slightly reduce them -->
<texture type="scale" name="alpha">

<texture name="alpha" type="bitmap">
<string name="filename" value="bump.png"/>

</texture>
<float name="scale" value="0.6"/>

</texture>
</bsdf>

Listing 21: Amaterial definition for black plastic material with a spatially varying roughness.

Technical details

The implementation of this model is partly based on the paper “Microfacet Models for Refraction
through Rough Surfaces” by Walter et al. [48]. Several different types of microfacet distributions are
supported. Note that the choices are slightly more restricted here—in comparison to other rough
scattering models in Mitsuba, anisotropic distributions are not allowed.

The implementation of this model makes heavy use of a rough Fresnel transmittance function,
which is a generalization of the usual Fresnel transmittion coefficient to microfacet surfaces. Unfortu-
nately, this function is normally prohibitively expensive, since each evaluation involves a numerical
integration over the sphere.

To avoid this performance issue, Mitsuba ships with data files (contained in thedata/microfacet
directory) containing precomputed values of this function over a large range of parameter values. At
runtime, the relevant parts are extracted using tricubic interpolation.

When rendering with the Phong microfacet distributions, a conversion is used to turn the specified
α roughness value into the Phong exponent. This is done in a way, such that the different distributions
all produce a similar appearance for the same value of α.

72

?

?

?

8. Plugin reference 8.2. Surface scattering models

8.2.10. Smooth dielectric coating (coating)

Parameter Type Description

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: bk7 / 1.5046)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: air / 1.000277)

thickness float Denotes the thickness of the layer (to model absorption —

should be specified in inverse units of sigmaA) (Default: 1)

sigmaA spectrum or

texture
The absorption coefficient of the coating layer. (Default: 0,

i.e. there is no absorption)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

(Nested plugin) bsdf A nested BSDF model that should be coated.

(a) Rough copper (b) The same material coated with a single layer of clear

varnish (see Listing 22)

This plugin implements a smooth dielectric coating (e.g. a layer of varnish) in the style of the
paper “Arbitrarily Layered Micro-Facet Surfaces” by Weidlich and Wilkie [52]. Any BSDF in Mitsuba
can be coated using this plugin, and multiple coating layers can even be applied in sequence. This
allows designing interesting custom materials like car paint or glazed metal foil. The coating layer can
optionally be tinted (i.e. filled with an absorbing medium), in which case this model also accounts
for the directionally dependent absorption within the layer.

Note that the plugin discards illumination that undergoes internal reflection within the coating.
This can lead to a noticeable energy loss for materials that reflect much of their energy near or below
the critical angle (i.e. diffuse or very rough materials). Therefore, users are discouraged to use this
plugin to coat smooth diffuse materials, since there is a separately available plugin named plastic,
which covers the same case and does not suffer from energy loss.

73

8. Plugin reference 8.2. Surface scattering models

(a) thickness = 0 (b) thickness = 1 (c) thickness = 5 (d) thickness = 15

Figure 14: The effect of the layer thickness parameter on a tinted coating (sigmaT = (0.1, 0.2, 0.5))

<bsdf type="coating">
<float name="intIOR" value="1.7"/>

<bsdf type="roughconductor">
<string name="material" value="Cu"/>
<float name="alpha" value="0.1"/>

</bsdf>
</bsdf>

Listing 22: Rough copper coated with a transparent layer of varnish

(a) Coated rough copper with a bumpmap applied on top (b) Bump mapped rough copper with a coating on top

Figure 15: Some interesting materials can be created simply by applyingMitsuba’s material modifiers in differ-

ent orders.

Technical details

Evaluating the internal component of this model entails refracting the incident and exitant rays
through the dielectric interface, followed by querying the nested material with this modified direction
pair. The result is attenuated by the two Fresnel transmittances and the absorption, if any.

74

?

?

?

8. Plugin reference 8.2. Surface scattering models

8.2.11. Rough dielectric coating (roughcoating)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to

model the surface roughness.

(i) beckmann: Physically-based distribution derived

from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [48],

which ismeant to better handle the long tails observed

inmeasurements of ground surfaces. Renderingswith

this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-

derlyingmicrofacet theory, the use of this distribution

here leads to more realistic behavior than the sepa-

rately available phong plugin.

alpha float or

texture
Specifies the roughness of the unresolved surface micro-

geometry. When the Beckmann distribution is used, this

parameter is equal to the root mean square (RMS) slope of

the microfacets. (Default: 0.1).

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: bk7 / 1.5046)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: air / 1.000277)

thickness float Denotes the thickness of the layer (to model absorption —

should be specified in inverse units of sigmaA) (Default: 1)

sigmaA spectrum or

texture
The absorption coefficient of the coating layer. (Default: 0,

i.e. there is no absorption)

specular⤦
Reflectance

spectrum or

texture
Optional factor that can be used to modulate the specular

reflection component. Note that for physical realism, this

parameter should never be touched. (Default: 1.0)

(Nested plugin) bsdf A nested BSDF model that should be coated.

This plugin implements a very approximate12 model that simulates a rough dielectric coating. It
is essentially the roughened version of coating. Any BSDF in Mitsuba can be coated using this
plugin and multiple coating layers can even be applied in sequence, which allows designing interesting
custom materials. The coating layer can optionally be tinted (i.e. filled with an absorbing medium),
in which case this model also accounts for the directionally dependent absorption within the layer.

Note that the plugin discards illumination that undergoes internal reflection within the coating.
This can lead to a noticeable energy loss for materials that reflect much of their energy near or below

12
The model only accounts for roughness in the specular reflection and Fresnel transmittance through the interface. The

interior model receives incident illumination that is transformed as if the coating was smooth. While that’s not quite

correct, it is a convenient workaround when the coating plugin produces specular highlights that are too sharp.

75

8. Plugin reference 8.2. Surface scattering models

(a) Rough gold coated with a smooth varnish layer (b) Rough gold coatedwith a rough (α=0.03) varnish layer

the critical angle (i.e. diffuse or very rough materials).
The implementation here is influenced by the paper “Arbitrarily Layered Micro-Facet Surfaces” by

Weidlich and Wilkie [52].

76

?

?

?

8. Plugin reference 8.2. Surface scattering models

8.2.12. Bump map modifier (bump)

Parameter Type Description

(Nested plugin) texture The luminance of this texture specifies the amount of

displacement. The implementation ignores any constant

offset—only changes in the luminance matter.

(Nested plugin) bsdf A BSDF model that should be affected by the bump map

(a) Bump map based on tileable diagonal lines (b) An irregular bump map

Bump mapping [3] is a simple technique for cheaply adding surface detail to a rendering. This is
done by perturbing the shading coordinate frame based on a displacement height field provided as
a texture. This method can lend objects a highly realistic and detailed appearance (e.g. wrinkled or
covered by scratches and other imperfections) without requiring any changes to the input geometry.

The implementation in Mitsuba uses the common approach of ignoring the usually negligible
texture-space derivative of the base mesh surface normal. As side effect of this decision, it is invariant
to constant offsets in the height field texture—only variations in its luminance cause changes to the
shading frame.

Note that the magnitude of the height field variations influences the strength of the displacement. If
desired, the scale texture plugin can be used to magnify or reduce the effect of a bump map texture.

<bsdf type="bump">
<!-- The bump map is applied to a rough metal BRDF -->
<bsdf type="roughconductor"/>

<texture type="scale">
<!-- The scale of the displacement gets multiplied by 10x -->
<float name="scale" value="10"/>

<texture type="bitmap">
<string name="filename" value="bumpmap.png"/>

</texture>
</texture>

</bsdf>

Listing 23: A rough metal model with a scaled image-based bump map

77

8. Plugin reference 8.2. Surface scattering models

8.2.13. Modified Phong BRDF (phong)

Parameter Type Description

exponent float or

texture
Specifies the Phong exponent (Default: 30).

specular⤦
Reflectance

spectrum or

texture
Specifies the weight of the specular reflectance component.

(Default: 0.2)

diffuse⤦
Reflectance

spectrum or

texture
Specifies the weight of the diffuse reflectance component

(Default: 0.5)

(a) Exponent= 60 (b) Exponent= 300

This plugin implements the modified Phong reflectance model as described in [37] and [30]. This
heuristic model is mainly included for historical reasons—its use in new scenes is discouraged, since
significantly more realistic models have been developed since 1975.

If possible, it is recommended to switch to a BRDF that is based on microfacet theory and includes
knowledge about the material’s index of refraction. In Mitsuba, two good alternatives to phong are
the plugins roughconductor and roughplastic (depending on the material type).

When using this plugin, note that the diffuse and specular reflectance components should add up
to a value less than or equal to one (for each color channel). Otherwise, they will automatically be
scaled appropriately to ensure energy conservation.

78

8. Plugin reference 8.2. Surface scattering models

8.2.14. Anisotropic Ward BRDF (ward)

Parameter Type Description

variant string Determines the variant of the Ward model to use:

(i) ward:The originalmodel byWard [50]—suffers from

energy loss at grazing angles.

(ii) ward-duer: Corrected Ward model with lower en-

ergy loss at grazing angles [7]. Does not always con-

serve energy.

(iii) balanced: Improved version of the ward-duer
model with energy balance at all angles [11].

Default: balanced

alphaU, alphaV float or

texture
Specifies the anisotropic roughness values along the tangent

and bitangent directions. (Default: 0.1).

specular⤦
Reflectance

spectrum or

texture
Specifies the weight of the specular reflectance component.

(Default: 0.2)

diffuse⤦
Reflectance

spectrum or

texture
Specifies the weight of the diffuse reflectance component

(Default: 0.5)

(a) αu = 0.1, αv = 0.3 (b) αu = 0.3, αv = 0.1

This plugin implements the anisotropic Ward reflectance model and several extensions. They are
described in the papers

(i) “Measuring and Modeling Anisotropic Reflection” by Greg Ward [50]

(ii) “Notes on the Ward BRDF” by Bruce Walter [47]

(iii) “An Improved Normalization for the Ward Reflectance Model” by Arne Dür [7]

(iv) “A New Ward BRDF Model with Bounded Albedo” by Geisler-Moroder et al. [11]

Like the Phong BRDF, the Ward model does not take the Fresnel reflectance of the material into
account. In an experimental study by Ngan et al. [34], the Ward model performed noticeably worse
than models based on microfacet theory.

79

8. Plugin reference 8.2. Surface scattering models

For this reason, it is usually preferable to switch to a microfacet model that incorporates knowledge
about the material’s index of refraction. In Mitsuba, two such alternatives to ward are given by the
plugins roughconductor and roughplastic (depending on the material type).

When using this plugin, note that the diffuse and specular reflectance components should add up
to a value less than or equal to one (for each color channel). Otherwise, they will automatically be
scaled appropriately to ensure energy conservation.

80

8. Plugin reference 8.2. Surface scattering models

8.2.15. Mixture material (mixturebsdf)

Parameter Type Description

weights string A comma-separated list of BSDF weights

(Nested plugin) bsdf Multiple BSDF instances that should be mixed according to

the specified weights

(a) Smooth glass (b) Rough glass (c) An mixture of 70% smooth glass

and 30% rough glass results in

a more realistic smooth material

with imperfections (Listing 24)

This plugin implements a “mixture” material, which represents linear combinations of multiple
BSDF instances. Any surface scattering model in Mitsuba (be it smooth, rough, reflecting, or trans-
mitting) can be mixed with others in this manner to synthesize new models. There is no limit on how
many models can be mixed, but their combination weights must be non-negative and sum to a value
of one or less to ensure energy balance. When they sum to less than one, the material will absorb a
proportional amount of the incident illlumination.

<bsdf type="mixturebsdf">
<string name="weights" value="0.7, 0.3"/>

<bsdf type="dielectric"/>

<bsdf type="roughdielectric">
<float name="alpha" value="0.3"/>

</bsdf>
</bsdf>

Listing 24: Amaterial definition for a mixture of 70% smooth and 30% rough glass

81

8. Plugin reference 8.2. Surface scattering models

8.2.16. Blended material (blendbsdf)

Parameter Type Description

weight float or

texture
A floating point value or texture with values between zero

and one. The extreme values zero and one activate the first

and second nested BSDF respectively, and inbetween values

interpolate accordingly. (Default: 0.5)

(Nested plugin) bsdf Two nested BSDF instances that should bemixed according

to the specified blending weight

(a) A material created by blending between dark rough

plastic and smooth gold based on a binary bitmap tex-

ture (Listing 25)

This plugin implements a “blend” material, which represents linear combinations of two BSDF
instances. It is conceptually very similar to the mixturebsdf plugin. The main difference is that
blendbsdf can interpolate based on a texture rather than a set of constants.

Any surface scattering model in Mitsuba (be it smooth, rough, reflecting, or transmitting) can be
mixed with others in this manner to synthesize new models.

<bsdf type="blendbsdf">
<texture name="weight" type="bitmap">

<string name="wrapMode" value="repeat"/>
<string name="filename" value="pattern.png"/>

</texture>

<bsdf type="conductor">
<string name="material" value="Au"/>

</bsdf>

<bsdf type="roughplastic">
<spectrum name="diffuseReflectance" value="0"/>

</bsdf>
</bsdf>

Listing 25: Description of the material shown above

82

8. Plugin reference 8.2. Surface scattering models

8.2.17. Opacity mask (mask)

Parameter Type Description

opacity spectrum or

texture
Specifies the per-channel opacity (where 1 = completely

opaque) (Default: 0.5).

(Nested plugin) bsdf A base BSDF model that represents the non-transparent

portion of the scattering

(a) Rendering without an opacity mask (b) Rendering with an opacity mask (Listing 26)

This plugin applies an opacity mask to add nested BSDF instance. It interpolates between perfectly
transparent and completely opaque based on the opacity parameter.

The transparency is internally implemented as a forward-facing Dirac delta distribution. Note that
the standard path tracer does not have a good sampling strategy to deal with this, but the volumetric
path tracer (volpath) does. It may thus be preferable when rendering scenes that contain the mask
plugin, even if there is nothing “volumetric” in the scene.

<bsdf type="mask">
<!-- Base material: a two-sided textured diffuse BSDF -->
<bsdf type="twosided">

<bsdf type="diffuse">
<texture name="reflectance" type="bitmap">

<string name="filename" value="leaf.png"/>
</texture>

</bsdf>
</bsdf>

<!-- Fetch the opacity mask from the alpha channel -->
<texture name="opacity" type="bitmap">

<string name="filename" value="leaf.png"/>
<string name="channel" value="a"/>

</texture>
</bsdf>

Listing 26: Material configuration for a transparent leaf

83

8. Plugin reference 8.2. Surface scattering models

8.2.18. Two-sided BRDF adapter (twosided)

Parameter Type Description

(Nested plugin) bsdf A nested BRDF that should be turned into a two-sided scat-

teringmodel. If twoBRDFs are specified, theywill be placed

on the front and back side, respectively.

(a) From this angle, the Cornell box scene shows visible

back-facing geometry

(b) Applying the twosided plugin fixes the rendering

By default, all non-transmissive scattering models in Mitsuba are one-sided — in other words, they
absorb all light that is received on the interior-facing side of any associated surfaces. Holes and visible
back-facing parts are thus exposed as black regions.

Usually, this is a good idea, since it will reveal modeling issues early on. But sometimes one is
forced to deal with improperly closed geometry, where the one-sided behavior is bothersome. In that
case, this plugin can be used to turn one-sided scattering models into proper two-sided versions of
themselves. The plugin has no parameters other than a required nested BSDF specification. It is also
possible to supply two different BRDFs that should be placed on the front and back side, respectively.

<bsdf type="twosided">
<bsdf type="diffuse">

<spectrum name="reflectance" value="0.4"/>
</bsdf>

</bsdf>

Listing 27: A two-sided diffuse material

84

8. Plugin reference 8.2. Surface scattering models

8.2.19. Diffuse transmitter (difftrans)

Parameter Type Description

transmittance spectrum or

texture
Specifies the diffuse transmittance of the material (Default:

0.5)

(a) The model with default parameters

This BSDF models a non-reflective material, where any entering light loses its directionality and is
diffusely scattered from the other side. This model can be combined13 with a surface reflection model
to describe translucent substances that have internal multiple scattering processes (e.g. plant leaves).

13
For instance using the mixturebsdf plugin.

85

8. Plugin reference 8.2. Surface scattering models

8.2.20. Hanrahan-Krueger BSDF (hk)

Parameter Type Description

material string Name of a material preset, see Table 5. (Default: skin1)

sigmaS spectrum or

texture
Specifies the scattering coefficient of the internal layer. (De-

fault: based on material)

sigmaA spectrum or

texture
Specifies the absorption coefficient of the internal layer.

(Default: based on material)

sigmaT & albedo spectrum or

texture
Optional: Alternatively, the scattering and absorption coef-

ficientsmay also be specified using the extinction coefficient

sigmaT and the single-scattering albedo. Note that only one
of the parameter passing conventions can be used at a time

(i.e. use either sigmaS&sigmaA or sigmaT&albedo)

thickness float Denotes the thickness of the layer. (should be specified in

inverse units of sigmaA and sigmaS) (Default: 1)

(Nested plugin) phase A nested phase function instance that represents the type of

scattering interactions occurring within the layer

(a) An index-matched scattering layer with parameters

σs = 2, σa = 0.1, thickness= 0.1
(b) Example of the HK model with a dielectric coating

(and the ketchupmaterial preset, see Listing 28)

Figure 16: Renderings using the uncoated and coated form of the Hanrahan-Krueger model.

This plugin provides an implementation of the Hanrahan-Krueger BSDF [15] for simulating single
scattering in thin index-matched layers filled with a random scattering medium. In addition, the im-
plementation also accounts for attenuated light that passes through the medium without undergoing
any scattering events.

This BSDF requires a phase function to model scattering interactions within the random medium.
When no phase function is explicitly specified, it uses an isotropic one (g = 0) by default. A sample
usage for instantiating the plugin is given on the next page:

86

8. Plugin reference 8.2. Surface scattering models

<bsdf type="hk">
<spectrum name="sigmaS" value="2"/>
<spectrum name="sigmaA" value="0.1"/>
<float name="thickness" value="0.1"/>

<phase type="hg">
<float name="g" value="0.8"/>

</phase>
</bsdf>

When used in conjuction with the coating plugin, it is possible to model refraction and reflection
at the layer boundaries when the indices of refraction are mismatched. The combination of these two
plugins then reproduces the full model as it was originally proposed by Hanrahan and Krueger [15].

Note that this model does not account for light that undergoes multiple scattering events within
the layer. This leads to energy loss, particularly at grazing angles, which can be seen in the left-hand
image of Figure 16.

<bsdf type="coating">
<float name="extIOR" value="1.0"/>
<float name="intIOR" value="1.5"/>

<bsdf type="hk">
<string name="material" value="ketchup"/>
<float name="thickness" value="0.01"/>

</bsdf>
</bsdf>

Listing 28: A thin dielectric layer with measured ketchup scattering parameters

Note that when sigmaS = sigmaA = 0, or when thickness=0, any geometry associated with this
BSDF becomes invisible, as light will pass through unchanged.

The implementation in Mitsuba is based on code by Tom Kazimiers and Marios Papas. Marios
Papas has kindly verified the implementation of the coated and uncoated variants against both a path
tracer and a separate reference implementation.

87

8. Plugin reference 8.2. Surface scattering models

8.2.21. Irawan & Marschner woven cloth BRDF (irawan)

Parameter Type Description

filename string Path to a weave pattern description

repeatU, repeatV float Specifies the number of weave pattern repetitions over a

[0, 1]2 region of the UV parameterization

(Additional
parameters)

spectrum or

float
Weave pattern files may define their own custom parame-

ters; this is useful for instance to support changing the color

of a weave without having to create a new file every time.

These parameters must be specified directly to the plugin

so that they can be appropriately resolved when the pattern

file is loaded.

This plugin implements the Irawan & Marschner BRDF, a realistic model for rendering woven
materials. This spatially-varying reflectance model uses an explicit description of the underlying
weave pattern to create fine-scale texture and realistic reflections across a wide range of different
weave types. To use the model, you must provide a special weave pattern file—for an example of what
these look like, see the examples scenes available on the Mitsuba website.

A detailed explanation of the model is beyond the scope of this manual. For reference, it is de-
scribed in detail in the PhD thesis of Piti Irawan (“The Appearance of Woven Cloth” [17]). The code
in Mitsuba a modified port of a previous Java implementation by Piti, which has been extended with
a simple domain-specific weave pattern description language.

(a) Silk charmeuse (b) Cotton denim (c) Wool gabardine

(d) Polyester lining cloth (e) Silk shantung (f) Cotton twill

88

8. Plugin reference 8.3. Textures

8.3. Textures

The following section describes the available texture data sources. In Mitsuba, textures are objects
that can be attached to certain surface scattering model parameters to introduce spatial variation.
In the documentation, these are listed as supporting the “texture” type. See Section 8.2 for many
examples.

89

8. Plugin reference 8.3. Textures

8.3.1. Bitmap texture (bitmap)

Parameter Type Description

filename string Filename of the bitmap to be loaded

wrapMode,
wrapModeU,
wrapModeV

string Behavior of texture lookups outside of the [0, 1] uv range.
(i) repeat: Repeat the texture indefinitely

(ii) mirror: Mirror the texture along its boundaries

(iii) clamp: Clamp uv coordinates to [0, 1] before a lookup
(iv) zero: Switch to a zero-valued texture

(v) one: Switch to a one-valued texture

Default: repeat.The parameter wrapMode is a shortcut for
setting both wrapModeU and wrapModeV at the same time.

gamma float Optional parameter to override the gamma value of the

source bitmap, where 1 indicates a linear color space and

the special value -1 corresponds to sRGB. (Default: auto-

matically detect based on the image type and metadata)

filterType string Specifies the texture filturing that should be used for

lookups

(i) ewa: Elliptically weighted average (a.k.a. anisotropic

filtering). This produces the best quality

(ii) trilinear: Simple trilinear (isotropic) filtering.

(iii) nearest: No filtering, do nearest neighbor lookups.

Default: ewa.

maxAnisotropy float Specific to ewa filtering, this parameter limits the

anisotropy (and thus the computational cost) of filtured

texture lookups. The default of 20 is a good compromise.

cache boolean Preserve generated MIP map data in a cache file? This will

cause a file named filename.mip to be created. (Default:

automatic—use caching for textures larger than 1M pixels.)

uoffset, voffset float Numerical offset that should be applied to UV lookups

uscale, vscale float Multiplicative factors that should be applied to UV lookups

channel string Create a monochromatic texture based on one of the image

channels (e.g. r, g, b, a, x, y, z etc.). (Default: use all

channels)

This plugin provides a bitmap-backed texture source that supports filtered texture lookups on14

JPEG, PNG, OpenEXR, RGBE, TGA, and BMP files. Filtered lookups are useful to avoid aliasing
when rendering textures that contain high frequencies (see the next page for an example).

The plugin operates as follows: when loading a bitmap file, it is first converted into a linear color
space. Following this, a MIP map is constructed that is necessary to perform filtered lookups during
rendering. A MIP map is a hierarchy of progressively lower resolution versions of the input image,

14
Some of these may not be available depending on how Mitsuba was compiled.

90

8. Plugin reference 8.3. Textures

where the resolution of adjacent levels differs by a factor of two. Mitsuba creates this hierarchy using
Lanczos resampling to obtain very high quality results. Note that textures may have an arbitrary
resolution and are not limited to powers of two. Three different filtering modes are supported:

(i) Nearest neighbor lookups effectively disable filtering and always query the highest-resolution
version of the texture without any kind of interpolation. This is fast and requires little memory
(no MIP map is created), but results in visible aliasing. Only a single pixel value is accessed.

(ii) The trilinear filter performs bilinear interpolation on two adjacent MIP levels and blends the
results. Because it cannot do anisotropic (i.e. slanted) lookups in texture space, it must compro-
mise either on the side of blurring or aliasing. The implementation in Mitsuba chooses blurring
over aliasing (though note that (b) is an extreme case). Only 8 pixel values are accessed.

(iii) The EWA filter performs anisotropicically filtered lookups on two adjacent MIP map levels and
blends them. This produces the best quality, but at the expense of computation time. Generally,
20-40 pixel values must be read for a single EWA texture lookup. To limit the number of pixel
accesses, the maxAnisotropy parameter can be used to bound the amount of anisotropy that
a texture lookup is allowed to have.

(a) Nearest-neighbor filter. Note the aliasing (b) Trilinear filter. Note the blurring

(c) EWA filter (d) Ground truth (512 samples per pixel)

Figure 17: A somewhat contrived comparison of the different filters when rendering a high-frequency checker-

board pattern using four samples per pixel. The EWA method (the default) pre-filters the texture

anisotropically to limit blurring and aliasing, but has a higher computational cost than the other

filters.

91

8. Plugin reference 8.3. Textures

Caching and memory requirements: When a texture is read, Mitsuba internally converts it into
an uncompressed linear format using a half precision (float16)-based representation. This is con-
venient for rendering but means that textures require copious amounts of memory (in particular, the
size of the occupied memory region might be orders of magnitude greater than that of the original
input file).

For instance, a basic 10 megapixel image requires as much as 76 MiB of memory! Loading, color
space transformation, and MIP map construction require up to several seconds in this case. To reduce
these overheads, Mitsuba 0.4.0 introduced MIP map caches. When a large texture is loaded for the
first time, a MIP map cache file with the namefilename.mip is generated. This is essentially a verbatim
copy of the in-memory representation created during normal rendering. Storing this information as
a separate file has two advantages:

(i) MIP maps do not have to be regenerated in subsequent Mitsuba runs, which substantially re-
duces scene loading times.

(ii) Because the texture storage is entirely disk-backed and can be memory-mapped, Mitsuba is able
to work with truly massive textures that would otherwise exhaust the main system memory.

The texture caches are automatically regenerated when the input texture is modified. Of course,
the cache files can be cumbersome when they are not needed anymore. On Linux or Mac OS, they
can safely be deleted by executing the following command within a scene directory.

$ find . -name "*.mip" -delete

92

8. Plugin reference 8.3. Textures

8.3.2. Checkerboard (checkerboard)

Parameter Type Description

color0, color1 spectrum Color values for the two differently-colored patches (De-

fault: 0.4 and 0.2)

uoffset, voffset float Numerical offset that should be applied to UV values before

a lookup

uscale, vscale float Multiplicative factors that should be applied to UV values

before a lookup

(a) Checkerboard applied to thematerial test object aswell

as the ground plane

This plugin implements a simple procedural checkerboard texture with customizable colors.

93

8. Plugin reference 8.3. Textures

8.3.3. Procedural grid texture (gridtexture)

Parameter Type Description

color0 spectrum Color values of the background (Default: 0.2)

color1 spectrum Color value of the lines (Default: 0.4)

lineWidth float Width of the grid lines in UV space (Default: 0.01)

uscale, vscale float Multiplicative factors that should be applied to UV values

before a lookup

uoffset, voffset float Numerical offset that should be applied to UV values before

a lookup

(a) Grid texture applied to the material test object

This plugin implements a simple procedural grid texture with customizable colors and line width.

94

8. Plugin reference 8.3. Textures

8.3.4. Scaling passthrough texture (scale)

Parameter Type Description

value spectrum or

texture
Specifies the spectrum or nested texture that should be

scaled

value float Specifies the scale value

This simple plugin wraps a nested texture plugin and multiplies its contents by a user-specified
value. This can be quite useful when a texture is too dark or too bright. The plugin can also be used
to adjust the height of a bump map when using the bump plugin.

<texture type="scale">
<float name="scale" value="0.5"/>

<texture type="bitmap">
<string name="filename" value="wood.jpg"/>

</texture>
</texture>

Listing 29: Scaling the contents of a bitmap texture

95

8. Plugin reference 8.3. Textures

8.3.5. Vertex color passthrough texture (vertexcolors)

When rendering with a mesh that contains vertex colors, this plugin exposes the underlying color
data as a texture. Currently, this is only supported by the PLY file format loader.

Here is an example:

<shape type="ply">
<string name="filename" value="mesh.ply"/>

<bsdf type="diffuse">
<texture type="vertexcolors" name="reflectance"/>

</bsdf>
</shape>

Listing 30: Rendering a PLY file with vertex colors

96

8. Plugin reference 8.3. Textures

8.3.6. Wireframe texture (wireframe)

Parameter Type Description

interiorColor spectrum Color value of the interior of triangles (Default: 0.5)

edgeColor spectrum Edge color value (Default: 0.1)

lineWidth float World-space width of the mesh edges (Default: automatic)

stepWidth float Controls the width of of step function used for the color

transition. It is specified as a value between zero and one

(relative to the lineWidth parameter) (Default: 0.5)

(a) Wireframe texture applied to the material test object

This plugin implements a simple two-color wireframe texture map that reveals the structure of a
triangular mesh.

97

8. Plugin reference 8.3. Textures

8.3.7. Curvature texture (curvature)

Parameter Type Description

curvature string Specifies what should be shown – must be equal to mean or
gaussian.

scale float A scale factor to bring curvature values into the displayable

range [-1, 1]. Everything outside of this range will be

clamped.

(a) Mean curvature (b) Gaussian curvature

This texture can visualize the mean and Gaussian curvature of the underlying shape for inspection.
Red and blue denote positive and negative values, respectively.

98

8. Plugin reference 8.4. Subsurface scattering models

8.4. Subsurface scattering models

There are two ways of simulating subsurface scattering within Mitsuba: participating media and sub-
surface scattering models.

Subsurface scattering models: Described in this section. These can be thought of as a first-order ap-
proximation of what happens inside a participating medium. They are preferable when visually
appealing output should be generated quickly and the demands on accuracy are secondary. At
the moment, there is only one subsurface scattering model (the dipole), which is described
on the next page.

Participating media: Described in Section 8.5. When modeling subsurface scattering using a par-
ticipating medium, Mitsuba performs a full radiative transport simulation, which correctly
accounts for all scattering events. This is more accurate but generally significantly slower.

99

8. Plugin reference 8.4. Subsurface scattering models

8.4.1. Dipole-based subsurface scattering model (dipole)

Parameter Type Description

material string Name of a material preset, see Table 5. (Default: skin1)

sigmaA, sigmaS spectrum Absorption and scattering coefficients of the medium in in-

verse scene units. These parameters are mutually exclusive

with sigmaT and albedo (Default: configured based on

material)

sigmaT, albedo spectrum Extinction coefficient in inverse scene units and a (unit-

less) single-scattering albedo. These parameters are mutu-

ally exclusive with sigmaA and sigmaS (Default: config-

ured based on material)

scale float Optional scale factor that will be applied to the sigma* pa-
rameters. It is provided for convenience when accomodat-

ing data based on different units, or to simply tweak the den-

sity of the medium. (Default: 1)

intIOR float or

string
Interior index of refraction specified numerically or using a

known material name. (Default: based on material)

extIOR float or

string
Exterior index of refraction specified numerically or using

a known material name. (Default: based on material)

irrSamples integer Number of samples to use when estimating the irradiance

at a point on the surface (Default: 16)

(a) The material test ball rendered with the skimmilkma-

terial preset

(b) The material test ball rendered with the skin1 mate-

rial preset

This plugin implements the classic dipole subsurface scattering model from radiative transport
and medical physics [8, 9] in the form proposed by Jensen et al. [23]. It relies on the assumption
that light entering a material will undergo many (i.e. hundreds) of internal scattering events, such
that diffusion theory becomes applicable. In this case15 a simple analytic solution of the subsurface
scattering profile is available that enables simulating this effect without having to account for the vast

15
and aftermaking several fairly strong simplifications: the geometry is assumed to be a planar half-space, and the internal

scattering from the material boundary is only considered approximately.

100

8. Plugin reference 8.4. Subsurface scattering models

(a) scale=1 (b) scale=0.2

Figure 18: The dragon model rendered with the skin2 material preset (model courtesy of XYZ RGB). The

scale parameter is useful to communicate the relative size of an object to the viewer.

numbers of internal scattering events individually.
For each dipole instance in the scene, the plugin adds a pre-process pass to the rendering that

computes the irradiance on a large set of sample positions spread uniformly over the surface in ques-
tion. The locations of these points are chosen using a technique by Bowers et al. [4] that creates
particularly well-distributed (blue noise) samples. Later during rendering, these illumination sam-
ples are convolved with the diffusion profile using a fast hierarchical technique proposed by Jensen
and Buhler [22].

There are several different ways of configuring the medium properties. Either, a material preset
can be loaded using the material parameter—see Table 5 for details. Alternatively, when specifying
parameters by hand, they can either be provided using the scattering and absorption coefficients, or
by declaring the extinction coefficient and single scattering albedo (whichever is more convenient).
Mixing these parameter initialization methods is not allowed.

All scattering parameters (named sigma*) should be provided in inverse scene units. For instance,
when a world-space distance of 1 unit corresponds to a meter, the scattering coefficents must be in
units of inverse meters. For convenience, the scale parameter can be used to correct this. For in-
stance, when the scene is in meters and the coefficients are in inverse millimeters, set scale=1000.

Note that a subsurface integrator can be associated with an id and shared by several shapes using
the reference mechanism introduced in Section 6. This can be useful when an object is made up of
many separate sub-shapes.

Typical material setup

To create a realistic material with subsurface scattering, it is necessary to associate the underlying
shape with an appropriately configured surface and subsurface scattering model. Both should be
aware of the material’s index of refraction.

Because the dipole plugin is responsible for all internal scattering, the surface scattering model
should only account for specular reflection due to the index of refraction change. There are two
models in Mitsuba that can do this: plastic and roughplastic (for smooth and rough interfaces,
respectively). An example is given on the next page.

101

8. Plugin reference 8.4. Subsurface scattering models

(a) Rendered using dipole (b) Rendered using homogeneous (c) irrSamples set too low

Figure 19: Two problem cases that may occur when rendering with the dipole: (a)-(b):These two renderings

show a glass ball filled with diluted milk rendered using diffusion theory and radiative transport,

respectively. The former produces an incorrect result, since the assumption of many scattering

events breaks down. (c): When the number of irradiance samples is too low when rendering with

the dipole model, the resulting noise becomes visible as “blotchy” artifacts in the rendering.

<shape type="...">
<subsurface type="dipole">

<string name="intIOR" value="water"/>
<string name="extIOR" value="air"/>
<rgb name="sigmaS" value="87.2, 127.2, 143.2"/>
<rgb name="sigmaA" value="1.04, 5.6, 11.6"/>
<integer name="irrSamples" value="64"/>

</subsurface>

<bsdf type="plastic">
<string name="intIOR" value="water"/>
<string name="extIOR" value="air"/>
<!-- Note: the diffuse component must be disabled! -->
<spectrum name="diffuseReflectance" value="0"/>

</bsdf>
<shape>

Remarks:
• This plugin only implements the multiple scattering component of the dipole model, i.e. single

scattering is omitted. Furthermore, the numerous assumptions built into the underlying theory

can cause severe inaccuracies.

For this reason, this plugin is the right choice for making pictures that “look nice”, but it should

be avoided when the output must hold up to real-world measurements. In this case, please use

participating media (Section 8.5).

• It is quite important that the sigma* parameters have the right units. For instance: if the sigmaT
parameter is accidentally set to a value that is too small by a factor of 1000, the pluginwill attempt to

create one million times as many irradiance samples, which will likely cause the rendering process

to crash with an “out of memory” failure.

102

8. Plugin reference 8.5. Participating media

8.5. Participating media

(a) A knitted sheep sweater (Ridged Feather pattern) (b) A knitted sweater for an alien charac-

ter (Braid Cables pattern)

Figure 20: Participatingmedia are not limited to smoke or fog: they are also great for rendering fuzzymaterials

such as these knitted sweaters (made using the heterogeneous and microflake plugins). Figure
courtesy of Yuksel et al. [53], models courtesy of Rune Spaans and Christer Sveen.

In Mitsuba, participating media are used to simulate materials ranging from fog, smoke, and clouds,
over translucent materials such as skin or milk, to “fuzzy” structured substances such as woven or
knitted cloth.

This section describes the two available types of media (homogeneous and heterogeneous). In
pratice, these will be combined with a phase function, which are described in Section 8.6. Partici-
pating media are usually also attached to shapes in the scene. How this is done is described at the
beginning of Section 8.1 on page 32.

When a medium permeates a volume of space (e.g. fog) that includes sensors or emitters, it is
important to assign the medium to them. This can be done using the referencing mechanism:

<medium type="homogeneous" id="fog">
<!-- homogeneous medium parameters -->

</medium>

<sensor type="perspective">
<!-- perspective camera parameters -->

<!-- Reference the fog medium from within the sensor declaration
to make it aware that it is embedded inside this medium -->

<ref id="fog"/>
</sensor>

103

8. Plugin reference 8.5. Participating media

8.5.1. Homogeneous participating medium (homogeneous)

Parameter Type Description

material string Name of a material preset, see Table 5. (Default: skin1)

sigmaA, sigmaS spectrum Absorption and scattering coefficients of the medium in in-

verse scene units. These parameters are mutually exclusive

with sigmaT and albedo (Default: configured based on

material)

sigmaT, albedo spectrum Extinction coefficient in inverse scene units and a (unit-

less) single-scattering albedo. These parameters are mutu-

ally exclusive with sigmaA and sigmaS (Default: config-

ured based on material)

scale float Optional scale factor that will be applied to the sigma* pa-
rameters. It is provided for convenience when accomodat-

ing data based on different units, or to simply tweak the den-

sity of the medium. (Default: 1)

(Nested plugin) phase A nested phase function that describes the directional scat-

tering properties of the medium. When none is speci-

fied, the renderer will automatically use an instance of

isotropic.

This class implements a flexible homogeneous participating medium with support for arbitrary
phase functions and various medium sampling methods. It provides several ways of configuring
the medium properties. Either, a material preset can be loaded using the material parameter—see
Table 5 for details. Alternatively, when specifying parameters by hand, they can either be provided
using the scattering and absorption coefficients, or by declaring the extinction coefficient and single
scattering albedo (whichever is more convenient). Mixing these parameter initialization methods is
not allowed.

All scattering parameters (named sigma*) should be provided in inverse scene units. For instance,
when a world-space distance of 1 unit corresponds to a meter, the scattering coefficents should have
units of inverse meters. For convenience, the scale parameter can be used to correct the units. For
instance, when the scene is in meters and the coefficients are in inverse millimeters, set scale to
1000.

<medium id="myMedium" type="homogeneous">
<spectrum name="sigmaS" value="1"/>
<spectrum name="sigmaA" value="0.05"/>

<phase type="hg">
<float name="g" value="0.7"/>

</phase>
</medium>

Listing 31: Declaration of a forward scattering medium with high albedo

Note: Rendering media that have a spectrally varying extinction coefficient can be tricky, since all
commonly used medium sampling methods suffer from high variance in that case. Here, it may often
make more sense to render several monochromatic images separately (using only the coefficients for

104

8. Plugin reference 8.5. Participating media

(a) A squishy ball rendered with subsurface scattering and

a dielectric BSDF (courtesy of Chanxi Zheng)

a single channel) and then merge them back into a RGB image. There is a mtsutil (Section 5.4)
plugin named joinrgb that will perform this RGB merging process.

Name Name Name

Apple Chicken1 Chicken2
Cream Ketchup Potato
Skimmilk Skin1 Skin2
Spectralon Wholemilk

Lowfat Milk Gatorade White Grapefruit Juice
Reduced Milk Chardonnay Shampoo
Regular Milk White Zinfandel Strawberry Shampoo
Espresso Merlot Head & Shoulders Shampoo
Mint Mocha Coffee Budweiser Beer Lemon Tea Powder
Lowfat Soy Milk Coors Light Beer Orange Juice Powder
Regular Soy Milk Clorox Pink Lemonade Powder
Lowfat Chocolate Milk Apple Juice Cappuccino Powder
Regular Chocolate Milk Cranberry Juice Salt Powder
Coke Grape Juice Sugar Powder
Pepsi Ruby Grapefruit Juice Suisse Mocha
Sprite

Table 5: This table lists all supported mediummaterial presets. The top entries are from Jensen et al. [23], and

the bottom ones are fromNarasimhan et al. [33]. They all use units of 1
mm , so remember to set scale

appropriately when your scene is not in units of millimeters. These material presets can be used with

the plugins homogeneous, dipole, and hk

105

8. Plugin reference 8.5. Participating media

8.5.2. Heterogeneous participating medium (heterogeneous)

Parameter Type Description

method string Specifies the sampling method that is used to generate scat-

tering events within the medium.

(i) simpson: Sampling is done by inverting a determin-

istic quadrature rule based on composite Simpson in-

tegration over small ray segments. Benefits from the

use of good sample generators (e.g. ldsampler).

(ii) woodcock: Generate samples using Woodcock track-

ing.This is usually faster and always unbiased, but has

the disadvantages of not benefiting from good sample

generators and not providing information that is re-

quired by bidirectional rendering techniques.

Default: woodcock

density volume Volumetric data source that supplies the medium densities

(in inverse scene units)

albedo volume Volumetric data source that supplies the single-scattering

albedo

orientation volume Optional: volumetric data source that supplies the local par-

ticle orientations throughout the medium

scale float Optional scale factor that will be applied to the density
parameter. Provided for convenience when accomodating

data based on different units, or to simply tweak the density

of the medium. (Default: 1)

(Nested plugin) phase A nested phase function that describes the directional scat-

tering properties of the medium. When none is speci-

fied, the renderer will automatically use an instance of

isotropic.

(a) 40 (b) 200 (c) 1000

Figure 21: Renderings of an index-matched medium using different scale factors (Listing 32)

This plugin provides a flexible heterogeneous medium implementation, which acquires its data
from nested volume instances. These can be constant, use a procedural function, or fetch data from
disk, e.g. using a memory-mapped density grid. See Section 8.7 for details on volume data sources.

106

8. Plugin reference 8.5. Participating media

Instead of allowing separate volumes to be provided for the scattering and absorption parameters
sigmaS and sigmaA (as is done in homogeneous), this class instead takes the approach of enforcing
a spectrally uniform value of sigmaT, which must be provided using a nested scalar-valued volume
named density.

Another nested spectrum-valued albedo volume must also be provided, which is used to compute
the scattering coefficient σs using the expression σs = scale∗density∗albedo (i.e. ’albedo’ contains
the single-scattering albedo of the medium.

Optionally, one can also provide an vector-valued orientation volume, which contains local
particle orientation that will be passed to scattering models that support this, such as a the Micro-
flake or Kajiya-Kay phase functions.

<!-- Declare a heterogeneous participating medium named 'smoke' -->
<medium type="heterogeneous" id="smoke">

<string name="method" value="simpson"/>

<!-- Acquire density values from an external data file -->
<volume name="density" type="gridvolume">

<string name="filename" value="frame_0150.vol"/>
</volume>

<!-- The albedo is constant and set to 0.9 -->
<volume name="albedo" type="constvolume">

<spectrum name="value" value="0.9"/>
</volume>

<!-- Use an isotropic phase function -->
<phase type="isotropic"/>

<!-- Scale the density values as desired -->
<float name="scale" value="200"/>

</medium>

<!-- Attach the index-matched medium to a shape in the scene -->
<shape type="obj">

<!-- Load an OBJ file, which contains a mesh version
of the axis-aligned box of the volume data file -->

<string name="filename" value="bounds.obj"/>

<!-- Reference the medium by ID -->
<ref name="interior" id="smoke"/>

<!-- If desired, this shape could also declare
a BSDF to create an index-mismatched
transition, e.g.

<bsdf type="dielectric"/>
-->

</shape>

Listing 32: A simple heterogeneous medium backed by a grid volume

107

8. Plugin reference 8.6. Phase functions

8.6. Phase functions

This section contains a description of all implemented medium scattering models, which are also
known as phase functions. These are very similar in principle to surface scattering models (or BSDFs),
and essentially describe where light travels after hitting a particle within the medium.

The most commonly used models for smoke, fog, and other homogeneous media are isotropic
scattering (isotropic) and the Henyey-Greenstein phase function (hg). Mitsuba also supports
anisotropic media, where the behavior of the medium changes depending on the direction of light
propagation (e.g. in volumetric representations of fabric). These are the Kajiya-Kay (kkay) and Micro-
flake (microflake) models.

Finally, there is also a phase function for simulating scattering in planetary atmospheres (rayleigh).

108

8. Plugin reference 8.6. Phase functions

8.6.1. Isotropic phase function (isotropic)

(a) Isotropic (b) Anisotropic micro-flakes

Figure 22: Heterogeneous volume renderings of a scarf model with isotropic and anisotropic phase functions.

This phase function simulates completely uniform scattering, where all directionality is lost after a
single scattering interaction. It does not have any parameters.

109

8. Plugin reference 8.6. Phase functions

8.6.2. Henyey-Greenstein phase function (hg)

Parameter Type Description

g float This parameter must be somewhere in the range −1 to 1

(but not equal to −1 or 1). It denotes the mean cosine
of scattering interactions. A value greater than zero indi-

cates that medium interactions predominantly scatter in-

cident light into a similar direction (i.e. the medium is

forward-scattering), whereas values smaller than zero cause

the medium to be scatter more light in the opposite direc-

tion.

This plugin implements the phase function model proposed by Henyey and Greenstein [16]. It is
parameterizable from backward- (g < 0) through isotropic- (g = 0) to forward (g > 0) scattering.

110

8. Plugin reference 8.6. Phase functions

8.6.3. Rayleigh phase function (rayleigh)

Scattering by particles that are much smaller than the wavelength of light (e.g. individual molecules
in the atmosphere) is well-approximated by the Rayleigh phase function. This plugin implements an
unpolarized version of this scattering model (i.e the effects of polarization are ignored). This plugin
is useful for simulating scattering in planetary atmospheres.

This model has no parameters.

111

8. Plugin reference 8.6. Phase functions

8.6.4. Kajiya-Kay phase function (kkay)

This plugin implements the Kajiya-Kay [25] phase function for volumetric rendering of fibers, e.g.
hair or cloth.

The function is normalized so that it has no energy loss when ks=1 and illumination arrives per-
pendicularly to the surface.

112

8. Plugin reference 8.6. Phase functions

8.6.5. Micro-flake phase function (microflake)

Parameter Type Description

stddev float Standard deviation of the micro-flake normals. This speci-

fies the roughness of the fibers in the medium.

(a) stddev=0.2 (b) stddev=0.05

This plugin implements the anisotropic micro-flake phase function described in “A radiative trans-
fer framework for rendering materials with anisotropic structure” by Wenzel Jakob, Adam Arbree,
Jonathan T. Moon, Kavita Bala, and Steve Marschner [18].

The implementation in this plugin is specific to rough fibers and uses a Gaussian-type flake dis-
tribution. It is much faster than the spherical harmonics approach proposed in the original paper.
This distribution, as well as the implemented sampling method, are described in the paper “Building
Volumetric Appearance Models of Fabric using Micro CT Imaging” by Shuang Zhao, Wenzel Jakob,
Steve Marschner, and Kavita Bala [54].

Note: this phase function must be used with a medium that specifies the local fiber orientation at
different points in space. Please refer to heterogeneous for details.

Figure 23: A range of different knit patterns, rendered using the heterogeneous and microflake plugins.
Courtesy of Yuksel et al. [53].

113

8. Plugin reference 8.6. Phase functions

8.6.6. Mixture phase function (mixturephase)

Parameter Type Description

weights string A comma-separated list of phase function weights

(Nested plugin) phase Multiple phase function instances that should be mixed ac-

cording to the specified weights

This plugin implements a “mixture” scattering model analogous to mixturebsdf, which repre-
sents linear combinations of multiple phase functions. There is no limit on how many phase function
can be mixed, but their combination weights must be non-negative and sum to a value of one or less
to ensure energy balance.

114

8. Plugin reference 8.7. Volume data sources

8.7. Volume data sources

This section covers the different types of volume data sources included with Mitsuba. These plug-
ins are intended to be used together with the heterogeneous medium plugin and provide three-
dimensional spatially varying density, albedo, and orientation fields.

115

8. Plugin reference 8.7. Volume data sources

8.7.1. Constant-valued volume data source (constvolume)

Parameter Type Description

value float or

spectrum or

vector

Specifies the value of the volume

This plugin provides a volume data source that is constant throughout its domain. Depending on
how it is used, its value can either be a scalar, a color spectrum, or a 3D vector.

<medium type="heterogeneous">
<volume type="constvolume" name="density">

<float name="value" value="1"/>
</volume>
<volume type="constvolume" name="albedo">

<rgb name="value" value="0.9 0.9 0.7"/>
</volume>
<volume type="constvolume" name="orientation">

<vector name="value" x="0" y="1" z="0"/>
</volume>

<!-- remaining parameters for
the 'heterogeneous' plugin -->

</medium>

Listing 33: Definition of a heterogeneous medium with homogeneous contents

116

8. Plugin reference 8.7. Volume data sources

8.7.2. Grid-based volume data source (gridvolume)

Parameter Type Description

filename string Specifies the filename of the volume data file to be loaded

sendData boolean When this parameter is set totrue, the implementationwill

send all volume data to other network render nodes. Other-

wise, they are expected to have access to an identical vol-

ume data file that can be mapped into memory. (Default:

false)

toWorld transform Optional linear transformation that should be applied to the

data

min, max point Optional parameter that can be used to re-scale the data so

that it lies in the bounding box between min and max.

This class implements access to memory-mapped volume data stored on a 3D grid using a simple
binary exchange format. The format uses a little endian encoding and is specified as follows:

Position Content

Bytes 1-3 ASCII Bytes ’V’, ’O’, and ’L’
Byte 4 File format version number (currently 3)
Bytes 5-8 Encoding identifier (32-bit integer). The following choices are available:

1. Dense float32-based representation

2. Dense float16-based representation (currently not supported by this
implementation)

3. Dense uint8-based representation (The range 0..255 will be mapped
to 0..1)

4. Dense quantized directions. The directions are stored in spherical co-
ordinates with a total storage cost of 16 bit per entry.

Bytes 9-12 Number of cells along the X axis (32 bit integer)
Bytes 13-16 Number of cells along the Y axis (32 bit integer)
Bytes 17-20 Number of cells along the Z axis (32 bit integer)
Bytes 21-24 Number of channels (32 bit integer, supported values: 1 or 3)
Bytes 25-48 Axis-aligned bounding box of the data stored in single precision (order:

xmin, ymin, zmin, xmax, ymax, zmax)
Bytes 49-* Binary data of the volume stored in the specified encoding. The data

are ordered so that the following C-style indexing operation makes sense
after the file has been mapped into memory:
data[((zpos*yres + ypos)*xres + xpos)*channels + chan]
where (xpos, ypos, zpos, chan) denotes the lookup location.

Note that Mitsuba expects that entries in direction volumes are either zero or valid unit vectors.

117

8. Plugin reference 8.7. Volume data sources

When using this data source to represent floating point density volumes, please ensure that the
values are all normalized to lie in the range [0, 1]—otherwise, the Woodcock-Tracking integration
method in heterogeneous will produce incorrect results.

118

8. Plugin reference 8.7. Volume data sources

8.7.3. Caching volume data source (volcache)

Parameter Type Description

blockSize integer Size of the individual cache blocks (Default: 8, i.e. 8×8×8)

voxelWidth float Width of a voxel (in a cache block) expressed inworld-space

units. (Default: set to the ray marching step size of the

nested medium)

memoryLimit integer Maximum allowed memory usage in MiB. (Default: 1024,

i.e. 1 GiB)

toWorld transform Optional linear transformation that should be applied to the

volume data

(Nested plugin) volume A nested volume data source

This plugin can be added between the renderer and another data source, for which it caches all
data lookups using a LRU scheme. This is useful when the nested volume data source is expensive to
evaluate.

The cache works by performing on-demand rasterization of subregions of the nested volume into
blocks (8 × 8 × 8 by default). These are kept in memory until a user-specifiable threshold is exeeded,
after which point a least recently used (LRU) policy removes records that haven’t been accessed in a
long time.

119

8. Plugin reference 8.8. Emitters

8.8. Emitters

Mitsuba supports a wide range of emitters/light sources, which can be classified into two main cate-
gories: emitters which are located somewhere within the scene, and emitters that surround the scene
to simulate a distant environment. An overview of the available types is shown below:

Environment map emitter (envmap)

Area emitter (area)Point emitter (point)

Collimated beam (collimated)

Spot emitter (spot)

Directional emitter (directional)

Constant environment emitter (constant)

Sun & sky emitter (sunsky)Sky emitter (sky) Sun emitter (sun)

Environment emitters

Standard emitters

Figure 24: Schematic overview of themost important emitters inMitsuba.The arrows indicate the directional

distribution of light.

120

Standard emitters
8. Plugin reference 8.8. Emitters

8.8.1. Point light source (point)

Parameter Type Description

toWorld transform or

animation
Specifies an optional sensor-to-world transformation. (De-

fault: none (i.e. sensor space = world space))

position point Alternative parameter for specifying the light source posi-

tion. Note that only one of the parameters toWorld and
position can be used at a time.

intensity spectrum Specifies the radiant intensity in units of power per unit

steradian. (Default: 1)

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

This sensor plugin implements a simple point light source, which uniformly radiates illumination
into all directions.

121

Standard emitters
8. Plugin reference 8.8. Emitters

8.8.2. Area light (area)

Parameter Type Description

radiance spectrum Specifies the emitted radiance in units of power per unit

area per unit steradian.

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

This plugin implements an area light, i.e. a light source that emits diffuse illumination from the
exterior of an arbitrary shape. Since the emission profile of an area light is completely diffuse, it has
the same apparent brightness regardless of the observer’s viewing direction. Furthermore, since it
occupies a nonzero amount of space, an area light generally causes scene objects to cast soft shadows.

When modeling scenes involving area lights, it is preferable to use spheres as the emitter shapes,
since they provide a particularly good direct illumination sampling strategy (see the sphere plugin
for an example).

To create an area light source, simply instantiate the desired emitter shape and specify an area
instance as its child:

<!-- Create a spherical light source at the origin -->
<shape type="sphere">

<emitter type="area">
<spectrum name="radiance" value="1"/>

</emitter>
</shape>

122

8. Plugin reference 8.8. Emitters

8.8.3. Spot light source (spot)

Parameter Type Description

toWorld transform or

animation
Specifies an optional sensor-to-world transformation. (De-

fault: none (i.e. sensor space = world space))

intensity spectrum Specifies the maximum radiant intensity at the center in

units of power per unit steradian. (Default: 1)

cutoffAngle float Cutoff angle, beyond which the spot light is completely

black (Default: 20 degrees)

beamWidth float Subtended angle of the central beam portion (Default:

cutoffAngle ⋅ 3/4)

texture texture An optional texture to be projected along the spot light

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

This plugin provides a spot light with a linear falloff. In its local coordinate system, the spot light is
positioned at the origin and points along the positive Z direction. It can be conveniently reoriented
using the lookat tag, e.g.:

<emitter type="spot">
<transform name="toWorld">

<!-- Orient the light so that points from (1, 1, 1) towards (1, 2, 1) -->
<lookat origin="1, 1, 1" target="1, 2, 1"/>

</transform>
</emitter>

The intensity linearly ramps up from cutoffAngle to beamWidth (both specified in degrees),
after which it remains at the maximum value. A projection texture may optionally be supplied.

123

8. Plugin reference 8.8. Emitters

8.8.4. Directional emitter (directional)

Parameter Type Description

toWorld transform or

animation
Specifies an optional emitter-to-world transformation.

(Default: none (i.e. emitter space = world space))

direction vector Alternative to toWorld: explicitly specifies the illumination

direction. Note that only one of the two parameters can be

used.

irradiance spectrum Specifies the amount of power per unit area received by a

hypothetical surface normal to the specified direction (De-

fault: 1)

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

This emitter plugin implements a distant directional source, which radiates a specified power per
unit area along a fixed direction. By default, the emitter radiates in the direction of the postive Z axis.

124

8. Plugin reference 8.8. Emitters

8.8.5. Collimated beam emitter (collimated)

Parameter Type Description

toWorld transform or

animation
Specifies an optional emitter-to-world transformation.

(Default: none (i.e. emitter space = world space))

power spectrum Specifies the amount of power radiated along the beam (De-

fault: 1)

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

This emitter plugin implements a collimated beam source, which radiates a specified amount of
power along a fixed ray. It can be thought of as the limit of a spot light as its field of view tends to
zero.

Such a emitter is useful for conducting virtual experiments and testing the renderer for correctness.
By default, the emitter is located at the origin and radiates into the positive Z direction (0, 0, 1).

This can be changed by providing a custom toWorld transformation.

125

Environment emitters
8. Plugin reference 8.8. Emitters

8.8.6. Skylight emitter (sky)

Parameter Type Description

turbidity float This parameter determines the amount of aerosol present in

the atmosphere. Valid range: 1-10. (Default: 3, correspond-

ing to a clear sky in a temperate climate)

albedo spectrum Specifies the ground albedo (Default: 0.15)

year, month, day integer Denote the date of the observation (Default: 2010, 07, 10)

hour,minute,⤦
second

float Local time at the location of the observer in 24-hour format

(Default: 15, 00, 00, i.e. 3PM)

latitude,
longitude,
timezone

float These three parameters specify the oberver’s latitude and

longitude in degrees, and the local timezone offset in hours,

which are required to compute the sun’s position. (Default:

35.6894, 139.6917, 9 — Tokyo, Japan)

sunDirection vector Allows to manually override the sun direction in world

space. When this value is provided, parameters pertain-

ing to the computation of the sun direction (year, hour,
latitude, etc. are unnecessary. (Default: none)

stretch float Stretch factor to extend emitter below the horizon, must be

in [1,2] (Default: 1, i.e. not used)

resolution integer Specifies the horizontal resolution of the precomputed im-

age that is used to represent the sun environment map (De-

fault: 512, i.e. 512×256)

scale float This parameter can be used to scale the the amount of illu-

mination emitted by the sky emitter. (Default: 1)

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

toWorld transform or

animation
Specifies an optional sensor-to-world transformation. (De-

fault: none (i.e. sensor space = world space))

(a) 5AM (b) 7AM (c) 9AM (d) 11AM (e) 1PM (f) 3PM (g) 5PM (h) 6:30 PM

Figure 25: Time series at the default settings (Equidistant fisheye projection of the sky onto a disk. East is left.)

This plugin provides the physically-based skylight model by Hošek and Wilkie [31]. It can be used
to create predictive daylight renderings of scenes under clear skies, which is useful for architectural
and computer vision applications. The implementation in Mitsuba is based on code that was gener-
ously provided by the authors.

The model has two main parameters: the turbidity of the atmosphere and the position of the

126

8. Plugin reference 8.8. Emitters

sun. The position of the sun in turn depends on a number of secondary parameters, including the
latitude, longitude, and timezone at the location of the observer, as well as the current year,
month, day, hour, minute, and second. Using all of these, the elevation and azimuth of the sun are
computed using the PSA algorithm by Blanco et al. [2], which is accurate to about 0.5 arcminutes (1/120
degrees). Note that this algorithm does not account for daylight savings time where it is used, hence
a manual correction of the time may be necessary. For detailed coordinate and timezone information
of various cities, see http://www.esrl.noaa.gov/gmd/grad/solcalc.

If desired, the world-space solar vector may also be specified using the sunDirection parameter,
in which case all of the previously mentioned time and location parameters become irrelevant.

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 8 (h) 10

Figure 26: Sky light for different turbidity values (default configuration at 5PM)

Turbidity, the other important parameter, specifies the aerosol content of the atmosphere. Aerosol
particles cause additional scattering that manifests in a halo around the sun, as well as color fringes
near the horizon. Smaller turbidity values (∼ 1 − 2) produce an arctic-like clear blue sky, whereas
larger values (∼ 8− 10) create an atmosphere that is more typical of a warm, humid day. Note that this
model does not aim to reproduce overcast, cloudy, or foggy atmospheres with high corresponding
turbidity values. An photographic environment map may be more appropriate in such cases.

The default coordinate system of the emitter associates the up direction with the +Y axis. The east
direction is associated with +X and the north direction is equal to +Z. To change this coordinate
system, rotations can be applied using the toWorld parameter (see Listing 34 for an example).

By default, the emitter will not emit any light below the horizon, which means that these regions
are black when observed directly. By setting the stretch parameter to values between 1 and 2, the
sky can be extended to cover these directions as well. This is of course a complete kludge and only
meant as a quick workaround for scenes that are not properly set up.

Instead of evaluating the full sky model every on every radiance query, the implementation pre-
computes a low resolution environment map (512× 256) of the entire sky that is then forwarded to
the envmap plugin—this dramatically improves rendering performance. This resolution is generally
plenty since the sky radiance distribution is so smooth, but it it can be adjusted manually if necessary
using the resolution parameter.

Note that while the model encompasses sunrise and sunset configurations, it does not extend to
the night sky, where illumination from stars, galaxies, and the moon dominate. When started with a
sun configuration that lies below the horizon, the plugin will fail with an error message.

<emitter type="sky">
<transform name="toWorld">

<rotate x="1" angle="90"/>
</transform>

</emitter>

Listing 34: Rotating the sky emitter for scenes that use Z as the “up” direction

127

http://www.esrl.noaa.gov/gmd/grad/solcalc

8. Plugin reference 8.8. Emitters

Physical units and spectral rendering

Like the blackbody emission profile (Page 25), the sky model introduces physical units into the
rendering process. The radiance values computed by this plugin have units of power (W) per unit
area (m−2) per steradian (sr−1) per unit wavelength (nm−1). If these units are inconsistent with your
scene description, you may use the optional scale parameter to adjust them.

When Mitsuba is compiled for spectral rendering, the plugin switches from RGB to a spectral
variant of the skylight model, which relies on precomputed data between 320 and 720nm sampled at
40nm-increments.

Ground albedo

The albedo of the ground (e.g. due to rock, snow, or vegetation) can have a noticeable and nonlinear
effect on the appearance of the sky. Figure 28 shows an example of this effect. By default, the ground
albedo is set to a 15% gray.

(a) 3 PM (b) 6:30 PM
Figure 27: Renderings with the plastic material under default conditions. Note that these only contain

skylight illumination. For a model that also includes the sun, refer to sunsky.

(a) albedo=0% (b) albedo=100% (c) albedo=20% green

Figure 28: Influence of the ground albedo on the apperance of the sky

128

Environment emitters
8. Plugin reference 8.8. Emitters

8.8.7. Sun emitter (sun)

Parameter Type Description

turbidity float This parameter determines the amount of aerosol present in

the atmosphere. Valid range: 2-10. (Default: 3, correspond-

ing to a clear sky in a temperate climate)

year, month, day integer Denote the date of the observation (Default: 2010, 07, 10)

hour,minute,⤦
second

float Local time at the location of the observer in 24-hour format

(Default: 15, 00, 00, i.e. 3PM)

latitude,
longitude,
timezone

float These three parameters specify the oberver’s latitude and

longitude in degrees, and the local timezone offset in hours,

which are required to compute the sun’s position. (Default:

35.6894, 139.6917, 9 — Tokyo, Japan)

sunDirection vector Allows to manually override the sun direction in world

space. When this value is provided, parameters pertain-

ing to the computation of the sun direction (year, hour,
latitude, etc. are unnecessary. (Default: none)

resolution integer Specifies the horizontal resolution of the precomputed im-

age that is used to represent the sun environment map (De-

fault: 512, i.e. 512×256)

scale float This parameter can be used to scale the the amount of illu-

mination emitted by the sun emitter. (Default: 1)

sunRadiusScale float Scale factor to adjust the radius of the sun, while preserving

its power. Set to 0 to turn it into a directional light source.

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

This plugin implements the physically-based sun model proposed by Preetham et al. [38]. Using
the provided position and time information (see sky for details), it can determine the position of the
sun as seen from the position of the observer. The radiance arriving at the earth surface is then found
based on the spectral emission profile of the sun and the extinction cross-section of the atmosphere
(which depends on the turbidity and the zenith angle of the sun).

Like the blackbody emission profile (Page 25), the sun model introduces physical units into the
rendering process. The radiance values computed by this plugin have units of power (W) per unit
area (m−2) per steradian (sr−1) per unit wavelength (nm−1). If these units are inconsistent with your
scene description, you may use the optional scale parameter to adjust them.

This plugin supplies proper spectral power distributions when Mitsuba is compiled in spectral
rendering mode. Otherwise, they are simply projected onto a linear RGB color space.

Remarks:
• The sun is an intense light source that subtends a tiny solid angle. This can be a problem for cer-

tain rendering techniques (e.g. path tracing), which produce high variance output (i.e. noise in

renderings) when the scene also contains specular or glossy or materials.

129

8. Plugin reference 8.8. Emitters

8.8.8. Sun and sky emitter (sunsky)

Parameter Type Description

turbidity float This parameter determines the amount of aerosol present in

the atmosphere. Valid range: 1-10. (Default: 3, correspond-

ing to a clear sky in a temperate climate)

albedo spectrum Specifies the ground albedo (Default: 0.15)

year, month, day integer Denote the date of the observation (Default: 2010, 07, 10)

hour,minute,⤦
second

float Local time at the location of the observer in 24-hour format

(Default: 15, 00, 00, i.e. 3PM)

latitude,
longitude,
timezone

float These three parameters specify the oberver’s latitude and

longitude in degrees, and the local timezone offset in hours,

which are required to compute the sun’s position. (Default:

35.6894, 139.6917, 9 — Tokyo, Japan)

sunDirection vector Allows to manually override the sun direction in world

space. When this value is provided, parameters pertain-

ing to the computation of the sun direction (year, hour,
latitude, etc. are unnecessary. (Default: none)

stretch float Stretch factor to extend emitter below the horizon, must be

in [1,2] (Default: 1, i.e. not used)

resolution integer Specifies the horizontal resolution of the precomputed im-

age that is used to represent the sun environment map (De-

fault: 512, i.e. 512×256)

sunScale float This parameter can be used to separately scale the the

amount of illumination emitted by the sun. (Default: 1)

skyScale float This parameter can be used to separately scale the the

amount of illumination emitted by the sky. (Default: 1)

sunRadiusScale float Scale factor to adjust the radius of the sun, while preserving

its power. Set to 0 to turn it into a directional light source.

(a) sky emitter (b) sun emitter (c) sunsky emitter

Figure 29: A coated rough copper test ball lit with the three provided daylight illumination models

This convenience plugin has the sole purpose of instantiating sun and sky and merging them into
a joint environment map. Please refer to these plugins individually for more details.

130

8. Plugin reference 8.8. Emitters

8.8.9. Environment emitter (envmap)

Parameter Type Description

filename string Filename of the radiance-valued input image to be loaded;

must be in latitude-longitude format.

scale float A scale factor that is applied to the radiance values stored in

the input image. (Default: 1)

toWorld transform Specifies an optional linear emitter-to-world space rotation.

(Default: none (i.e. emitter space = world space))

gamma float Optional parameter to override the gamma value of the

source bitmap, where 1 indicates a linear color space and

the special value -1 corresponds to sRGB. (Default: auto-

matically detect based on the image type and metadata)

cache boolean Preserve generated MIP map data in a cache file? This will

cause a file named filename.mip to be created. (Default:

automatic—use caching for images larger than 1M pixels.)

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

(a) The museum environment map by Bernhard Vogl that

is used in many example renderings in this document

+Z -X+X

+Y

-Y

u
v

-Z

wraps

(b) Coordinate conventions used when mapping the in-

put image onto the sphere.

This plugin provides a HDRI (high dynamic range imaging) environment map, which is a type of
light source that is well-suited for representing “natural” illumination. Many images in this document
are made using the environment map shown in (a).

The implementation loads a captured illumination environment from a image in latitude-longitude
format and turns it into an infinitely distant emitter. The image could either be be a processed photo-
graph or a rendering made using thespherical sensor. The direction conventions of this transforma-
tion are shown in (b). The plugin can work with all types of images that are natively supported by Mit-
suba (i.e. JPEG, PNG, OpenEXR, RGBE, TGA, and BMP). In practice, a good environment map will
contain high-dynamic range data that can only be represented using the OpenEXR or RGBE file for-
mats. High quality free light probes are available on Paul Debevec’s website (http://gl.ict.usc.
edu/Data/HighResProbes) and Bernhard Vogl’s website (http://dativ.at/lightprobes/).

Like the bitmap texture, this plugin generates a cache file named filename.mipwhen given a large
input image. This significantly accelerates the loading times of subsequent renderings. When this is
not desired, specify cache=false to the plugin.

131

http://gl.ict.usc.edu/Data/HighResProbes
http://gl.ict.usc.edu/Data/HighResProbes
http://dativ.at/lightprobes/

8. Plugin reference 8.8. Emitters

8.8.10. Constant environment emitter (constant)

Parameter Type Description

radiance spectrum Specifies the emitted radiance in units of power per unit

area per unit steradian.

samplingWeight float Specifies the relative amount of samples allocated to this

emitter. (Default: 1)

This plugin implements a constant environment emitter, which surrounds the scene and radiates
diffuse illumination towards it. This is often a good default light source when the goal is to visualize
some loaded geometry that uses basic (e.g. diffuse) materials.

132

8. Plugin reference 8.9. Sensors

8.9. Sensors

In Mitsuba, sensors, along with a film, are responsible for recording radiance measurements in some
usable format. This includes default choices such as perspective or orthographic cameras, as well as
more specialized sensors that measure the radiance into a given direction or the irradiance received
by a certain surface. The following section lists the available choices.

Handedness convention

Sensors in Mitsuba are right-handed. Any number of rotations and translations can be applied to
them without changing this property. By default they are located at the origin and oriented in such a
way that in the rendered image, +X points left, +Y points upwards, and +Z points along the viewing
direction.

Left-handed sensors are also supported. To switch the handedness, flip any one of the axes, e.g. by
passing a scale transformation like <scale x="-1"/> to the sensor’s toWorld parameter.

133

8. Plugin reference 8.9. Sensors

8.9.1. Perspective pinhole camera (perspective)

Parameter Type Description

toWorld transform or

animation
Specifies an optional camera-to-world transformation.

(Default: none (i.e. camera space = world space))

focalLength string Denotes the camera’s focal length specified using 35mm film
equivalent units. See the main description for further de-

tails. (Default: 50mm)

fov float An alternative to focalLength: denotes the camera’s field

of view in degrees—must be between 0 and 180, excluding

the extremes.

fovAxis string When the parameter fov is given (and only then), this pa-

rameter further specifies the image axis, to which it applies.

(i) x: fovmaps to the x-axis in screen space.

(ii) y: fovmaps to the y-axis in screen space.

(iii) diagonal: fovmaps to the screen diagonal.

(iv) smaller: fov maps to the smaller dimension (e.g. x
when width<height)

(v) larger: fov maps to the larger dimension (e.g. y
when width<height)

The default is x.

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

nearClip,
farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) Thematerial test ball viewed through a perspective pin-

hole camera. Everything is in sharp focus.

(b) A rendering of the Cornell box

This plugin implements a simple idealizied perspective camera model, which has an infinitely small
aperture. This creates an infinite depth of field, i.e. no optical blurring occurs. The camera is can be

134

8. Plugin reference 8.9. Sensors

specified to move during an exposure, hence temporal blur is still possible.
By default, the camera’s field of view is specified using a 35mm film equivalent focal length, which is

first converted into a diagonal field of view and subsequently applied to the camera. This assumes that
the film’s aspect ratio matches that of 35mm film (1.5:1), though the parameter still behaves intuitively
when this is not the case. Alternatively, it is also possible to specify a field of view in degrees along a
given axis (see the fov and fovAxis parameters).

The exact camera position and orientation is most easily expressed using the lookat tag, i.e.:

<sensor type="perspective">
<transform name="toWorld">

<!-- Move and rotate the camera so that looks from (1, 1, 1) to (1, 2, 1)
and the direction (0, 0, 1) points "up" in the output image -->

<lookat origin="1, 1, 1" target="1, 2, 1" up="0, 0, 1"/>
</transform>

</sensor>

135

8. Plugin reference 8.9. Sensors

8.9.2. Perspective camera with a thin lens (thinlens)

Parameter Type Description

toWorld transform or

animation
Specifies an optional camera-to-world transformation.

(Default: none (i.e. camera space = world space))

apertureRadius float Denotes the radius of the camera’s aperture in scene units.

focusDistance float Denotes the world-space distance from the camera’s aper-

ture to the focal plane. (Default: 0)

focalLength string Denotes the camera’s focal length specified using 35mm film
equivalent units. See the main description for further de-

tails. (Default: 50mm)

fov float An alternative to focalLength: denotes the camera’s field

of view in degrees—must be between 0 and 180, excluding

the extremes.

fovAxis string When the parameter fov is given (and only then), this pa-

rameter further specifies the image axis, to which it applies.

(i) x: fovmaps to the x-axis in screen space.

(ii) y: fovmaps to the y-axis in screen space.

(iii) diagonal: fovmaps to the screen diagonal.

(iv) smaller: fov maps to the smaller dimension (e.g. x
when width<height)

(v) larger: fov maps to the larger dimension (e.g. y
when width<height)

The default is x.

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

nearClip,
farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) The material test ball viewed through a perspective

thin lens camera. Points away from the focal plane

project onto a circle of confusion.

(b) A rendering of the Cornell box

136

8. Plugin reference 8.9. Sensors

This plugin implements a simple perspective camera model with a thin lens at its circular aperture.
It is very similar to the perspective plugin except that the extra lens element permits rendering
with a specifiable (i.e. non-infinite) depth of field. To configure this, it has two extra parameters
named apertureRadius and focusDistance.

By default, the camera’s field of view is specified using a 35mm film equivalent focal length, which is
first converted into a diagonal field of view and subsequently applied to the camera. This assumes that
the film’s aspect ratio matches that of 35mm film (1.5:1), though the parameter still behaves intuitively
when this is not the case. Alternatively, it is also possible to specify a field of view in degrees along a
given axis (see the fov and fovAxis parameters).

The exact camera position and orientation is most easily expressed using the lookat tag, i.e.:

<sensor type="thinlens">
<transform name="toWorld">

<!-- Move and rotate the camera so that looks from (1, 1, 1) to (1, 2, 1)
and the direction (0, 0, 1) points "up" in the output image -->

<lookat origin="1, 1, 1" target="1, 2, 1" up="0, 0, 1"/>
</transform>

<!-- Focus on the target -->
<float name="focusDistance" value="1"/>
<float name="apertureRadius" value="0.1"/>

</sensor>

137

8. Plugin reference 8.9. Sensors

8.9.3. Orthographic camera (orthographic)

Parameter Type Description

toWorld transform or

animation
Specifies an optional camera-to-world transformation.

(Default: none (i.e. camera space = world space))

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

nearClip,
farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) The material test ball viewed through an orthographic

camera. Note the complete lack of perspective.

(b) A rendering of the Cornell box

This plugin implements a simple orthographic camera, i.e. a sensor based on an orthographic
projection without any form of perspective. It can be thought of as a planar sensor that measures the
radiance along its normal direction. By default, this is the region [−1, 1]2 inside the XY-plane facing
along the positive Z direction. Transformed versions can be instantiated e.g. as follows:

<sensor type="orthographic">
<transform name="toWorld">

<!-- Resize the sensor plane to 20x20 world space units -->
<scale x="10" y="10"/>

<!-- Move and rotate it so that it contains the point
(1, 1, 1) and faces direction (0, 1, 0) -->

<lookat origin="1, 1, 1" target="1, 2, 1" up="0, 0, 1"/>
</transform>

</sensor>

138

8. Plugin reference 8.9. Sensors

8.9.4. Telecentric lens camera (telecentric)

Parameter Type Description

toWorld transform or

animation
Specifies an optional sensor-to-world transformation. (De-

fault: none (i.e. camera space = world space))

apertureRadius float Denotes the radius of the camera’s aperture in scene units.

(Default: 0)

focusDistance float Denotes the world-space distance from the camera’s aper-

ture to the focal plane. (Default: 0)

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

nearClip,
farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) The material test ball viewed through an telecentric

camera. Note the orthographic view together with a

narrow depth of field.

(b) A rendering of the Cornell box.

The red and green walls are par-

tially visible due to the aperture

size.

This plugin implements a simple model of a camera with a telecentric lens. This is a type of lens
that produces an in-focus orthographic view on a plane at some distance from the sensor. Points
away from this plane are out of focus and project onto a circle of confusion. In comparison to ide-
alized orthographic cameras, telecentric lens cameras exist in the real world and find use in some
computer vision applications where perspective effects cause problems. This sensor relates to the
orthographic plugin in the same way that thinlens does to perspective.

The configuration is identical to the orthographic plugin, except that the additional parameters
apertureRadius and focusDistancemust be provided.

139

8. Plugin reference 8.9. Sensors

8.9.5. Spherical camera (spherical)

Parameter Type Description

toWorld transform or

animation
Specifies an optional camera-to-world transformation.

(Default: none (i.e. camera space = world space))

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

(a) A rendering made using a spherical camera

The spherical camera captures the illumination arriving from all directions and turns it into a
latitude-longitude environment map. It is best used with a high dynamic range film that has 2:1 aspect
ratio, and the resulting output can then be turned into a distant light source using the envmap plugin.
By default, the camera is located at the origin, which can be changed by providing a custom toWorld
transformation.

140

8. Plugin reference 8.9. Sensors

8.9.6. Irradiance meter (irradiancemeter)

Parameter Type Description

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

This sensor plugin implements a simple irradiance meter, which measures the average incident
power per unit area over a provided surface. Such a sensor is useful for conducting virtual experi-
ments and testing the renderer for correctness. The result is normalized so that an irradiance sensor
inside an integrating sphere with constant radiance 1 records an irradiance value of π.

To create an irradiance meter, instantiate the desired measurement shape and specify the sensor
as its child. Note that when the sensor’s film resolution is larger than 1 × 1, each pixel will record the
average irradiance over a rectangular part of the shape’s UV parameterization.

<scene version="0.4.5">
<!-- Measure the average irradiance arriving on

a unit radius sphere located at the origin -->
<shape type="sphere">

<sensor type="irradiancemeter">
<!-- Write the output to a MATLAB M-file. The output file will

contain a 1x1 matrix storing an estimate of the average
irradiance over the surface of the sphere. -->

<film type="mfilm"/>

<!-- Use 1024 samples for the measurement -->
<sampler type="independent">

<integer name="sampleCount" value="1024"/>
</sampler>

</sensor>
</shape>

<!-- ... other scene declarations ... -->
</scene>

141

8. Plugin reference 8.9. Sensors

8.9.7. Radiance meter (radiancemeter)

Parameter Type Description

toWorld transform or

animation
Specifies an optional sensor-to-world transformation. (De-

fault: none (i.e. sensor space = world space))

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

This sensor plugin implements a simple radiance meter, which measures the incident power per
unit area per unit solid angle along a certain ray. It can be thought of as the limit of a standard
perspective camera as its field of view tends to zero. Hence, when this sensor is given a film with
multiple pixels, all of them will record the same value.

Such a sensor is useful for conducting virtual experiments and testing the renderer for correctness.
By default, the sensor is located at the origin and performs a measurement in the positive Z direc-

tion (0, 0, 1). This can be changed by providing a custom toWorld transformation:

<scene version="0.4.5">
<sensor type="radiancemeter">

<!-- Measure the amount of radiance traveling
from the origin to (1,2,3) -->

<transform name="toWorld">
<lookat origin="1,2,3"

target="0,0,0"/>
</transform>

<!-- Write the output to a MATLAB M-file. The output file will
contain a 1x1 matrix storing an estimate of the incident
radiance along the specified ray. -->

<film type="mfilm"/>

<!-- Use 1024 samples for the measurement -->
<sampler type="independent">

<integer name="sampleCount" value="1024"/>
</sampler>

</sensor>

<!-- ... other scene declarations ... -->
</scene>

142

8. Plugin reference 8.9. Sensors

8.9.8. Fluence meter (fluencemeter)

Parameter Type Description

toWorld transform or

animation
Specifies an optional sensor-to-world transformation. (De-

fault: none (i.e. sensor space = world space))

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

This sensor plugin implements a simple fluence meter, which measures the average radiance pass-
ing through a specified position. By default, the sensor is located at the origin.

Such a sensor is useful for conducting virtual experiments and testing the renderer for correctness.

<scene version="0.4.5">
<sensor type="fluencemeter">

<!-- Measure the average radiance traveling
through the point (1,2,3) -->

<transform name="toWorld">
<translate x="1" y="2" z="3"/>

</transform>

<!-- Write the output to a MATLAB M-file. The output file will
contain a 1x1 matrix storing the computed estimate -->

<film type="mfilm"/>

<!-- Use 1024 samples for the measurement -->
<sampler type="independent">

<integer name="sampleCount" value="1024"/>
</sampler>

</sensor>

<!-- ... other scene declarations ... -->
</scene>

143

8. Plugin reference 8.9. Sensors

8.9.9. Perspective pinhole camera with radial distortion (perspective_rdist)

Parameter Type Description

toWorld transform or

animation
Specifies an optional camera-to-world transformation.

(Default: none (i.e. camera space = world space))

kc string Second and fourth-order coefficient of a polynomial ra-

dial distortion model specified as a comma-separated list

The specifics of the model are described in detail on

the following page: http://www.vision.caltech.edu/
bouguetj/calib_doc/htmls/parameters.html

focalLength string Denotes the camera’s focal length specified using 35mm film
equivalent units. See the main description for further de-

tails. (Default: 50mm)

fov float An alternative to focalLength: denotes the camera’s field

of view in degrees—must be between 0 and 180, excluding

the extremes.

fovAxis string When the parameter fov is given (and only then), this pa-

rameter further specifies the image axis, to which it applies.

(i) x: fovmaps to the x-axis in screen space.

(ii) y: fovmaps to the y-axis in screen space.

(iii) diagonal: fovmaps to the screen diagonal.

(iv) smaller: fov maps to the smaller dimension (e.g. x
when width<height)

(v) larger: fov maps to the larger dimension (e.g. y
when width<height)

The default is x.

shutterOpen,
shutterClose

float Specifies the time interval of the measurement—this is only

relevant when the scene is in motion. (Default: 0)

nearClip,
farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

This plugin extends the perspective camera with support for radial distortion. It accepts an ad-
ditional parameter named kc, which specifies the second and fourth-order terms in a polynomial
model that accounts for pincushion and barrel distortion. This is useful when trying to match ren-
dered images to photographs created by a camera whose distortion is known. When kc=0, 0, the
model turns into a standard pinhole camera. The reason for creating a separate plugin for this fea-
ture is that distortion involves extra overheads per ray that users may not be willing to pay for if
their scene doesn’t use it. The MATLAB Camera Calibration Toolbox by Jean-Yves Bouguet (http:
//www.vision.caltech.edu/bouguetj/calib_doc/) can be used to obtain a distortion model,
and the first entries of the kc variable generated by this tool can directly be passed into this plugin.

144

http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

8. Plugin reference 8.10. Integrators

8.10. Integrators

In Mitsuba, the different rendering techniques are collectively referred to as integrators, since they
perform integration over a high-dimensional space. Each integrator represents a specific approach
for solving the light transport equation—usually favored in certain scenarios, but at the same time af-
fected by its own set of intrinsic limitations. Therefore, it is important to carefully select an integrator
based on user-specified accuracy requirements and properties of the scene to be rendered.

In Mitsuba’s XML description language, a single integrator is usually instantiated by declaring it at
the top level within the scene, e.g.

<scene version="0.4.5">
<!-- Instantiate a unidirectional path tracer,

which renders paths up to a depth of 5 -->
<integrator type="path">

<integer name="maxDepth" value="5"/>
</integrator>

<!-- Some geometry to be rendered -->
<shape type="sphere">

<bsdf type="diffuse"/>
</shape>

</scene>

This section gives a brief overview of the available choices along with their parameters.

Choosing an integrator

Due to the large number of integrators in Mitsuba, the decision of which one is suitable may seem
daunting. Assuming that the goal is to solve the full light transport equation without approximations,
a few integrators (ao, direct, vpl) can already be ruled out. The adjoint particle tracer ptracer is
also rarely used.

The following “algorithm” may help to decide amongst the remaining ones:

1. Try rendering the scene with an appropriate path tracer. If this gives the desired result, stop.

Mitsuba currently comes with three path tracer variations that target different setups: It your
scene contains no media and no surfaces with opacity masks, use the plain path tracer (path).

Otherwise, use one of the volumetric path tracers (volpath_simple or volpath). The latter
is preferable if the scene contains glossy surface scattering models.

2. If step 1 produced poor (i.e. noisy and slowly converging) results, try the bidirectional path
tracer (bdpt).

3. If steps 1 and 2 failed, the scene contains a relatively difficult lighting setup, potentially including
interaction with complex materials. In many cases, these difficulties can be greatly ameliorated
by running a “metropolized” version of a path tracer. This is implemented in the Primary
Sample Space MLT (pssmlt) plugin.

4. If none of the above worked, the remaining options are to try a photon mapping-type method
(photonmapper, ppm, sppm) or a path-space MLT method (mlt, erpt).

145

8. Plugin reference 8.10. Integrators

Path depth

(a) Max. depth = 1 (b) Max. depth = 2 (c) Max. depth = 3 (d) Max. depth =∞

Figure 30: These Cornell box renderings demonstrate the visual effect of amaximumpath depth. As the paths

are allowed to grow longer, the color saturation increases due to multiple scattering interactions

with the colored surfaces. At the same time, the computation time increases.

Almost all integrators use the concept of path depth. Here, a path refers to a chain of scattering
events that starts at the light source and ends at the eye or sensor. It is often useful to limit the path
depth (Figure 30) when rendering scenes for preview purposes, since this reduces the amount of
computation that is necessary per pixel. Furthermore, such renderings usually converge faster and
therefore need fewer samples per pixel. When reference-quality is desired, one should always leave
the path depth unlimited.

Figure 31: A ray of emitted light is scattered by an object and subsequently reaches the eye/sensor. InMitsuba,

this is a depth-2 path, since it has two edges.

Mitsuba counts depths starting at 1, which correspond to visible light sources (i.e. a path that starts
at the light source and ends at the eye or sensor without any scattering interaction in between). A
depth-2 path (also known as “direct illumination”) includes a single scattering event (Figure 31).

Progressive versus non-progressive

Some of the rendering techniques in Mitsuba are progressive. What this means is that they display
a rough preview, which improves over time. Leaving them running indefinitely will continually re-
duce noise (in unbiased algorithms such as Metropolis Light Transport) or noise and bias (in biased
rendering techniques such as Progressive Photon Mapping).

146

8. Plugin reference 8.10. Integrators

Hiding directly visible emitters

Several rendering algorithms in Mitsuba have a feature to hide directly visible light sources (e.g. en-
vironment maps or area lights). While not particularly realistic, this feature is often convenient to
remove a background from a rendering so that it can be pasted into a differently-colored document.

Note that only directly visible emitters can be hidden using this feature—a reflection on a shiny
surface will be unaffected. To perform the kind of compositing shown in Figure 32, it is also necessary
to enable the alpha channel in the scene’s film instance (Section 8.12).

(a) Daylit smoke rendered with hideEmitters set to

false (the default setting)
(b) Rendered with hideEmitters set to true and alpha-

composited onto a white background.

Figure 32: An example application of the hideEmitters parameter together with alpha blending

147

8. Plugin reference 8.10. Integrators

8.10.1. Ambient occlusion integrator (ao)

Parameter Type Description

shadingSamples integer Specifies the number of shading samples that should be com-

puted per primary ray (Default: 1)

rayLength float Specifies the world-space length of the ambient occlusion

rays that will be cast. (Default: -1, i.e. automatic)

.

(a) A view of the scene on page 40, rendered using the Am-

bient Occlusion integrator

(b) A corresponding rendering created using the standard

path tracer

Ambient Occlusion is a simple non-photorealistic rendering technique that simulates the exposure
of an object to uniform illumination incident from all direction. It produces approximate shadowing
between closeby objects, as well as darkening in corners, creases, and cracks. The scattering models
associated with objects in the scene are ignored.

148

8. Plugin reference 8.10. Integrators

8.10.2. Direct illumination integrator (direct)

Parameter Type Description

shadingSamples integer This convenience parameter can be used to set both

emitterSamples and bsdfSamples at the same time.

emitterSamples integer Optional more fine-grained parameter: specifies the num-

ber of samples that should be generated using the direct il-

lumination strategies implemented by the scene’s emitters

(Default: set to the value of shadingSamples)

bsdfSamples integer Optional more fine-grained parameter: specifies the num-

ber of samples that should be generated using the BSDF

sampling strategies implemented by the scene’s surfaces (De-

fault: set to the value of shadingSamples)

strictNormals boolean Be strict about potential inconsistencies involving shading

normals? See page 151 for details. (Default: no, i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 147 for details. (De-

fault: no, i.e. false)

(a) Only BSDF sampling (b) Only emitter sampling (c) BSDF and emitter sampling

Figure 33: This plugin implements two different strategies for computing the direct illumination on surfaces.

Both of them are dynamically combined then obtain a robust rendering algorithm.

This integrator implements a direct illumination technique that makes use of multiple importance
sampling: for each pixel sample, the integrator generates a user-specifiable number of BSDF and emit-
ter samples and combines them using the power heuristic. Usually, the BSDF sampling technique
works very well on glossy objects but does badly everywhere else (Figure 33a), while the opposite is
true for the emitter sampling technique (Figure 33b). By combining these approaches, one can obtain
a rendering technique that works well in both cases (Figure 33c).

The number of samples spent on either technique is configurable, hence it is also possible to turn
this plugin into an emitter sampling-only or BSDF sampling-only integrator.

For best results, combine the direct illumination integrator with the low-discrepancy sample gen-
erator (ldsampler). Generally, the number of pixel samples of the sample generator can be kept
relatively low (e.g. sampleCount=4), whereas the shadingSamples parameter of this integrator
should be increased until the variance in the output renderings is acceptable.

Remarks:
• This integrator does not handle participating media or indirect illumination.

149

8. Plugin reference 8.10. Integrators

8.10.3. Path tracer (path)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

strictNormals boolean Be strict about potential inconsistencies involving shading

normals? See the description below for details. (Default: no,

i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 147 for details. (De-

fault: no, i.e. false)

This integrator implements a basic path tracer and is a good default choice when there is no strong
reason to prefer another method.

To use the path tracer appropriately, it is instructive to know roughly how it works: its main opera-
tion is to trace many light paths using randomwalks starting from the sensor. A single random walk is
shown below, which entails casting a ray associated with a pixel in the output image and searching for
the first visible intersection. A new direction is then chosen at the intersection, and the ray-casting
step repeats over and over again (until one of several stopping criteria applies).

Image plane

Pixel

Emitter

At every intersection, the path tracer tries to create a connection to the light source in an attempt to
find a complete path along which light can flow from the emitter to the sensor. This of course only
works when there is no occluding object between the intersection and the emitter.

This directly translates into a category of scenes where a path tracer can be expected to produce
reasonable results: this is the case when the emitters are easily “accessible” by the contents of the scene.
For instance, an interior scene that is lit by an area light will be considerably harder to render when
this area light is inside a glass enclosure (which effectively counts as an occluder).

Like the direct plugin, the path tracer internally relies on multiple importance sampling to com-
bine BSDF and emitter samples. The main difference in comparison to the former plugin is that it
considers light paths of arbitrary length to compute both direct and indirect illumination.

150

8. Plugin reference 8.10. Integrators

For good results, combine the path tracer with one of the low-discrepancy sample generators (i.e.
ldsampler, halton, or sobol).

Strict normals: Triangle meshes often rely on interpolated shading normals to suppress the inher-
ently faceted appearance of the underlying geometry. These “fake” normals are not without problems,
however. They can lead to paradoxical situations where a light ray impinges on an object from a di-
rection that is classified as “outside” according to the shading normal, and “inside” according to the
true geometric normal.

The strictNormals parameter specifies the intended behavior when such cases arise. The default
(false, i.e. “carry on”) gives precedence to information given by the shading normal and considers
such light paths to be valid. This can theoretically cause light “leaks” through boundaries, but it is not
much of a problem in practice.

When set to true, the path tracer detects inconsistencies and ignores these paths. When objects
are poorly tesselated, this latter option may cause them to lose a significant amount of the incident
radiation (or, in other words, they will look dark).

The bidirectional integrators in Mitsuba (bdpt, pssmlt, mlt ...) implicitly have strictNormals
set to true. Hence, another use of this parameter is to match renderings created by these methods.

Remarks:
• This integrator does not handle participating media

• This integrator has poor convergence properties when rendering caustics and similar effects. In

this case, bdpt or one of the photon mappers may be preferable.

151

8. Plugin reference 8.10. Integrators

8.10.4. Simple volumetric path tracer (volpath_simple)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

strictNormals boolean Be strict about potential inconsistencies involving shading

normals? See page 151 for details. (Default: no, i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 147 for details. (De-

fault: no, i.e. false)

This plugin provides a basic volumetric path tracer that can be used to compute approximate solu-
tions of the radiative transfer equation. This particular integrator is named “simple” because it does
not make use of multiple importance sampling. This results in a potentially faster execution time.
On the other hand, it also means that this plugin will likely not perform well when given a scene
that contains highly glossy materials. In this case, please use volpath or one of the bidirectional
techniques.

This integrator has special support for index-matched transmission events (i.e. surface scattering
events that do not change the direction of light). As a consequence, particating media enclosed by a
stencil shape (see Section 8.1 for details) are rendered considerably more efficiently when this shape
has no16 BSDF assigned to it (as compared to, say, a dielectric or roughdielectric BSDF).

Remarks:
• This integrator performs poorly when rendering participating media that have a different index of

refraction compared to the surrounding medium.

• This integrator has difficulties rendering scenes that contain relatively glossy materials (volpath
is preferable in this case).

• This integrator has poor convergence properties when rendering caustics and similar effects. In

this case, bdpt or one of the photon mappers may be preferable.

16
this is what signals to Mitsuba that the boundary is index-matched and does not interact with light in any way. Alter-

natively, the mask and thindielectric BSDF can be used to specify index-matched boundaries that involve some

amount of interaction.

152

8. Plugin reference 8.10. Integrators

8.10.5. Extended volumetric path tracer (volpath)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

strictNormals boolean Be strict about potential inconsistencies involving shading

normals? See page 151 for details. (Default: no, i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 147 for details. (De-

fault: no, i.e. false)

This plugin provides a volumetric path tracer that can be used to compute approximate solutions
of the radiative transfer equation. Its implementation makes use of multiple importance sampling
to combine BSDF and phase function sampling with direct illumination sampling strategies. On
surfaces, it behaves exactly like the standard path tracer.

This integrator has special support for index-matched transmission events (i.e. surface scattering
events that do not change the direction of light). As a consequence, particating media enclosed by a
stencil shape (see Section 8.1 for details) are rendered considerably more efficiently when this shape
has no17 BSDF assigned to it (as compared to, say, a dielectric or roughdielectric BSDF).

Remarks:
• This integrator will generally perform poorly when rendering participating media that have a dif-

ferent index of refraction compared to the surrounding medium.

• This integrator has poor convergence properties when rendering caustics and similar effects. In

this case, bdpt or one of the photon mappers may be preferable.

17
this is what signals to Mitsuba that the boundary is index-matched and does not interact with light in any way. Alter-

natively, the mask and thindielectric BSDF can be used to specify index-matched boundaries that involve some

amount of interaction.

153

8. Plugin reference 8.10. Integrators

8.10.6. Bidirectional path tracer (bdpt)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

lightImage boolean Include sampling strategies that connect paths traced from

emitters directly to the camera? (i.e. what ptracer does)
This improves the effectiveness of bidirectional path tracing

but severely increases the local and remote communication

overhead, since large light images must be transferred be-

tween threads or over the network. See the text below for

a more detailed explanation. (Default: include these strate-

gies, i.e. true)

sampleDirect boolean Enable direct sampling strategies? This is a generalization

of direct illumination sampling that works with both emit-

ters and sensors. Usually a good idea. (Default: use direct

sampling, i.e. true)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

(a) Path tracer, 32 samples/pixel (b) Bidirectional path tracer, 32 samples/pixel

Figure 34: The bidirectional path tracer finds light paths by generating partial paths starting at the emitters

and the sensor and connecting them in every possible way. This works particularly well in closed

scenes as the one shown above. Here, the unidirectional path tracer has severe difficulties finding

some of the indirect illumination paths. Modeled after after a scene by Eric Veach.

This plugin implements a bidirectional path tracer (short: BDPT) with support for multiple impor-
tance sampling, as proposed by Veach and Guibas [45].

A bidirectional path tracer computes radiance estimates by starting two separate random walks

154

8. Plugin reference 8.10. Integrators

(a) s=0, t=3

(c) s=2, t=1

(b) s=1, t=2

(d) s=3, t=0

Figure 35: The four different ways in which BDPT can create a direct illumination path (matching the first row

on the next page): (a) Standard path tracing without direct illumination sampling, (b) path tracing
with direct illumination sampling, (c) Particle tracing with recording of scattering events observed
by the sensor, (d) Particle tracing with recording of particles that hit the sensor.

from an emitter and a sensor. The resulting subpaths are connected at every possible interaction
vertex, creating a large number of complete paths of different lengths. These paths are then used to
estimate the amount of radiance that is transferred from the emitter to a pixel on the sensor.

Generally, some of the created paths will be undesirable, since they lead to high-variance radiance
estimates. To alleviate this situation, BDPT makes use ofmultiple importance sampling which, roughly
speaking, weights paths based on their predicted utility.

The bidirectional path tracer in Mitsuba is a complete implementation of the technique that han-
dles all sampling strategies, including those that involve direct interactions with the sensor. For this
purpose, finite-aperture sensors are explicitly represented by surfaces in the scene so that they can be
intersected by random walks started at emitters.

Bidirectional path tracing is a relatively “heavy” rendering technique—for the same number of
samples per pixel, it is easily 3-4 times slower than regular path tracing. However, it usually makes
up for this by producing considerably lower-variance radiance estimates (i.e. the output images have
less noise).

The code parallelizes over multiple cores and machines, but with one caveat: some of the BDPT
path sampling strategies are incompatble with the usual approach of rendering an image tile by tile,
since they can potentially contribute to any pixel on the screen. This means that each rendering
work unit must be associated with a full-sized image! When network render nodes are involved
or the resolution of this light image is very high, a bottleneck can arise where more work is spent
accumulating or transmitting these images than actual rendering.

There are two possible resorts should this situation arise: the first one is to reduce the number of
work units so that there is approximately one unit per core (and hence one image to transmit per core).
This can be done by increasing the block size in the GUI preferences or passing the -b parameter to
the mitsuba executable. The second option is to simply disable these sampling strategies at the cost

155

8. Plugin reference 8.10. Integrators

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

(a) The individual sampling strategies that comprise BDPT, but without multiple importance sampling. s denotes the
number of steps taken from the emitters, and t denotes the number of steps from the sensor. Note how almost every

strategy has deficiencies of some kind

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

(b) The same sampling strategies, but now weighted using multiple importance sampling—effectively “turning off” each

strategy where it does not perform well. The final result is computed by summing all of these images.

156

8. Plugin reference 8.10. Integrators

of reducing the effectiveness of bidirectional path tracing (particularly, when rendering caustics). For
this, setlightImage tofalse. When rendering an image of a reasonable resolution without network
nodes, this is not a big concern, hence these strategies are enabled by default.

Remarks:
• This integrator does not work with dipole-style subsurface scattering models.

• This integrator does not yet work with certain non-reciprocal BSDFs (i.e. bump, but this will be
addressed in the future

157

8. Plugin reference 8.10. Integrators

8.10.7. Photon map integrator (photonmapper)

Parameter Type Description

directSamples integer Number of samples used for the direct illumination compo-

nent (Default: 16)

glossySamples integer Number of samples used for the indirect illumination com-

ponent of glossy materials (Default: 32)

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

globalPhotons integer Number of photons that will be collected for the global pho-

ton map (Default: 250000)

causticPhotons integer Number of photons that will be collected for the caustic pho-

ton map (Default: 250000)

volumePhotons integer Number of photons that will be collected for the volumetric

photon map (Default: 250000)

globalLookup⤦
Radius

float Maximum radius of photon lookups in the global photon

map (relative to the scene size) (Default: 0.05)

causticLookup⤦
Radius

float Maximum radius of photon lookups in the caustic photon

map (relative to the scene size) (Default: 0.0125)

lookupSize integer Number of photons that should be fetched in photon map

queries (Default: 120)

granularity integer Granularity of photon tracing work units for the purpose of

parallelization (in # of shot particles) (Default: 0, i.e. decide

automatically)

hideEmitters boolean Hide directly visible emitters? See page 147 for details. (De-

fault: no, i.e. false)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

This plugin implements the two-pass photon mapping algorithm as proposed by Jensen [21]. The
implementation partitions the illumination into three different classes (diffuse, caustic, and volumet-
ric), and builds a separate photon map for each class.

Following this, a standard recursive ray tracing pass is started which performs kernel density esti-
mation using these photon maps. Since the photon maps are visualized directly, the result will appear
“blotchy” (Figure 36) unless an extremely large number of photons is used. A simple remedy is to com-
bine the photon mapper with an irradiance cache, which performs final gathering to remove these
artifacts. Due to its caching nature, the rendering process will be faster as well.

<integrator type="irrcache">
<integrator type="photonmapper"/>

</integrator>

158

8. Plugin reference 8.10. Integrators

Listing 35: Instantiation of a photon mapper with irradiance caching

(a) Rendered using plain photon mapping (b) Rendered using photon mapping together with irradi-

ance caching

Figure 36: Sponza atrium illuminated by a point light and rendered using 5 million photons. Irradiance

caching significantly accelerates the rendering time and eliminates the “blotchy” kernel density

estimation artifacts. Model courtesy of Marko Dabrovic.

When the scene contains participating media, the Beam Radiance Estimate [20] by Jarosz et al. is
used to estimate the illumination due to volumetric scattering.

Remarks:
• Currently, only homogeneous participating media are supported by this implementation

159

8. Plugin reference 8.10. Integrators

8.10.8. Progressive photon mapping integrator (ppm)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

photonCount integer Number of photons to be shot per iteration (Default:

250000)

initialRadius float Initial radius of gather points inworld space units. (Default:

0, i.e. decide automatically)

alpha float Radius reduction parameteralpha from the paper (Default:

0.7)

granularity integer Granularity of photon tracing work units for the purpose of

parallelization (in # of shot particles) (Default: 0, i.e. decide

automatically)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

maxPasses integer Maximum number of passes to render (where -1 corre-

sponds to rendering until stoppedmanually). (Default: -1)

This plugin implements the progressive photon mapping algorithm by Hachisuka et al. [14]. Pro-
gressive photon mapping is a variant of photon mapping that alternates between photon shooting and
gathering passes that involve a relatively small (e.g. 250K) numbers of photons that are subsequently
discarded.

This is done in a way such that the variance and bias of the resulting output vanish as the number of
passes tends to infinity. The progressive nature of this method enables renderings with an effectively
arbitrary number of photons without exhausting the available system memory.

The desired sample count specified in the sample generator configuration determines how many
photon query points are created per pixel. It should not be set too high, since the rendering time is
approximately proportional to this number. For good results, use between 2-4 samples along with the
ldsampler. Once started, the rendering process continues indefinitely until it is manually stopped.

Remarks:
• Due to the data dependencies of this algorithm, the parallelization is limited to to the localmachine

(i.e. cluster-wide renderings are not implemented)

• This integrator does not handle participating media

• This integrator does not currently work with subsurface scattering models.

160

8. Plugin reference 8.10. Integrators

8.10.9. Stochastic progressive photon mapping integrator (sppm)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

photonCount integer Number of photons to be shot per iteration (Default:

250000)

initialRadius float Initial radius of gather points inworld space units. (Default:

0, i.e. decide automatically)

alpha float Radius reduction parameteralpha from the paper (Default:

0.7)

granularity integer Granularity of photon tracing work units for the purpose of

parallelization (in # of shot particles) (Default: 0, i.e. decide

automatically)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

maxPasses integer Maximum number of passes to render (where -1 corre-

sponds to rendering until stoppedmanually). (Default: -1)

This plugin implements stochastic progressive photon mapping by Hachisuka et al. [13]. This
algorithm is an extension of progressive photon mapping (ppm) that improves convergence when
rendering scenes involving depth-of-field, motion blur, and glossy reflections.

Note that the implementation of sppm in Mitsuba ignores the sampler configuration—hence, the
usual steps of choosing a sample generator and a desired number of samples per pixel are not nec-
essary. As with ppm, once started, the rendering process continues indefinitely until it is manually
stopped.

Remarks:
• Due to the data dependencies of this algorithm, the parallelization is limited to to the localmachine

(i.e. cluster-wide renderings are not implemented)

• This integrator does not handle participating media

• This integrator does not currently work with subsurface scattering models.

161

8. Plugin reference 8.10. Integrators

8.10.10. Primary Sample Space Metropolis Light Transport (pssmlt)

Parameter Type Description

bidirectional boolean PSSMLTworks in conjunction with another rendering tech-

nique that is endowed with Markov Chain-based sample

generation. Two choices are available (Default: true):

• true: Operate on top of a fully-fleged bidirectional

path tracer with multiple importance sampling.

• false: Rely on a unidirectional volumetric path

tracer (i.e. volpath)

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

directSamples integer By default, this plugin renders the direct illumination com-

ponent separately using an optimized direct illumination

sampling strategy that uses low-discrepancy number se-

quences for superior performance (in other words, it is not
rendered by PSSMLT).This parameter specifies the number

of samples allocated to that method. To force PSSMLT to be

responsible for the direct illumination component as well,

set this parameter to -1. (Default: 16)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

luminanceSamples integer MLT-type algorithms create output images that are only rel-
ative. The algorithm can e.g. determine that a certain pixel

is approximately twice as bright as another one, but the ab-

solute scale is unknown. To recover it, this plugin computes

the average luminance arriving at the sensor by generating

a number of samples. (Default: 100000 samples)

twoStage boolean Use two-stageMLT? See below for details. (Default: false)

pLarge float Rate at which the implementation tries to replace the cur-

rent path with a completely new one. Usually, there is little

need to change this. (Default: 0.3)

Primary Sample Space Metropolis Light Transport (PSSMLT) is a rendering technique developed
by Kelemen et al. [26] which is based on Markov Chain Monte Carlo (MCMC) integration. In con-
trast to simple methods like path tracing that render images by performing a naïve and memoryless
random search for light paths, PSSMLT actively searches for relevant light paths (as is the case for
other MCMC methods). Once such a path is found, the algorithm tries to explore neighboring paths
to amortize the cost of the search. This can significantly improve the convergence rate of difficult
input. Scenes that were already relatively easy to render usually don’t benefit much from PSSMLT,
since the MCMC data management causes additional computational overheads.

An interesting aspect of PSSMLT is that it performs this exploration of light paths by perturbing the

162

8. Plugin reference 8.10. Integrators

(b) Path space view(a) Primary sample space view

Figure 37: PSSMLT piggybacks on a rendering method that can turn points in the primary sample space (i.e.

“random numbers”) into paths. By performing small jumps in primary sample space, it can explore

the neighborhood of a path

“random numbers” that were initially used to construct the path. Subsequent regeneration of the path
using the perturbed numbers yields a new path in a slightly different configuration, and this process
repeats over and over again. The path regeneration step is fairly general and this is what makes the
method powerful: in particular, it is possible to use PSSMLT as a layer on top of an existing method
to create a new “metropolized” version of the rendering algorithm that is enhanced with a certain
degree of adaptiveness as described earlier.

The PSSMLT implementation in Mitsuba can operate on top of either a simple unidirectional vol-
umetric path tracer or a fully-fledged bidirectional path tracer with multiple importance sampling,
and this choice is controlled by the bidirectional flag. The unidirectional path tracer is generally
much faster, but it produces lower-quality samples. Depending on the input, either may be preferable.

Caveats: There are a few general caveats about MLT-type algorithms that are good to know. The
first one is that they only render “relative” output images, meaning that there is a missing scale factor
that must be applied to obtain proper scene radiance values. The implementation in Mitsuba relies
on an additional Monte Carlo estimator to recover this scale factor. By default, it uses 100K samples
(controlled by the luminanceSamples parameter), which should be adequate for most applications.

The second caveat is that the amount of computational expense associated with a pixel in the output
image is roughly proportional to its intensity. This means that when a bright object (e.g. the sun) is
visible in a rendering, most resources are committed to rendering the sun disk at the cost of increased
variance everywhere else. Since this is usually not desired, the twoStage parameter can be used to
enable Two-stage MLT in this case.

In this mode of operation, the renderer first creates a low-resolution version of the output image
to determine the approximate distribution of luminance values. The second stage then performs the
actual rendering, while using the previously collected information to ensure that the amount of time
spent rendering each pixel is uniform.

The third caveat is that, while PSMLT can work with scenes that are extremely difficult for other
methods to handle, it is not particularly efficient when rendering simple things such as direct illumi-
nation (which is more easily handled by a brute-force type algorithm). By default, the implementation
in Mitsuba therefore delegates this to such a method (with the desired quality being controlled by the
directSamples parameter). In very rare cases when direct illumination paths are very difficult to
find, it is preferable to disable this separation so that PSSMLT is responsible for everything. This can
be accomplished by setting directSamples=-1.

163

8. Plugin reference 8.10. Integrators

8.10.11. Path Space Metropolis Light Transport (mlt)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

directSamples integer By default, the implementation renders direct illumina-

tion component separately using the direct plugin, which
uses low-discrepancy number sequences for superior per-

formance (in other words, it is not handled by MLT). This

parameter specifies the number of samples allocated to that

method. To force MLT to be responsible for the direct illu-

mination component as well, set this to -1. (Default: 16)

luminanceSamples integer MLT-type algorithms create output images that are only rel-
ative. The algorithm can e.g. determine that a certain pixel

is approximately twice as bright as another one, but the ab-

solute scale is unknown. To recover it, this plugin computes

the average luminance arriving at the sensor by generating

a number of samples. (Default: 100000 samples)

twoStage boolean Use two-stageMLT? Seepssmlt for details.(Default: false)

bidirectional⤦
Mutation,

[lens,multiChain,
caustic,manifold]⤦
Perturbation

boolean These parameters can be used to pick the individual muta-

tion and perturbation strategies that will be used to explore

path space. By default, the original set by Veach and Guibas

is enabled (i.e. everything except the manifold perturba-

tion). It is possible to extend this integrator with additional

custom perturbations strategies if needed.

lambda float Jump size of the manifold perturbation (Default: 50)

Metropolis Light Transport (MLT) is a seminal rendering technique proposed by Veach and Guibas
[46], which applies the Metropolis-Hastings algorithm to the path-space formulation of light trans-
port. Please refer to the pssmlt page for a general description of MLT-type algorithms and a list of
caveats that also apply to this plugin.

Like pssmlt, this integrator explores the space of light paths, searching with preference for those
that carry a significant amount of energy from an emitter to the sensor. The main difference is that
PSSMLT does this exploration by piggybacking on another rendering technique and “manipulating”
the random number stream that drives it, whereas MLT does not use such an indirection: it operates
directly on the actual light paths.

This means that the algorithm has access to considerably more information about the problem
to be solved, which allows it to perform a directed exploration of certain classes of light paths. The
main downside is that the implementation is rather complex, which may make it more susceptible
to unforeseen problems. Mitsuba reproduces the full MLT algorithm except for the lens subpath
mutation18. In addition, the plugin also provides the manifold perturbation proposed by Jakob and
Marschner [19].

18
In experiments, it was not found to produce sigificant convergence improvements and was subsequently removed.

164

8. Plugin reference 8.10. Integrators

(a) Lens perturbation (b) Caustic perturbation

(c) Multi-chain perturbation (d) Manifold perturbation

To explore the space of light paths, MLT iteratively makes changes to a light path, which can either
be large-scale mutations or small-scale perturbations. Roughly speaking, the bidirectional mutation is
used to jump between different classes of light paths, and each one of the perturbations is responsible
for efficiently exploring some of these classes. All mutation and perturbation strategies can be mixed
and matched as desired, though for the algorithm to work properly, the bidirectional mutation must
be active and perturbations should be selected as required based on the types of light paths that are
present in the input scene. The following perturbations are available:

(a) Lens perturbation: this perturbation slightly varies the outgoing direction at the camera and prop-
agates the resulting ray until it encounters the first non-specular object. The perturbation then
attempts to create a connection to the (unchanged) remainder of the path.

(b) Caustic perturbation: essentially a lens perturbation that proceeds in the opposite direction.

(c) Multi-chain perturbation: used when there are several chains of specular interactions, as seen
in the swimming pool example above. After an initial lens perturbation, a cascade of additional
perturbations is required until a connection to the remainder of the path can finally be established.
Depending on the path type, the entire path may be changed by this.

(d) Manifold perturbation: this perturbation was designed to subsume and extend the previous three
approaches. It creates a perturbation at an arbitrary position along the path, proceeding in either
direction. Upon encountering a chain of specular interactions, it numerically solves for a connec-
tion path (as opposed to the cascading mechanism employed by the multi-chain perturbation).

165

8. Plugin reference 8.10. Integrators

8.10.12. Energy redistribution path tracing (erpt)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

numChains float On average, how many Markov Chains should be started

per pixel? (Default: 1)

maxChains float How many Markov Chains should be started at most (per
pixel) (Default: 0, i.e. this feature is not used)

chainLength integer Specifies the number of perturbation steps that are executed

per Markov Chain (Default: 1).

directSamples integer By default, the implementation renders direct illumina-

tion component separately using the direct plugin, which
uses low-discrepancy number sequences for superior per-

formance (in other words, it is not handled by ERPT).This

parameter specifies the number of samples allocated to that

method. To force MLT to be responsible for the direct illu-

mination component as well, set this to -1. (Default: 16)

[lens,multiChain,
caustic,manifold]⤦
Perturbation

boolean These parameters can be used to pick the individual pertur-

bation strategies that will be used to explore path space. By

default, the original set by Veach and Guibas is enabled (i.e.

everything except the manifold perturbation).

lambda float Jump size of the manifold perturbation (Default: 50)

(a) A brass chandelier with 24 glass-enclosed bulbs (b) Glossy reflective and refractive ableware, lit by the

chandelier on the left

Figure 38: An interior scene with complex specular and near-specular light paths, illuminated entirely

through caustics. Rendered by this plugin using the manifold perturbation. This scene was de-

signed by Olesya Isaenko.

Energy Redistribution Path Tracing (ERPT) by Cline et al. [5] combines Path Tracing with the
perturbation strategies of Metropolis Light Transport.

An initial set of seed paths is generated using a standard bidirectional path tracer, and for each one,
a MLT-style Markov Chain is subsequently started and executed for some number of steps. This has

166

8. Plugin reference 8.10. Integrators

(a) Seed paths generated using bidirec-
tional path tracing. Note the high

variance of paths that involve reflec-

tion of sunlight by the torus.

(b) Result after running the perturba-

tions of Veach and Guibas for 800

steps. Some convergence issues re-

main.

(c) Result after running the manifold

perturbation for the same amount

of time

the effect of redistributing the energy of the individual samples over a larger area, hence the name of
this method.

Figure 39: Another view, now

with exterior lighting.

This is often a good choice when a (bidirectional) path tracer pro-
duces mostly reasonable results except that it finds certain important
types of light paths too rarely. ERPT can then explore all of the neigh-
borhing paths as well, to prevent the original sample from showing
up as a “bright pixel” in the output image.

This plugin shares all the perturbation strategies of the mlt plu-
gin, and the same rules for selecting them apply. In contrast to the
original paper by Cline et al., the Mitsuba implementation uses a bidi-
rectional (rather than an unidirectional) bidirectional path tracer to
create seed paths. Also, since they add bias to the output, this plu-
gin does not use the image post-processing filters proposed by the
authors.

The mechanism for selecting Markov Chain seed paths deserves
an explanation: when commencing work on a pixel in the output
image, the integrator first creates a pool of seed path candidates. The
size of this pool is given by the samplesPerPixel parameter of the
sample generator. This should be large enough so that the integrator
has a representative set of light paths to work with.

Subsequently, one or more of these candidates are chosen (deter-
mined by numChains and maxChains parameter). For each one, a
Markov Chain is created that has an initial configuration matching the seed path. It is simulated for
chainLength iterations, and each intermediate state is recorded in the output image.

167

8. Plugin reference 8.10. Integrators

8.10.13. Adjoint particle tracer (ptracer)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-

bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Specifies the minimum path depth, after which the imple-

mentation will start to use the “russian roulette” path termi-

nation criterion. (Default: 5)

granularity integer Specifies the work unit granularity used to parallize the the

particle tracing task. This should be set high enough so

that accumulating partially exposed images (and potentially

sending them over the network) is not the bottleneck. (De-

fault: 200K particles per work unit, i.e. 200000)

bruteForce boolean If set to true, the integrator does not attempt to create con-

nections to the sensor and purely relies on hitting it via ray

tracing. This is mainly intended for debugging purposes.

(Default: false)

This plugin implements a simple adjoint particle tracer. It does essentially the exact opposite of
the simple volumetric path tracer (volpath_simple): instead of tracing rays from the sensor and
attempting to connect them to the light source, this integrator shoots particles from the light source
and attempts to connect them to the sensor.

Usually, this is a relatively useless rendering technique due to its high variance, but there are some
cases where it excels. In particular, it does a good job on scenes where most scattering events are
directly visible to the camera.

When rendering with a finite-aperture sensor (e.g. thinlens) this integrator is able to intersect
the actual aperture, which allows it to handle certain caustic paths that would otherwise not be visible.

It also supports a specialized “brute force” mode, where the integrator does not attempt to create
connections to the sensor and purely relies on hitting it via ray tracing. This is one of the worst con-
ceivable rendering and not recommended for any applications. It is mainly included for debugging
purposes.

The number of traced particles is given by the number of “samples per pixel” of the sample generator
times the pixel count of the output image. For instance, 16 samples per pixel on a 512×512 image will
cause 4M particles to be generated.

Remarks:
• This integrator does not currently work with subsurface scattering models.

168

8. Plugin reference 8.10. Integrators

8.10.14. Adaptive integrator (adaptive)

Parameter Type Description

maxError float Maximum relative error threshold (Default: 0.05)

pValue float Required p-value to accept a sample (Default: 0.05)

maxSampleFactor integer Maximumnumber of samples to be generated relative to the
number of configured pixel samples. The adaptive integra-

tor will stop after this many samples, regardless of whether

or not the error criterion was satisfied. A negative value will

be interpreted as∞. (Default: 32—for instance, when 64

pixel samples are configured in the sampler, this means

that the adaptive integrator will give up after 32*64=2048

samples)

This “meta-integrator” repeatedly invokes a provided sub-integrator until the computed radiance
values satisfy a specified relative error bound (5% by default) with a certain probability (95% by de-
fault). Internally, it uses a Z-test to decide when to stop collecting samples. While repeatedly applying
a Z-test in this manner is not good practice in terms of a rigorous statistical analysis, it provides a
useful mathematically motivated stopping criterion.

<integrator type="adaptive">
<integrator type="path"/>

</integrator>

Listing 36: An example how to make the path integrator adaptive

Remarks:
• The adaptive integrator needs a variance estimate to work correctly. Hence, the underlying sample

generator should be set to a reasonably large number of pixel samples (e.g. 64 or higher) so that

this estimate can be obtained.

• This plugin uses a relatively simplistic error heuristic that does not share information between

pixels and only reasons about variance in image space. In the future, it will likely be replaced with

something more robust.

169

8. Plugin reference 8.10. Integrators

8.10.15. Virtual Point Light integrator (vpl)

Parameter Type Description

maxDepth integer Specifies the longest path depth in the generated output im-

age (where -1 corresponds to∞). A value of 2 will lead to

direct-only illumination. (Default: 5)

shadowMap⤦
Resolution

integer Resolution of the shadowmaps that are used to compute the

point-to-point visibility (Default: 512)

clamping float A relative clamping factor between [0, 1] that is used to con-

trol the rendering artifact discussed below. (Default: 0.1)

This integrator implements a hardware-accelerated global illumination rendering technique based
on the Instant Radiosity method by Keller [27]. This is the same approach that is also used in Mitsuba’s
real-time preview; the reason for providing it as a separate integrator plugin is to enable automated
(e.g. scripted) usage.

The method roughly works as follows: during a pre-process pass, any present direct and indirect
illumination is converted into a set of virtual point light sources (VPLs). The scene is then separately
rendered many times, each time using a different VPL as a source of illumination. All of the render-
ings created in this manner are accumulated to create the final output image.

Because the individual rendering steps can be exectuted on a graphics card, it is possible to render
many (i.e. 100-1000) VPLs per second. The method is not without problems, however. In particular,
it performs poorly when rendering glossy materials, and it produces artifacts in corners and creases .
Mitsuba automatically limits the “glossyness” of materials to reduce the effects of the former problem.
A clamping parameter is provided to control the latter (see the figure below). The number of samples
per pixel specified to the sampler is interpreted as the number of VPLs that should be rendered.

(a) clamping=0: With clamping fully disabled, bright

blotches appear in corners and creases.

(b) clamping=0.3: Higher clamping factors remove

these artifacts, but they lead to visible energy loss (the

rendering is too dark in certain areas). The default of

0.1 is usually reasonable.

170

8. Plugin reference 8.10. Integrators

8.10.16. Irradiance caching integrator (irrcache)

Parameter Type Description

resolution integer Elevational resolution of the stratified final gather hemi-

sphere. The azimuthal resolution is two times this value.

(Default: 14, i.e. 2 ⋅ 142=392 samples in total)

quality float Quality factor (the κ parameter of Tabellion et al. [43]) (De-

fault: 1.0, which is adequate for most cases)

gradients boolean Use irradiance gradients [49]? (Default: true)

clampNeighbor boolean Use neighbor clamping [29]? (Default: true)

clampScreen boolean Use a screen-space clamping criterion [43]? (Default:

true)

overture boolean Do an overture pass before starting the main rendering pro-

cess? Usually a good idea. (Default: true)

quality⤦
Adjustment

float When an overture pass is used, Mitsuba subsequently re-

duces the quality parameter by this amount to interpolate

amongst more samples, creating a visually smoother result.

(Default: 0.5)

indirectOnly boolean Only show the indirect illumination? This can be useful to

check the interpolation quality. (Default: false)

debug boolean Visualize the sample placement? (Default: false)

(a) Illustration of the effect of the different optimizatations that are provided by this plugin

This “meta-integrator” implements irradiance caching by Ward and Heckbert [51]. This method
computes and caches irradiance information at a sparse set of scene locations and efficiently deter-
mines approximate values at other locations using interpolation.

This plugin only provides the caching and interpolation part—another plugin is still needed to do
the actual computation of irradiance values at cache points. This is done using nesting, e.g. as follows:

<integrator type="irrcache">
<integrator type="photonmapper"/>

</integrator>

Listing 37: Instantiation of a photon mapper with irradiance caching

When a radiance query involves a non-diffuse material, all computation is forwarded to the sub-

171

8. Plugin reference 8.10. Integrators

integrator, i.e. irrcache is passive. Otherwise, the existing cache points are interpolated to approx-
imate the emitted radiance, or a new cache point is created if the resulting accuracy would be too
low. By default, this integrator also performs a distributed overture pass before rendering, which is
recommended to avoid artifacts resulting from the addition of samples as rendering proceeds.

Note that wrapping an integrator into irrcache adds one extra light bounce. For instance, the
method resulting from using direct in an irradiance cache renders two-bounce direct illumination.

The generality of this implementation allows it to be used in conjunction with photon mapping
(the most likely application) as well as all other sampling-based integrators in Mitsuba. Several opti-
mizations are used to improve the achieved interpolation quality, namely irradiance gradients [49],
neighbor clamping [29], a screen-space clamping metric and an improved error function [43].

172

8. Plugin reference 8.11. Sample generators

8.11. Sample generators

When rendering an image, Mitsuba has to solve a high-dimensional integration problem that involves
the geometry, materials, lights, and sensors that make up the scene. Because of the mathematical
complexity of these integrals, it is generally impossible to solve them analytically — instead, they are
solved numerically by evaluating the function to be integrated at a large number of different positions
referred to as samples. Sample generators are an essential ingredient to this process: they produce
points in a (hypothetical) infinite dimensional hypercube [0, 1]∞ that constitute the canonical repre-
sentation of these samples.

To do its work, a rendering algorithm, or integrator, will send many queries to the sample genera-
tor. Generally, it will request subsequent 1D or 2D components of this infinite-dimensional “point”
and map them into a more convenient space (for instance, positions on surfaces). This allows it to
construct light paths to eventually evaluate the flow of light through the scene.

Since the whole process starts with a large number of points in the abstract space [0, 1]∞, it is
natural to consider different ways of positioning them. Desirable properties of a sampler are that
it “randomly” covers the whole space evenly with samples, but without placing samples too close to
each other. This leads to such notions as stratified sampling and low-discrepancy number sequences.
The samplers in this section make different guarantees on the quality of generated samples based on
these criteria. To obtain intuition about their behavior, the provided point plots illustrate the resulting
sample placement.

173

8. Plugin reference 8.11. Sample generators

8.11.1. Independent sampler (independent)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the first 1024 points onto the first two

dimensions. Note the sample clumping.

The independent sampler produces a stream of independent and uniformly distributed pseudoran-
dom numbers. Internally, it relies on a fast SIMD version of the Mersenne Twister random number
generator [40].

This is the most basic sample generator; because no precautions are taken to avoid sample clumping,
images produced using this plugin will usually take longer to converge. In theory, this sampler is
initialized using a deterministic procedure, which means that subsequent runs of Mitsuba should
create the same image. In practice, when rendering with multiple threads and/or machines, this is
not true anymore, since the ordering of samples is influenced by the operating system scheduler.

Note that the Metropolis-type integrators implemented in Mitsuba are incompatible with the more
sophisticated sample generators shown in this section. They require this specific sampler and refuse
to work otherwise.

174

8. Plugin reference 8.11. Sample generators

8.11.2. Stratified sampler (stratified)

Parameter Type Description

sampleCount integer Number of samples per pixel; should be a perfect square (e.g.

1, 4, 9, 16, 25, etc.), or it will be rounded up to the next one

(Default: 4)

dimension integer Effective dimension, up to which stratified samples are pro-

vided. The number here is to be interpreted as the number

of subsequent 1D or 2D sample requests that can be satis-

fied using “good” samples. Higher high values increase both

storage and computational costs. (Default: 4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the first 1024 points onto the first two

dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) The same samples shown together with the underly-

ing strata for illustrative purposes

The stratified sample generator divides the domain into a discrete number of strata and produces a
sample within each one of them. This generally leads to less sample clumping when compared to the
independent sampler, as well as better convergence. Due to internal storage costs, stratified samples
are only provided up to a certain dimension, after which independent sampling takes over.

Like the independent sampler, multicore and network renderings will generally produce different
images in subsequent runs due to the nondeterminism introduced by the operating system scheduler.

175

8. Plugin reference 8.11. Sample generators

8.11.3. Low discrepancy sampler (ldsampler)

Parameter Type Description

sampleCount integer Number of samples per pixel; should be a power of two (e.g.

1, 2, 4, 8, 16, etc.), or it will be rounded up to the next one

(Default: 4)

dimension integer Effective dimension, up to which low discrepancy samples

are provided. The number here is to be interpreted as the

number of subsequent 1D or 2D sample requests that can be

satisfied using “good” samples. Higher high values increase

both storage and computational costs. (Default: 4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the first 1024 points onto the first two

dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the first 1024 points onto the 32 and

33th dimension, which look almost identical. How-

ever, note that the points have been scrambled to re-

duce correlations between dimensions.

This plugin implements a simple hybrid sampler that combines aspects of a Quasi-Monte Carlo se-
quence with a pseudorandom number generator based on a technique proposed by Kollig and Keller
[28]. It is a good and fast general-purpose sample generator and therefore chosen as the default option
in Mitsuba. Some of the QMC samplers in the following pages can generate even better distributed
samples, but this comes at a higher cost in terms of performance.

Roughly, the idea of this sampler is that all of the individual 2D sample dimensions are first filled
using the same (0, 2)-sequence, which is then randomly scrambled and permuted using numbers
generated by a Mersenne Twister pseudorandom number generator [40]. Note that due to internal
storage costs, low discrepancy samples are only provided up to a certain dimension, after which in-
dependent sampling takes over. The name of this plugin stems from the fact that (0, 2) sequences
minimize the so-called star disrepancy, which is a quality criterion on their spatial distribution. By
now, the name has become slightly misleading since there are other samplers in Mitsuba that just as
much try to minimize discrepancy, namely the sobol and halton plugins.

Like the independent sampler, multicore and network renderings will generally produce different
images in subsequent runs due to the nondeterminism introduced by the operating system scheduler.

176

8. Plugin reference 8.11. Sample generators

8.11.4. Halton QMC sampler (halton)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

scramble integer This plugin can operate in one of three scrambling modes:

(i) When set to 0, the implementation will provide the

standard Halton sequence.

(ii) When set to -1, the implementation will compute a

scrambled variant of the Halton sequence based on

permutations by Faure [10], which has better equidis-

tribution properties in high dimensions.

(iii) When set to a value greater than one, a randompermu-

tation is chosen based on this number. This is useful

to break up temporally coherent noise when render-

ing the frames of an animation — in this case, simply

set the parameter to the current frame index.

Default: -1, i.e. use the Faure permutations. Note that per-

mutations rely on a precomputed table that consumes ap-

proximately 7 MiB of additional memory at run time.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Projection of the first 1024 points of the Faure-

scrambled Halton seq. onto the first two dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Projection of the first 1024 points of the Faure-

scrambled Halton seq. onto the 32th and 33th dim.

This plugin implements a Quasi-Monte Carlo (QMC) sample generator based on the Halton se-
quence. QMC number sequences are designed to reduce sample clumping across integration dimen-
sions, which can lead to a higher order of convergence in renderings. Because of the deterministic
character of the samples, errors will manifest as grid or moiré patterns rather than random noise, but
these diminish as the number of samples is increased.

The Halton sequence in particular provides a very high quality point set that unfortunately be-
comes increasingly correlated in higher dimensions. To ameliorate this problem, the Halton points

177

8. Plugin reference 8.11. Sample generators

are usually combined with a scrambling permutation, and this is also the default. Because everything
that happens inside this sampler is completely deterministic and independent of operating system
scheduling behavior, subsequent runs of Mitsuba will always compute the same image, and this even
holds when rendering with multiple threads and/or machines.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Aprojection of the first 1024 points of the originalHal-
ton sequence onto the first two dimensions, obtained

by setting scramble=0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the first 1024 points of the original
Halton sequence onto the 32th and 33th dimensions.

Note the strong correlation – a scrambled sequence is

usually preferred to avoid this problem.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the first 1024 points of a randomly

scrambled Halton sequence onto the first two dimen-

sions (scramble=1).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the first 1024 points of a randomly

scrambled Halton sequence onto the 32th and 33th di-

mensions.

By default, the implementation provides a scrambled variant of the Halton sequence based on
permutations by Faure [10] that has better equidistribution properties in high dimensions, but this
can be changed using the scramble parameter. Internally, the plugin uses a table of prime numbers

178

8. Plugin reference 8.11. Sample generators

to provide elements of the Halton sequence up to a dimension of 1024. Because of this upper bound,
the maximum path depth of the integrator must be limited (e.g. to 100), or rendering might fail with
the following error message: Lookup dimension exceeds the prime number table size! You may have to
reduce the ’maxDepth’ parameter of your integrator.

To support bucket-based renderings, the Halton sequence is internally enumerated using a scheme
proposed by Grünschloß et al. [12]; the implementation in Mitsuba is based on a Python script by
the authors of this paper.

Remarks:
• This sampler is incompatible withMetropolis Light Transport (all variants). It interoperates poorly

with Bidirectional Path Tracing and Energy Redistribution Path Tracing, hence these should not be

used together. The sobolQMC sequence is an alternative for the latter two cases, and ldsampler
works as well.

179

8. Plugin reference 8.11. Sample generators

8.11.5. Hammersley QMC sampler (hammersley)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

scramble integer This plugin can operate in one of three scrambling modes:

(i) When set to 0, the implementation will provide the

standard Hammersley sequence.

(ii) When set to -1, the implementation will compute

a scrambled variant of the Hammersley sequence

based on permutations by Faure [10], which has bet-

ter equidistribution properties in high dimensions.

(iii) When set to a value greater than one, a randompermu-

tation is chosen based on this number. This is useful

to break up temporally coherent noise when render-

ing the frames of an animation — in this case, simply

set the parameter to the current frame index.

Default: -1, i.e. use the Faure permutations. Note that per-

mutations rely on a precomputed table that consumes ap-

proximately 7 MiB of additional memory at run time.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Projection of the first 1024 points of the Faure-

scrambled sequence onto the first two dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Projection of the first 1024 points of the Faure-

scrambled sequence onto the 32th and 33th dim.

This plugin implements a Quasi-Monte Carlo (QMC) sample generator based on the Hammers-
ley sequence. QMC number sequences are designed to reduce sample clumping across integration
dimensions, which can lead to a higher order of convergence in renderings. Because of the determin-
istic character of the samples, errors will manifest as grid or moiré patterns rather than random noise,
but these diminish as the number of samples is increased.

The Hammerlsey sequence is closely related to the Halton sequence and yields a very high quality
point set that is slightly more regular (and has lower discrepancy), especially in the first few dimen-

180

8. Plugin reference 8.11. Sample generators

sions. As is the case with the Halton sequence, the points should be scrambled to reduce patterns
that manifest due due to correlations in higher dimensions. Please refer to the halton page for more
information on how this works.

Note that this sampler will cause odd-looking intermediate results when combined with rendering
techniques that trace paths starting at light source (e.g. ptracer)—these vanish by the time the
rendering process finishes.

Remarks:
• This sampler is incompatible withMetropolis Light Transport (all variants). It interoperates poorly

with Bidirectional Path Tracing and Energy Redistribution Path Tracing, hence these should not be

used together. The sobolQMC sequence is an alternative for the latter two cases, and ldsampler
works as well.

181

8. Plugin reference 8.11. Sample generators

8.11.6. Sobol QMC sampler (sobol)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

scramble integer This parameter can be used to set a scramble value to break

up temporally coherent noise patterns. For stills, this is ir-

relevant. When rendering an animation, simply set it to the

current frame index. (Default: 0)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the first 1024 points onto the first two

dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the first 1024 points onto the 32 and

33th dimension.

This plugin implements a Quasi-Monte Carlo (QMC) sample generator based on the Sobol se-
quence. QMC number sequences are designed to reduce sample clumping across integration dimen-
sions, which can lead to a higher order of convergence in renderings. Because of the deterministic
character of the samples, errors will manifest as grid or moiré patterns rather than random noise, but
these diminish as the number of samples is increased.

The Sobol sequence in particular provides a relatively good point set that can be computed ex-
tremely efficiently. One downside is the susceptibility to pattern artifacts in the generated image. To
minimize these artifacts, it is advisable to use a number of samples per pixel that is a power of two.

Because everything that happens inside this sampler is completely deterministic and independent
of operating system scheduling behavior, subsequent runs of Mitsuba will always compute the same
image, and this even holds when rendering with multiple threads and/or machines.

The plugin relies on a fast implementation of the Sobol sequence by Leonhard Grünschloß using
direction numbers provided by Joe and Kuo [24]. These direction numbers are given up to a dimen-
sion of 1024. Because of this upper bound, the maximum path depth of the integrator must be limited
(e.g. to 100), or rendering might fail with the following error message: Lookup dimension exceeds the
direction number table size! You may have to reduce the ’maxDepth’ parameter of your integrator.

Note that this sampler generates a (0, 2)-sequence in the first two dimensions, and therefore the
point plot shown in (a) happens to match the corresponding plots of ldsampler. In higher dimen-
sions, however, they behave rather differently.

182

8. Plugin reference 8.11. Sample generators

When this sampler is used to perform parallel block-based renderings, the sequence is internally
enumerated using a scheme proposed and implemented by Grünschloß et al. [12].

Remarks:
• This sampler is incompatible with Metropolis Light Transport (all variants).

183

8. Plugin reference 8.12. Films

8.12. Films

A film defines how conducted measurements are stored and converted into the final output file that
is written to disk at the end of the rendering process. Mitsuba comes with a few films that can write
to high and low dynamic range image formats (OpenEXR, JPEG or PNG), as well more scientifically
oriented data formats (e.g. MATLAB or Mathematica).

In the XML scene description language, a normal film configuration might look as follows

<scene version="0.4.5">
<!-- ... scene contents ... -->

<sensor type="... sensor type ...">
<!-- ... sensor parameters ... -->

<!-- Write to a high dynamic range EXR image -->
<film type="hdrfilm">

<!-- Specify the desired resolution (e.g. full HD) -->
<integer name="width" value="1920"/>
<integer name="height" value="1080"/>

<!-- Use a Gaussian reconstruction filter. For
details on these, refer to the next subsection -->

<rfilter type="gaussian"/>
</film>

</sensor>
</scene>

The film plugin should be instantiated nested inside a sensor declaration. Note how the output
filename is never specified—it is automatically inferred from the scene filename and can be manually
overridden by passing the configuration parameter -o to the mitsuba executable when rendering
from the command line.

184

8. Plugin reference 8.12. Films

8.12.1. High dynamic range film (hdrfilm)

Parameter Type Description

width, height integer Width and height of the camera sensor in pixels (Default:

768, 576)

fileFormat string Denotes the desired output file format. The options are

openexr (for ILM’s OpenEXR format), rgbe (for Greg

Ward’s RGBE format), or pfm (for the Portable Float Map

format) (Default: openexr)

pixelFormat string Specifies the desired pixel format for OpenEXR output im-

ages. The options are luminance, luminanceAlpha, rgb,
rgba, xyz, xyza, spectrum, and spectrumAlpha. In the

latter two cases, the number of written channels depends on

the value assigned to SPECTRUM_SAMPLES during compila-

tion (see Section 4 section for details) (Default: rgb)

componentFormat string Specifies the desired floating point component format used

for OpenEXR output. The options are float16, float32,
or uint32. (Default: float16)

cropOffsetX,
cropOffsetY,
cropWidth,
cropHeight

integer These parameters can optionally be provided to select a sub-

rectangle of the output. In this case, Mitsuba will only ren-

der the requested regions. (Default: Unused)

attachLog boolean Mitsuba can optionally attach the entire rendering log file

as a metadata field so that this information is permanently

saved. (Default: true, i.e. attach it)

banner boolean Include a small Mitsuba banner in the output image? (De-

fault: true)

highQualityEdges boolean If set to true, regions slightly outside of the film plane will

also be sampled. This may improve the image quality at the

edges, especially when using very large reconstruction fil-

ters. In general, this is not needed though. (Default: false,
i.e. disabled)

(Nested plugin) rfilter Reconstruction filter that should be used by the film. (De-

fault: gaussian, a windowed Gaussian filter)

This is the default film plugin that is used when none is explicitly specified. It stores the captured
image as a high dynamic range OpenEXR file and tries to preserve the rendering as much as possible
by not performing any kind of post processing, such as gamma correction—the output file will record
linear radiance values.

When writing OpenEXR files, the film will either produce a luminance, luminance/alpha, RGB(A),
XYZ(A) tristimulus, or spectrum/spectrum-alpha-based bitmap having a float16, float32, or
uint32-based internal representation based on the chosen parameters. The default configuration
is RGB with a float16 component format, which is appropriate for most purposes. Note that the
spectral output options only make sense when using a custom build of Mitsuba that has spectral
rendering enabled. This is not the case for the downloadable release builds.

185

8. Plugin reference 8.12. Films

The plugin can also write RLE-compressed files in the Radiance RGBE format pioneered by Greg
Ward (set fileFormat=rgbe), as well as the Portable Float Map format (set fileFormat=pfm). In
the former case, the componentFormat and pixelFormat parameters are ignored, and the output
is “float8”-compressed RGB data. PFM output is restricted to float32-valued images using the
rgb or luminance pixel formats. Due to the superior accuracy and adoption of OpenEXR, the use
of these two alternative formats is discouraged however.

When RGB(A) output is selected, the measured spectral power distributions are converted to linear
RGB based on the CIE 1931 XYZ color matching curves and the ITU-R Rec. BT.709-3 primaries with
a D65 white point.

<film type="hdrfilm">
<string name="pixelFormat" value="rgba"/>
<integer name="width" value="1920"/>
<integer name="height" value="1080"/>
<boolean name="banner" value="false"/>

</film>

Listing 38: Instantiation of a film that writes a full-HD RGBA OpenEXR file without the Mitsuba banner

Render-time annotations:

The ldrfilm and hdrfilm plugins support a feature referred to as render-time annotations to facil-
itate record keeping. Annotations are used to embed useful information inside a rendered image so
that this information is later available to anyone viewing the image. Exemplary uses of this feature
might be to store the frame or take number, rendering time, memory usage, camera parameters, or
other relevant scene information.

Currently, two different types are supported: a metadata annotation creates an entry in the meta-
data table of the image, which is preferable when the image contents should not be touched. Alterna-
tively, a label annotation creates a line of text that is overlaid on top of the image. Note that this is
only visible when opening the output file (i.e. the line is not shown in the interactive viewer). The
syntax of this looks as follows:

<film type="hdrfilm">
<!-- Create a new metadata entry 'my_tag_name' and set it to the

value 'my_tag_value' -->
<string name="metadata['key_name']" value="Hello!"/>

<!-- Add the label 'Hello' at the image position X=50, Y=80 -->
<string name="label[50, 80]" value="Hello!"/>

</film>

The value="..." argument may also include certain keywords that will be evaluated and substi-
tuted when the rendered image is written to disk. A list all available keywords is provided in Table 6.

Apart from querying the render time, memory usage, and other scene-related information, it is
also possible to ‘paste’ an existing parameter that was provided to another plugin—for instance,the
the camera transform matrix would be obtained as $sensor[’toWorld’]. The name of the active
integrator plugin is given by $integrator[’type’], and so on. All of these can be mixed to build
larger fragments, as following example demonstrates. The result of this annotation is shown in Fig-
ure 40.

186

8. Plugin reference 8.12. Films

<string name="label[10, 10]" value="Integrator: $integrator['type'],
$film['width']x$film['height'], $sampler['sampleCount'] spp,
render time: $scene['renderTime'], memory: $scene['memUsage']"/>

Figure 40: A demonstration of the label annotation feature given the example string shown above.

$scene[’renderTime’] Image render time, use renderTimePrecise for more digits.
$scene[’memUsage’] Mitsuba memory usage19. Use memUsagePrecise for more digits.
$scene[’coreCount’] Number of local and remote cores working on the rendering job
$scene[’blockSize’] Block size used to parallelize up the rendering workload
$scene[’sourceFile’] Source file name
$scene[’destFile’] Destination file name
$integrator[’..’] Copy a named integrator parameter
$sensor[’..’] Copy a named sensor parameter
$sampler[’..’] Copy a named sampler parameter
$film[’..’] Copy a named film parameter

Table 6: A list of all special keywords supported by the annotation feature

187

8. Plugin reference 8.12. Films

8.12.2. Tiled high dynamic range film (tiledhdrfilm)

Parameter Type Description

width, height integer Width and height of the camera sensor in pixels (Default:

768, 576)

cropOffsetX,
cropOffsetY,
cropWidth,
cropHeight

integer These parameters can optionally be provided to select a sub-

rectangle of the output. In this case, Mitsuba will only ren-

der the requested regions. (Default: Unused)

pixelFormat string Specifies the desired pixel format for OpenEXR output im-

ages. The options are luminance, luminanceAlpha, rgb,
rgba, xyz, xyza, spectrum, and spectrumAlpha. In the

latter two cases, the number of written channels depends on

the value assigned to SPECTRUM_SAMPLES during compila-

tion (see Section 4 section for details) (Default: rgb)

componentFormat string Specifies the desired floating point component format used

for the output. The options are float16, float32, or
uint32 (Default: float16)

(Nested plugin) rfilter Reconstruction filter that should be used by the film. (De-

fault: gaussian, a windowed Gaussian filter)

This plugin implements a camera film that stores the captured image as a tiled high dynamic-range
OpenEXR file. It is very similar to hdrfilm, the main difference being that it does not keep the
rendered image in memory. Instead, image tiles are directly written to disk as they are being rendered,
which enables renderings of extremely large output images that would otherwise not fit into memory
(e.g. 100K×100K).

When the image can fit into memory, usage of this plugin is discouraged: due to the extra overhead
of tracking image tiles, the rendering process will be slower, and the output files also generally do not
compress as well as those produced by hdrfilm.

Based on the provided parameter values, the film will either write a luminance, luminance/al-
pha, RGB(A), XYZ(A) tristimulus, or spectrum/spectrum-alpha-based bitmap having a float16,
float32, or uint32-based internal representation. The default is RGB and float16. Note that the
spectral output options only make sense when using a custom compiled Mitsuba distribution that
has spectral rendering enabled. This is not the case for the downloadable release builds.

When RGB output is selected, the measured spectral power distributions are converted to linear
RGB based on the CIE 1931 XYZ color matching curves and the ITU-R Rec. BT.709 primaries with a
D65 white point.

Remarks:
• This film is only meant for command line-based rendering. When used with mtsgui, the preview
image will be black.

• This plugin is slower than hdrfilm, and therefore should only be used when the output image is

too large to fit into system memory.

188

8. Plugin reference 8.12. Films

8.12.3. Low dynamic range film (ldrfilm)

Parameter Type Description

width, height integer Camera sensor resolution in pixels (Default: 768, 576)

fileFormat integer The desired output file format: png or jpeg. (Default: png)

pixelFormat string Specifies the pixel format of the generated image. The op-

tions are luminance, luminanceAlpha, rgb or rgba for
PNG output and rgb or luminance for JPEG output.

tonemapMethod string Method used to tonemap recorded radiance values

(i) gamma: Exposure and gamma correction (default)

(ii) reinhard: Apply the the tonemapping technique by

Reinhard et al. [39] followd by gamma correction.

gamma float The gamma curve applied to correct the output image,

where the special value -1 indicates sRGB. (Default: -1)

exposure float When gamma tonemapping is active, this parameter speci-

fies an exposure factor in f-stops that is applied to the im-

age before gamma correction (scaling the radiance values

by 2 exposure). (Default: 0, i.e. do not change the exposure)

key float When reinhard tonemapping is active, this parameter in

(0, 1] specifies whether a low-key or high-key image is de-

sired. (Default: 0.18, corresponding to a middle-grey)

burn float When reinhard tonemapping is active, this parameter in

[0, 1] specifies howmuch highlights can burn out. (Default:

0, i.e. map all luminance values into the displayable range)

banner boolean Include a banner in the output image? (Default: true)

cropOffsetX,
cropOffsetY,
cropWidth,
cropHeight

integer These parameters can optionally be provided to select a sub-

rectangle of the output. In this case, Mitsuba will only ren-

der the requested regions. (Default: Unused)

highQualityEdges boolean If set to true, regions slightly outside of the film plane will

also be sampled. This may improve image quality at the

edges, but is not needed in general. (Default: false)

(Nested plugin) rfilter Reconstruction filter that should be used by the film. (De-

fault: gaussian, a windowed Gaussian filter)

This plugin implements a low dynamic range film that can write out 8-bit PNG and JPEG images
in various configurations. It provides basic tonemapping techniques to map recorded radiance values
into a reasonable displayable range. An alpha (opacity) channel can be written if desired. By default,
the plugin writes gamma-corrected PNG files using the sRGB color space and no alpha channel.

This film is a good choice when low dynamic range output is desired and the rendering setup can be
configured to capture the relevant portion of the dynamic range reliably enough so that the original
HDR data can safely be discarded. When this is not the case, it may be easier to use hdrfilm along
with the batch tonemapper (Section 5.4.1).

189

8. Plugin reference 8.12. Films

By default, the plugin assumes that no special tonemapping needs to be done and simply applies an
exposure multiplier and sRGB gamma curve to the recorded radiance values before converting them
to 8 bit. When the dynamic range varies greatly, it may be preferable to use the photographic tonemap-
ping technique by Reinhard et al. [39], which can be activated by setting tonemapMethod=reinhard.

Note that the interactive tonemapper that is available in the graphical user interface mtsgui in-
teroperates with this plugin. In particular, when saving the scene (File→Save), the currently active
tonemapper settings are automatically exported into the updated scene file.

The RGB values exported by this plugin correspond to the ITU-R Rec. BT. 709-3 primaries with
a D65 white point. When gamma is set to -1 (the default), the output is in the sRGB color space and
will display as intended on compatible devices.

Note that this plugin supports render-time annotations, which are described on page 186.

190

8. Plugin reference 8.12. Films

8.12.4. MATLAB / Mathematica film (mfilm)

Parameter Type Description

width, height integer Width and height of the sensor in pixels (Default: 1, 1)

cropOffsetX,
cropOffsetY,
cropWidth,
cropHeight

integer These parameters can optionally be provided to select a sub-

rectangle of the output. In this case, Mitsuba will only ren-

der the requested regions. (Default: Unused)

fileFormat string Specifies the desired output format; must be one of matlab
or mathematica. (Default: matlab)

digits integer Number of significant digits to be written (Default: 4)

variable string Name of the target variable (Default: "data")

pixelFormat string Specifies the desired pixel format of the generated image.

The options are luminance, luminanceAlpha, rgb, rgba,
spectrum, and spectrumAlpha. In the latter two cases,

the number of written channels depends on the value as-

signed to SPECTRUM_SAMPLES during compilation (see Sec-

tion 4 section for details) (Default: luminance)

highQualityEdges boolean If set to true, regions slightly outside of the film plane will

also be sampled. This may improve the image quality at the

edges, especially when using very large reconstruction fil-

ters. In general (andparticularly using the default boxfilter),

this is not needed though. (Default: false, i.e. disabled)

(Nested plugin) rfilter Reconstruction filter that should be used by the film. (De-

fault: box, a simple box filter)

(a) Importing and tonemapping an image inMathematica

This plugin provides a camera film that exports spectrum, RGB, XYZ, or luminance values as a
matrix to a MATLAB or Mathematica ASCII file. This is useful when running Mitsuba as simulation
step as part of a larger virtual experiment. It can also come in handy when verifying parts of the
renderer using an automated test suite.

191

8. Plugin reference 8.13. Reconstruction filters

8.13. Reconstruction filters

Image reconstruction filters are responsible for converting a series of radiance samples generated
jointly by the sampler and integrator into the final output image that will be written to disk at the
end of a rendering process. This section gives a brief overview of the reconstruction filters that are
available in Mitsuba. There is no universally superior filter, and the final choice depends on a trade-off
between sharpness, ringing, and aliasing, and computational efficiency.

Desireable properties of a reconstruction filter are that it sharply captures all of the details that
are displayable at the requested image resolution, while avoiding aliasing and ringing. Aliasing is
the incorrect leakage of high-frequency into low-frequency detail, and ringing denotes oscillation
artifacts near discontinuities, such as a light-shadow transiton.

Box filter (box): the fastest, but also about the worst possible reconstruction filter, since it is ex-
tremely prone to aliasing. It is included mainly for completeness, though some rare situations
may warrant its use.

Tent filter (tent): Simple tent, or triangle filter. This reconstruction filter never suffers from ringing
and usually causes less aliasing than a naive box filter. When rendering scenes with sharp bright-
ness discontinuities, this may be useful; otherwise, negative-lobed filters will be preferable (e.g.
Mitchell-Netravali or Lanczos Sinc)

Gaussian filter (gaussian): this is a windowed Gaussian filter with configurable standard deviation.
It produces pleasing results and never suffers from ringing, but may occasionally introduce too
much blurring. When no reconstruction filter is explicitly requested, this is the default choice
in Mitsuba.

Mitchell-Netravali filter (mitchell): Separable cubic spline reconstruction filter by Mitchell and
Netravali [32] This is often a good compromise between sharpness and ringing.
The plugin has two float-valued parameters named B and C that correspond to the two pa-
rameters in the original research paper. By default, these are set to the recommended value of
1/3, but can be tweaked if desired.

Catmull-Rom filter (catmullrom): This is a special version of the Mitchell-Netravali filter that has
the constants B and C adjusted to produce higher sharpness at the cost of increased susceptibil-
ity to ringing.

Lanczos Sinc filter (lanczos): This is a windowed version of the theoretically optimal low-pass fil-
ter. It is generally one of the best available filters in terms of producing sharp high-quality
output. Its main disadvantage is that it produces strong ringing around discontinuities, which
can become a serious problem when rendering bright objects with sharp edges (for instance, a
directly visible light source will have black fringing artifacts around it). This is also the compu-
tationally slowest reconstruction filter.
This plugin has an integer-valued parameter named lobes, that sets the desired number of
filter side-lobes. The higher, the closer the filter will approximate an optimal low-pass filter, but
this also increases the susceptibility to ringing. Values of 2 or 3 are common (3 is the default).

The next section contains a series of comparisons between reconstruction filters. In the first case,
a very high-resolution input image (corresponding to a hypothetical radiance field incident at the
camera) is reconstructed at low resolutions.

192

8. Plugin reference 8.13. Reconstruction filters

8.13.1. Reconstruction filter comparison 1: frequency attenuation and aliasing
Here, a high frequency function is reconstructed at low resolutions. A good filter (e.g. Lanczos Sinc)
will capture all oscillations that are representable at the desired resolution and attenuate the remainder
to a uniform gray. The filters are ordered by their approximate level of success at this benchmark.

(a) A high resolution input image whose frequency

decreases towards the borders. If you are looking

at this on a computer, you may have to zoom in.

(a) Box filter (b) Tent filter (c) Gaussian filter

(d) Mitchell-Netravali filter (e) Catmull-Rom filter (f) Lanczos Sinc filter

193

8. Plugin reference 8.13. Reconstruction filters

8.13.2. Reconstruction filter comparison 2: ringing

This comparison showcases the ringing artifacts that can occur when the rendered image contains
extreme and discontinuous brightness transitions. The Mitchell-Netravali, Catmull-Rom, and Lanc-
zos Sinc filters are affected by this problem. Note the black fringing around the light source in the
cropped Cornell box renderings below.

(a) Box filter (b) Tent filter

(c) Gaussian filter (d) Mitchell-Netravali filter

(e) Catmull-Rom filter (f) Lanczos Sinc filter

8.13.3. Specifying a reconstruction filter

To specify a reconstruction filter, it must be instantiated inside the sensor’s film. Below is an example:

<scene version="0.4.5">
<!-- ... scene contents ... -->

<sensor type="... sensor type ...">
<!-- ... sensor parameters ... -->

<film type="... film type ...">
<!-- ... film parameters ... -->

<!-- Instantiate a Lanczos Sinc filter with two lobes -->
<rfilter type="lanczos">

<integer name="lobes" value="2"/>
</rfilter>

</film>
</sensor>

</scene>

194

10. Coding style

Part II.
Development guide
This chapter and the subsequent ones will provide an overview of the the coding conventions and
general architecture of Mitsuba. You should only read them if if you wish to interface with the API
in some way (e.g. by developing your own plugins). The coding style section is only relevant if you
plan to submit patches that are meant to become part of the main codebase.

9. Code structure

Mitsuba is split into four basic support libraries:

• The core library (libcore) implements basic functionality such as cross-platform file and
bitmap I/O, data structures, scheduling, as well as logging and plugin management.

• The rendering library (librender) contains abstractions needed to load and represent scenes
containing light sources, shapes, materials, and participating media.

• The hardware acceleration library (libhw) implements a cross-platform display library, an
object-oriented OpenGL wrapper, as well as support for rendering interactive previews of scenes.

• Finally, the bidirectional library (libbidir) contains a support layer that is used to implement
bidirectional rendering algorithms such as Bidirectional Path Tracing and Metropolis Light
Transport.

A detailed reference of these APIs is available at http://www.mitsuba-renderer.org/api. The
next sections present a few basic examples to get familiar with them.

10. Coding style

Indentation: The Mitsuba codebase uses tabs for indentation, which expand to four spaces. Please
make sure that you configure your editor this way, otherwise the source code layout will look garbled.

Placement of braces: Opening braces should be placed on the same line to make the best use of
vertical space, i.e.

if (x > y) {
x = y;

}

Placement of spaces: Placement of spaces follows K&R, e.g.

if (x == y) {
..

} else if (x > y) {
..

195

http://www.mitsuba-renderer.org/api

10. Coding style 10. Coding style

} else {
..

}

rather than things like this

if (x==y){
}
..

Name format: Names are always written in camel-case. Classes and structures start with a capital
letter, whereas member functions and attributes start with a lower-case letter. Attributes of classes
have the prefix m_. Here is an example:

class MyClass {
public:

MyClass(int value) : m_value(value) { }

inline void setValue(int value) { m_value = value; }
inline int getValue() const { return m_value; }

private:
int m_value;

};

Enumerations: For clarity, both enumerations types and entries start with a capital E, e.g.

enum ETristate {
ENo = 0,
EYes,
EMaybe

};

Constant methods and parameters: Declare member functions and their parameters as const
whenever this is possible and properly conveys the semantics.

Inline methods: Always inline trivial pieces of code, such as getters and setters.

Documentation: Headers files should contain Doxygen-compatible documentation. It is also a
good idea to add comments to a .cppfile to explain subtleties of an implemented algorithm. However,
anything pertaining to the API should go into the header file.

Boost: Use the boost libraries whenever this helps to save time or write more compact code.

Classes vs structures: In Mitsuba, classes usually go onto the heap, whereas structures may be allo-
cated both on the stack and the heap.

Classes that derive from Object implement a protected virtual deconstructor, which explicitly
prevents them from being allocated on the stack. The only way they can be deallocated is using the
built-in reference counting. This is done using the ref<> template, e.g.

196

10. Coding style 10. Coding style

if (..) {
ref<MyClass> instance = new MyClass();
instance->doSomething()

} // reference expires, instance will be deallocated

Separation of plugins: Mitsuba encourages that plugins are only used via the generic interface they
implement. You will find that almost all plugins (e.g. emitters) don’t actually provide a header file,
hence they can only be accessed using the generic Emitter interface they implement. If any kind of
special interaction between plugins is needed, this is usually an indication that the generic interface
should be extended to accomodate this.

197

11. Designing a custom integrator plugin 11. Designing a custom integrator plugin

11. Designing a custom integrator plugin

Suppose you want to design a custom integrator to render scenes in Mitsuba. There are two general
ways you can do this, and which one you should take mostly depends on the characteristics of your
particular integrator.

The framework distinguishes between sampling-based integrators and generic ones. A sampling-
based integrator is able to generate (usually unbiased) estimates of the incident radiance along a spec-
ified rays, and this is done a large number of times to render a scene. A generic integrator is more like
a black box, where no assumptions are made on how the the image is created. For instance, the VPL
renderer uses OpenGL to rasterize the scene using hardware acceleration, which certainly doesn’t fit
into the sampling-based pattern. For that reason, it must be implemented as a generic integrator.

Generally, if you can package up your code to fit into the SamplingIntegrator interface, you
should do it, because you’ll get parallelization and network rendering essentially for free. This is done
by transparently sending instances of your integrator class to all participating cores and assigning
small image blocks for each one to work on. Also, sampling-based integrators can be nested within
some other integrators, such as an irradiance cache or an adaptive integrator. This cannot be done
with generic integrators due to their black-box nature. Note that it is often still possible to parallelize
generic integrators, but this involves significantly more work.

In this section, we’ll design a rather contrived sampling-based integrator, which renders a monochro-
matic image of your scene, where the intensity denotes the distance to the camera. But to get a feel
for the overall framework, we’ll start with an even simpler one, that just renders a solid-color image.

11.1. Basic implementation

In Mitsuba’s src/integrators directory, create a file named myIntegrator.cpp.

#include <mitsuba/render/scene.h>

MTS_NAMESPACE_BEGIN

class MyIntegrator : public SamplingIntegrator {
public:

MTS_DECLARE_CLASS()
};

MTS_IMPLEMENT_CLASS_S(MyIntegrator, false, SamplingIntegrator)
MTS_EXPORT_PLUGIN(MyIntegrator, "A contrived integrator");
MTS_NAMESPACE_END

The scene.h header file contains all of the dependencies we’ll need for now. To avoid conflicts with
other libraries, the whole framework is located in a separate namespace named mitsuba, and the
lines starting with MTS_NAMESPACE ensure that our integrator is placed there as well.

The two lines starting with MTS_DECLARE_CLASS and MTS_IMPLEMENT_CLASS ensure that this
class is recognized as a native Mitsuba class. This is necessary to get things like run-time type infor-
mation, reference counting, and serialization/unserialization support. Let’s take a look at the second
of these lines, because it contains several important pieces of information:

The suffix S in MTS_IMPLEMENT_CLASS_S specifies that this is a serializable class, which means
that it can be sent over the network or written to disk and later restored. That also implies that certain
methods need to be provided by the implementation — we’ll add those in a moment.

198

11. Designing a custom integrator plugin 11.1. Basic implementation

The three following parameters specify the name of this class (MyIntegrator), the fact that it is
not an abstract class (false), and the name of its parent class (SamplingIntegrator).

Just below, you can see a line that starts with MTS_EXPORT_PLUGIN. As the name suggests, this line
is only necessary for plugins, and it ensures that the specified class (MyIntegrator) is what you want
to be instantiated when somebody loads this plugin. It is also possible to supply a short descriptive
string.

Let’s add an instance variable and a constructor:

public:
/// Initialize the integrator with the specified properties
MyIntegrator(const Properties &props) : SamplingIntegrator(props) {

Spectrum defaultColor;
defaultColor.fromLinearRGB(0.2f, 0.5f, 0.2f);
m_color = props.getSpectrum("color", defaultColor);

}

private:
Spectrum m_color;

This code fragment sets up a default color (a light shade of green), which can be overridden from
the scene file. For example, one could instantiate the integrator from an XML document like this

<integrator type="myIntegrator">
<spectrum name="color" value="1.0"/>

</integrator>

in which case white would take preference.

Next, we need to add serialization and unserialization support:

/// Unserialize from a binary data stream
MyIntegrator(Stream *stream, InstanceManager *manager)
: SamplingIntegrator(stream, manager) {
m_color = Spectrum(stream);

}

/// Serialize to a binary data stream
void serialize(Stream *stream, InstanceManager *manager) const {

SamplingIntegrator::serialize(stream, manager);
m_color.serialize(stream);

}

This makes use of a stream abstraction similar in style to Java. A stream can represent various things,
such as a file, a console session, or a network communication link. Especially when dealing with
multiple machines, it is important to realize that the machines may use different binary represen-
tations related to their respective endianness. To prevent issues from arising, the Stream interface
provides many methods for writing and reading small chunks of data (e.g. writeShort, readFloat,
..), which automatically perform endianness translation. In our case, the Spectrum class already pro-
vides serialization/unserialization support, so we don’t really have to do anything.

Note that it is crucial that your code calls the serialization and unserialization implementations of
the superclass, since it will also read/write some information to the stream.

199

11. Designing a custom integrator plugin 11.1. Basic implementation

We haven’t used the manager parameter yet, so here is a quick overview of what it does: if many
cases, we don’t just want to serialize a single class, but a whole graph of objects. Some may be refer-
enced many times from different places, and potentially there are even cycles. If we just naively called
the serialization and unserialization implementation of members recursively within each class, we’d
waste much bandwitdth and potentially end up stuck in an infinite recursion.

This is where the instance manager comes in. Every time you want to serialize a heap-allocated
object (suppose it is of type SomeClass), instead of calling its serialize method, write

ref<SomeClass> myObject = ...;
manager->serialize(stream, myObject.get());

Later, to unserialize the object from a stream again, write

ref<SomeClass> myObject = static_cast<SomeClass *>(manager->getInstance(stream));

Behind the scenes, the object manager adds annotations to the data stream, which ensure that you
will end up with the exact same reference graph on the remote side, while only one copy of every object
is transmitted and no infinite recursion can occur. But we digress – let’s go back to our integrator.

The last thing to add is a function, which returns an estimate for the radiance along a ray differential:
here, we simply return the stored color

/// Query for an unbiased estimate of the radiance along <tt>r</tt>
Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {

return m_color;
}

Let’s try building the plugin: edit the SConscript file in the integrator directory, and add the
following line before the last line containing ”Export(’plugins’)”:

plugins += env.SharedLibrary('myIntegrator', ['myIntegrator.cpp'])

After calling, scons, you should be able to use your new integrator in parallel rendering jobs and
you’ll get something like this:

200

11. Designing a custom integrator plugin 11.2. Visualizing depth

That is admittedly not very exciting — so let’s do some actual computation.

11.2. Visualizing depth

Add an instance variable Float m_maxDist; to the implementation. This will store the maximum
distance from the camera to any object, which is needed to map distances into the [0, 1] range. Note
the upper-case Float— this means that either a single- or a double-precision variable is substituted
based the compilation flags. This variable constitutes local state, thus it must not be forgotten in the
serialization- and unserialization routines: append

m_maxDist = stream->readFloat();

and

stream->writeFloat(m_maxDist);

to the unserialization constructor and the serializemethod, respectively.
We’ll conservatively bound the maximum distance by measuring the distance to all corners of the

bounding box, which encloses the scene. To avoid having to do this every time Li() is called, we can
override the preprocess function:

/// Preprocess function -- called on the initiating machine
bool preprocess(const Scene *scene, RenderQueue *queue,

const RenderJob *job, int sceneResID, int cameraResID,
int samplerResID) {

SamplingIntegrator::preprocess(scene, queue, job, sceneResID,
cameraResID, samplerResID);

const AABB &sceneAABB = scene->getAABB();
/* Find the camera position at t=0 seconds */

201

11. Designing a custom integrator plugin 11.2. Visualizing depth

Point cameraPosition = scene->getSensor()->getWorldTransform()->eval(0).
transformAffine(Point(0.0f));

m_maxDist = - std::numeric_limits<Float>::infinity();

for (int i=0; i<8; ++i)
m_maxDist = std::max(m_maxDist,

(cameraPosition - sceneAABB.getCorner(i)).length());

return true;
}

The bottom of this function should be relatively self-explanatory. The numerous arguments at the
top are related to the parallelization layer, which will be considered in more detail in the next section.
Briefly, the render queue provides synchronization facilities for render jobs (e.g. one can wait for a
certain job to terminate). And the integer parameters are global resource identifiers. When a network
render job runs, many associated pieces of information (the scene, the camera, etc.) are wrapped into
global resource chunks shared amongst all nodes, and these can be referenced using such identifiers.

One important aspect of the preprocess function is that it is executed on the initiating node and
before any of the parallel rendering begins. This can be used to compute certain things only once.
Any information updated here (such as m_maxDist) will be forwarded to the other nodes before the
rendering begins.

Now, replace the body of the Limethod with

if (rRec.rayIntersect(r)) {
Float distance = rRec.its.t;
return Spectrum(1.0f - distance/m_maxDist) * m_color;

}
return Spectrum(0.0f);

and the distance renderer is done!

There are a few more noteworthy details: first of all, the “usual” way to intersect a ray against the scene
actually works like this:

Intersection its;

202

11. Designing a custom integrator plugin 11.3. Nesting

Ray ray = ...;
if (scene->rayIntersect(ray, its)) {

/* Do something with the intersection stored in 'its' */
}

As you can see, we did something slightly different in the distance renderer fragment above (we called
RadianceQueryRecord::rayIntersect() on the supplied parameter rRec), and the reason for
this is nesting.

11.3. Nesting

The idea of of nesting is that sampling-based rendering techniques can be embedded within each
other for added flexibility: for instance, one might concoct a 1-bounce indirect rendering technique
complete with irradiance caching and adaptive integration simply by writing the following into a
scene XML file:

<!-- Adaptively integrate using the nested technique -->
<integrator type="adaptive">

<!-- Irradiance caching + final gathering with the nested technique -->
<integrator type="irrcache">

<!-- Simple direct illumination technique -->
<integrator type="direct">

</integrator>
</integrator>

To support this kind of complex interaction, some information needs to be passed between the inte-
grators, and the RadianceQueryRecord parameter of the function SamplingIntegrator::Li is
used for this.

This brings us back to the odd way of computing an intersection a moment ago: the reason why
we didn’t just do this by calling scene->rayIntersect() is that our technique might actually be
nested within a parent technique, which has already computed this intersection. To avoid wasting
resources, the function rRec.rayIntersect first determines whether an intersection record has
already been provided. If yes, it does nothing. Otherwise, it takes care of computing one.

The radiance query record also lists the particular types of radiance requested by the parent inte-
grator – your implementation should respect these as much as possible. Your overall code might for
example be structured like this:

Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {
Spectrum result;
if (rRec.type & RadianceQueryRecord::EEmittedRadiance) {
// Emitted surface radiance contribution was requested
result += ...;

}
if (rRec.type & RadianceQueryRecord::EDirectRadiance) {
// Direct illumination contribution was requested
result += ...;

}
...
return result;

}

203

12. Parallelization layer 12. Parallelization layer

12. Parallelization layer

Mitsuba is built on top of a flexible parallelization layer, which spreads out various types of compu-
tation over local and remote cores. The guiding principle is that if an operation can potentially take
longer than a few seconds, it ought to use all the cores it can get.

Here, we will go through a basic example, which will hopefully provide sufficient intuition to realize
more complex tasks. To obtain good (i.e. close to linear) speedups, the parallelization layer depends
on several key assumptions of the task to be parallelized:

• The task can easily be split up into a discrete number of work units, which requires a negligible
amount of computation.

• Each work unit is small in footprint so that it can easily be transferred over the network or
shared memory.

• A work unit constitutes a significant amount of computation, which by far outweighs the cost
of transmitting it to another node.

• The work result obtained by processing a work unit is again small in footprint, so that it can
easily be transferred back.

• Merging all work results to a solution of the whole problem requires a negligible amount of
additional computation.

This essentially corresponds to a parallel version of Map (one part of Map&Reduce) and is ideally
suited for most rendering workloads.

The example we consider here computes a ROT13 “encryption” of a string, which most certainly
violates the “significant amount of computation” assumption. It was chosen due to the inherent par-
allelism and simplicity of this task. While of course over-engineered to the extreme, the example
hopefully communicates how this framework might be used in more complex scenarios.

We will implement this program as a plugin for the utility launcher mtsutil, which frees us from
having to write lots of code to set up the framework, prepare the scheduler, etc.

We start by creating the utility skeleton file src/utils/rot13.cpp:

#include <mitsuba/render/util.h>

MTS_NAMESPACE_BEGIN

class ROT13Encoder : public Utility {
public:

int run(int argc, char **argv) {
cout << "Hello world!" << endl;
return 0;

}

MTS_DECLARE_UTILITY()
};

MTS_EXPORT_UTILITY(ROT13Encoder, "Perform a ROT13 encryption of a string")
MTS_NAMESPACE_END

204

12. Parallelization layer 12. Parallelization layer

The file must also be added to the build system: insert the line

plugins += env.SharedLibrary('rot13', ['rot13.cpp'])

into the utils/SConscript file. After compiling using scons, the mtsutil binary should auto-
matically pick up your new utility plugin:

$ mtsutil
..
The following utilities are available:

addimages Generate linear combinations of EXR images
rot13 Perform a ROT13 encryption of a string

It can be executed as follows:

$ mtsutil rot13
2010-08-16 18:38:27 INFO main [src/mitsuba/mtsutil.cpp:276] Mitsuba version 0.1.1,

Copyright (c) 2010 Wenzel Jakob
2010-08-16 18:38:27 INFO main [src/mitsuba/mtsutil.cpp:350] Loading utility "
rot13" ..

Hello world!

Our approach for implementing distributed ROT13 will be to treat each character as an indpendent
work unit. Since the ordering is lost when sending out work units, we must also include the position
of the character in both the work units and the work results.

All of the relevant interfaces are contained in include/mitsuba/core/sched.h. For reference,
here are the interfaces of WorkUnit and WorkResult:

/**
* Abstract work unit. Represents a small amount of information
* that encodes part of a larger processing task.
*/
class MTS_EXPORT_CORE WorkUnit : public Object {
public:

/// Copy the content of another work unit of the same type
virtual void set(const WorkUnit *workUnit) = 0;

/// Fill the work unit with content acquired from a binary data stream
virtual void load(Stream *stream) = 0;

/// Serialize a work unit to a binary data stream
virtual void save(Stream *stream) const = 0;

/// Return a string representation
virtual std::string toString() const = 0;

MTS_DECLARE_CLASS()
protected:

/// Virtual destructor
virtual ~WorkUnit() { }

};
/**
* Abstract work result. Represents the information that encodes

205

12. Parallelization layer 12. Parallelization layer

* the result of a processed <tt>WorkUnit</tt> instance.
*/
class MTS_EXPORT_CORE WorkResult : public Object {
public:

/// Fill the work result with content acquired from a binary data stream
virtual void load(Stream *stream) = 0;

/// Serialize a work result to a binary data stream
virtual void save(Stream *stream) const = 0;

/// Return a string representation
virtual std::string toString() const = 0;

MTS_DECLARE_CLASS()
protected:

/// Virtual destructor
virtual ~WorkResult() { }

};

In our case, the WorkUnit implementation then looks like this:

class ROT13WorkUnit : public WorkUnit {
public:

void set(const WorkUnit *workUnit) {
const ROT13WorkUnit *wu =

static_cast<const ROT13WorkUnit *>(workUnit);
m_char = wu->m_char;
m_pos = wu->m_pos;

}

void load(Stream *stream) {
m_char = stream->readChar();
m_pos = stream->readInt();

}

void save(Stream *stream) const {
stream->writeChar(m_char);
stream->writeInt(m_pos);

}

std::string toString() const {
std::ostringstream oss;
oss << "ROT13WorkUnit[" << endl

<< " char = '" << m_char << "'," << endl
<< " pos = " << m_pos << endl
<< "]";

return oss.str();
}

inline char getChar() const { return m_char; }
inline void setChar(char value) { m_char = value; }
inline int getPos() const { return m_pos; }

206

12. Parallelization layer 12. Parallelization layer

inline void setPos(int value) { m_pos = value; }

MTS_DECLARE_CLASS()
private:

char m_char;
int m_pos;

};

MTS_IMPLEMENT_CLASS(ROT13WorkUnit, false, WorkUnit)

The ROT13WorkResult implementation is not reproduced since it is almost identical (except that it
doesn’t need the set method). The similarity is not true in general: for most algorithms, the work
unit and result will look completely different.

Next, we need a class, which does the actual work of turning a work unit into a work result (a
subclass of WorkProcessor). Again, we need to implement a range of support methods to enable
the various ways in which work processor instances will be submitted to remote worker nodes and
replicated amongst local threads.

class ROT13WorkProcessor : public WorkProcessor {
public:

/// Construct a new work processor
ROT13WorkProcessor() : WorkProcessor() { }

/// Unserialize from a binary data stream (nothing to do in our case)
ROT13WorkProcessor(Stream *stream, InstanceManager *manager)

: WorkProcessor(stream, manager) { }

/// Serialize to a binary data stream (nothing to do in our case)
void serialize(Stream *stream, InstanceManager *manager) const {
}

ref<WorkUnit> createWorkUnit() const {
return new ROT13WorkUnit();

}

ref<WorkResult> createWorkResult() const {
return new ROT13WorkResult();

}

ref<WorkProcessor> clone() const {
return new ROT13WorkProcessor(); // No state to clone in our case

}

/// No internal state, thus no preparation is necessary
void prepare() { }

/// Do the actual computation
void process(const WorkUnit *workUnit, WorkResult *workResult,

const bool &stop) {
const ROT13WorkUnit *wu

= static_cast<const ROT13WorkUnit *>(workUnit);
ROT13WorkResult *wr = static_cast<ROT13WorkResult *>(workResult);

207

12. Parallelization layer 12. Parallelization layer

wr->setPos(wu->getPos());
wr->setChar((std::toupper(wu->getChar()) - 'A' + 13) % 26 + 'A');

}
MTS_DECLARE_CLASS()

};
MTS_IMPLEMENT_CLASS_S(ROT13WorkProcessor, false, WorkProcessor)

Since our work processor has no state, most of the implementations are rather trivial. Note the stop
field in the process method. This field is used to abort running jobs at the users requests, hence it
is a good idea to periodically check its value during lengthy computations.

Finally, we need a so-called parallel process instance, which is responsible for creating work units
and stitching work results back into a solution of the whole problem. The ROT13 implementation
might look as follows:

class ROT13Process : public ParallelProcess {
public:

ROT13Process(const std::string &input) : m_input(input), m_pos(0) {
m_output.resize(m_input.length());

}

ref<WorkProcessor> createWorkProcessor() const {
return new ROT13WorkProcessor();

}

std::vector<std::string> getRequiredPlugins() {
std::vector<std::string> result;
result.push_back("rot13");
return result;

}

EStatus generateWork(WorkUnit *unit, int worker /* unused */) {
if (m_pos >= (int) m_input.length())

return EFailure;
ROT13WorkUnit *wu = static_cast<ROT13WorkUnit *>(unit);

wu->setPos(m_pos);
wu->setChar(m_input[m_pos++]);

return ESuccess;
}

void processResult(const WorkResult *result, bool cancelled) {
if (cancelled) // indicates a work unit, which was

return; // cancelled partly through its execution
const ROT13WorkResult *wr =

static_cast<const ROT13WorkResult *>(result);
m_output[wr->getPos()] = wr->getChar();

}

inline const std::string &getOutput() {
return m_output;

}

208

12. Parallelization layer 12. Parallelization layer

MTS_DECLARE_CLASS()
public:

std::string m_input;
std::string m_output;
int m_pos;

};
MTS_IMPLEMENT_CLASS(ROT13Process, false, ParallelProcess)

The generateWork method produces work units until we have moved past the end of the string,
after which it returns the status code EFailure. Note the method getRequiredPlugins(): this
is necessary to use the utility across machines. When communicating with another node, it ensures
that the remote side loads the ROT13* classes at the right moment.

To actually use the ROT13 encoder, we must first launch the newly created parallel process from
the main utility function (the ‘Hello World’ code we wrote earlier). We can adapt it as follows:

int run(int argc, char **argv) {
if (argc < 2) {

cout << "Syntax: mtsutil rot13 <text>" << endl;
return -1;

}

ref<ROT13Process> proc = new ROT13Process(argv[1]);
ref<Scheduler> sched = Scheduler::getInstance();

/* Submit the encryption job to the scheduler */
sched->schedule(proc);

/* Wait for its completion */
sched->wait(proc);

cout << "Result: " << proc->getOutput() << endl;

return 0;
}

After compiling everything using scons, a simple example involving the utility would be to encode
a string (e.g. SECUREBYDESIGN), while forwarding all computation to a network machine. (-p0
disables all local worker threads). Adding a verbose flag (-v) shows some additional scheduling
information:

$ mtsutil -vc feynman -p0 rot13 SECUREBYDESIGN
2010-08-17 01:35:46 INFO main [src/mitsuba/mtsutil.cpp:201] Mitsuba version 0.1.1,

Copyright (c) 2010 Wenzel Jakob
2010-08-17 01:35:46 INFO main [SocketStream] Connecting to "feynman:7554"
2010-08-17 01:35:46 DEBUG main [Thread] Spawning thread "net0_r"
2010-08-17 01:35:46 DEBUG main [RemoteWorker] Connection to "feynman" established
(2 cores).

2010-08-17 01:35:46 DEBUG main [Scheduler] Starting ..
2010-08-17 01:35:46 DEBUG main [Thread] Spawning thread "net0"
2010-08-17 01:35:46 INFO main [src/mitsuba/mtsutil.cpp:275] Loading utility "
rot13" ..

209

12. Parallelization layer 12. Parallelization layer

2010-08-17 01:35:46 DEBUG main [Scheduler] Scheduling process 0: ROT13Process[
unknown]..

2010-08-17 01:35:46 DEBUG main [Scheduler] Waiting for process 0
2010-08-17 01:35:46 DEBUG net0 [Scheduler] Process 0 has finished generating work
2010-08-17 01:35:46 DEBUG net0_r[Scheduler] Process 0 is complete.
Result: FRPHEROLQRFVTA
2010-08-17 01:35:46 DEBUG main [Scheduler] Pausing ..
2010-08-17 01:35:46 DEBUG net0 [Thread] Thread "net0" has finished
2010-08-17 01:35:46 DEBUG main [Scheduler] Stopping ..
2010-08-17 01:35:46 DEBUG main [RemoteWorker] Shutting down
2010-08-17 01:35:46 DEBUG net0_r[Thread] Thread "net0_r" has finished

210

13. Python integration 13. Python integration

13. Python integration

A recent feature of Mitsuba is a Python interface to the renderer API. While the interface is still
limited at this point, it can already be used for many useful purposes. To access the API, start your
Python interpreter and enter

import mitsuba

Mac OS: For this to work on MacOS X, you will first have to run the “Apple Menu→Command-line
access” menu item from within Mitsuba. In the unlikely case that you run into shared library loading
issues (this is taken care of by default), you may have to set the LD_LIBRARY_PATH environment
variable before starting Python so that it points to where the Mitsuba libraries are installed (e.g. the
Mitsuba.app/Contents/Frameworks directory).

When Python crashes directly after the import mitsuba statement, make sure that Mitsuba is
linked against the right Python distribution (i.e. matching the python binary you are using). For
e.g. Python 2.7, can be done by adjusting the PYTHON27INCLUDE and PYTHON27LIBDIR variables in
config.py. For other versions, adjust the numbers accordingly.

Windows and Linux: On Windows and non-packaged Linux builds, you may have to explicitly
specify the required extension search path before issuing the import command, e.g.:

import os, sys

Specify the extension search path on Linux/Windows (may vary depending on your
setup. If you compiled from source, 'path-to-mitsuba-directory' should be the
'dist' subdirectory)

NOTE: On Windows, specify these paths using FORWARD slashes (i.e. '/' instead of
'\' to avoid pitfalls with string escaping)

Configure the search path for the Python extension module
sys.path.append('path-to-mitsuba-directory/python/<python version, e.g. 2.7>')

Ensure that Python will be able to find the Mitsuba core libraries
os.environ['PATH'] = 'path-to-mitsuba-directory' + os.pathsep + os.environ['PATH']

import mitsuba

In rare cases when running on Linux, it may also be necessary to set the LD_LIBRARY_PATH environ-
ment variable before starting Python so that it points to where the Mitsuba core libraries are installed.

For an overview of the currently exposed API subset, please refer to the following page: http:
//www.mitsuba-renderer.org/api/group__libpython.html.

13.0.1. Accessing signatures in an interactive Python shell

The plugin exports comprehensive Python-style docstrings, hence the following is an alternative and
convenient way of getting information on classes, function, or entire namespaces when running an
interactive Python shell.

211

http://www.mitsuba-renderer.org/api/group__libpython.html
http://www.mitsuba-renderer.org/api/group__libpython.html

13. Python integration 13.1. Basics

>>> help(mitsuba.core.Bitmap) # (can be applied to namespaces, classes, functions,
etc.)

class Bitmap(Object)
| Method resolution order:
| Bitmap
| Object
| Boost.Python.instance
| __builtin__.object
|
| Methods defined here:
| __init__(...)
| __init__((object)arg1, (EPixelFormat)arg2, (EComponentFormat)arg3, (
Vector2i)arg4) -> None :
| C++ signature :
| void __init__(_object*,mitsuba::Bitmap::EPixelFormat,mitsuba::
Bitmap::EComponentFormat,mitsuba::TVector2<int>)
|
| __init__((object)arg1, (EFileFormat)arg2, (Stream)arg3) -> None :
| C++ signature :
| void __init__(_object*,mitsuba::Bitmap::EFileFormat,mitsuba::
Stream*)
|
| clear(...)
| clear((Bitmap)arg1) -> None :
| C++ signature :
| void clear(mitsuba::Bitmap {lvalue})

...

The docstrings list the currently exported functionality, as well as C++ and Python signatures, but
they don’t document what these functions actually do. The web API documentation is the preferred
source of this information.

13.1. Basics

Generally, the Python API tries to mimic the C++ API as closely as possible. Where applicable, the
Python classes and methods replicate overloaded operators, overridable virtual function calls, and
default arguments. Under rare circumstances, some features are inherently non-portable due to fun-
damental differences between the two programming languages. In this case, the API documentation
will contain further information.

Mitsuba’s linear algebra-related classes are usable with essentially the same syntax as their C++
versions — for example, the following snippet creates and rotates a unit vector.

import mitsuba
from mitsuba.core import *

Create a normalized direction vector
myVector = normalize(Vector(1.0, 2.0, 3.0))

90 deg. rotation around the Y axis

212

13. Python integration 13.2. Recipes

trafo = Transform.rotate(Vector(0, 1, 0), 90)

Apply the rotation and display the result
print(trafo * myVector)

13.2. Recipes

The following section contains a series of “recipes” on how to do certain things with the help of the
Python bindings.

13.2.1. Loading a scene

The following script demonstrates how to use the FileResolver and SceneHandler classes to load
a Mitsuba scene from an XML file:

import mitsuba

from mitsuba.core import *
from mitsuba.render import SceneHandler

Get a reference to the thread's file resolver
fileResolver = Thread.getThread().getFileResolver()

Register any searchs path needed to load scene resources (optional)
fileResolver.appendPath('<path to scene directory>')

Optional: supply parameters that can be accessed
by the scene (e.g. as $myParameter)
paramMap = StringMap()
paramMap['myParameter'] = 'value'

Load the scene from an XML file
scene = SceneHandler.loadScene(fileResolver.resolve("scene.xml"), paramMap)

Display a textual summary of the scene's contents
print(scene)

13.2.2. Rendering a loaded scene

Once a scene has been loaded, it can be rendered as follows:

from mitsuba.core import *
from mitsuba.render import RenderQueue, RenderJob
import multiprocessing

scheduler = Scheduler.getInstance()

Start up the scheduling system with one worker per local core
for i in range(0, multiprocessing.cpu_count()):

scheduler.registerWorker(LocalWorker(i, 'wrk%i' % i))
scheduler.start()

213

13. Python integration 13.2. Recipes

Create a queue for tracking render jobs
queue = RenderQueue()

scene.setDestinationFile('renderedResult')

Create a render job and insert it into the queue
job = RenderJob('myRenderJob', scene, queue)
job.start()

Wait for all jobs to finish and release resources
queue.waitLeft(0)
queue.join()

Print some statistics about the rendering process
print(Statistics.getInstance().getStats())

13.2.3. Rendering over the network

To render over the network, you must first set up one or more machines that run the mtssrv server
(see Section 5.3). A network node can then be registered with the scheduler as follows:

Connect to a socket on a named host or IP address
7554 is the default port of 'mtssrv'
stream = SocketStream('128.84.103.222', 7554)

Create a remote worker instance that communicates over the stream
remoteWorker = RemoteWorker('netWorker', stream)

scheduler = Scheduler.getInstance()
Register the remote worker (and any other potential workers)
scheduler.registerWorker(remoteWorker)
scheduler.start()

13.2.4. Constructing custom scenes from Python

Dynamically constructing Mitsuba scenes entails loading a series of external plugins, instantiating
them with custom parameters, and finally assembling them into an object graph. For instance, the
following snippet shows how to create a basic perspective sensor with a film that writes PNG images:

from mitsuba.core import *
pmgr = PluginManager.getInstance()

Encodes parameters on how to instantiate the 'perspective' plugin
sensorProps = Properties('perspective')
sensorProps['toWorld'] = Transform.lookAt(

Point(0, 0, -10), # Camera origin
Point(0, 0, 0), # Camera target
Vector(0, 1, 0) # 'up' vector

)
sensorProps['fov'] = 45.0

214

13. Python integration 13.2. Recipes

Encodes parameters on how to instantiate the 'ldrfilm' plugin
filmProps = Properties('ldrfilm')
filmProps['width'] = 1920
filmProps['height'] = 1080

Load and instantiate the plugins
sensor = pmgr.createObject(sensorProps)
film = pmgr.createObject(filmProps)

First configure the film and then add it to the sensor
film.configure()
sensor.addChild('film', film)

Now, the sensor can be configured
sensor.configure()

The above code fragment uses the plugin manager to construct a Sensor instance from an external
plugin named perspective.so/dll/dylib and adds a child object named film, which is a Film
instance loaded from the plugin ldrfilm.so/dll/dylib. Each time after instantiating a plugin, all
child objects are added, and finally the plugin’s configure()method must be called.

Creating scenes in this manner ends up being rather laborious. Since Python comes with a pow-
erful dynamically-typed dictionary primitive, Mitsuba additionally provides a more “pythonic” alter-
native that makes use of this facility:

from mitsuba.core import *

pmgr = PluginManager.getInstance()
sensor = pmgr.create({

'type' : 'perspective',
'toWorld' : Transform.lookAt(

Point(0, 0, -10),
Point(0, 0, 0),
Vector(0, 1, 0)

),
'film' : {

'type' : 'ldrfilm',
'width' : 1920,
'height' : 1080

}
})

This code does exactly the same as the previous snippet. By the time PluginManager.create re-
turns, the object hierarchy has already been assembled, and the configure()method of every object
has been called.

Finally, here is an full example that creates a basic scene which can be rendered. It describes a
sphere lit by a point light, rendered using the direct illumination integrator.

from mitsuba.core import *
from mitsuba.render import Scene

scene = Scene()

215

13. Python integration 13.2. Recipes

Create a sensor, film & sample generator
scene.addChild(pmgr.create({

'type' : 'perspective',
'toWorld' : Transform.lookAt(

Point(0, 0, -10),
Point(0, 0, 0),
Vector(0, 1, 0)

),
'film' : {

'type' : 'ldrfilm',
'width' : 1920,
'height' : 1080

},
'sampler' : {

'type' : 'ldsampler',
'sampleCount' : 2

}
}))

Set the integrator
scene.addChild(pmgr.create({

'type' : 'direct'
}))

Add a light source
scene.addChild(pmgr.create({

'type' : 'point',
'position' : Point(5, 0, -10),
'intensity' : Spectrum(100)

}))

Add a shape
scene.addChild(pmgr.create({

'type' : 'sphere',
'center' : Point(0, 0, 0),
'radius' : 1.0,
'bsdf' : {

'type' : 'diffuse',
'reflectance' : Spectrum(0.4)

}
}))

scene.configure()

13.2.5. Taking control of the logging system

Many operations in Mitsuba will print one or more log messages during their execution. By default,
they will be printed to the console, which may be undesirable. Similar to the C++ side, it is possible
to define custom Formatter and Appender classes to interpret and direct the flow of these messages.
This is also useful to keep track of the progress of rendering jobs.

216

13. Python integration 13.2. Recipes

Roughly, a Formatter turns detailed information about a logging event into a human-readable
string, and a Appender routes it to some destination (e.g. by appending it to a file or a log viewer in
a graphical user interface). Here is an example of how to activate such extensions:

import mitsuba
from mitsuba.core import *

class MyFormatter(Formatter):
def format(self, logLevel, sourceClass, sourceThread, message, filename, line):

return '%s (log level: %s, thread: %s, class %s, file %s, line %i)' % \
(message, str(logLevel), sourceThread.getName(), sourceClass,
filename, line)

class MyAppender(Appender):
def append(self, logLevel, message):

print(message)

def logProgress(self, progress, name, formatted, eta):
print('Progress message: ' + formatted)

Get the logger associated with the current thread
logger = Thread.getThread().getLogger()
logger.setFormatter(MyFormatter())
logger.clearAppenders()
logger.addAppender(MyAppender())
logger.setLogLevel(EDebug)

Log(EInfo, 'Test message')

13.2.6. Rendering a turntable animation with motion blur

Rendering a turntable animation is a fairly common task that is conveniently accomplished via the
Python interface. In a turntable video, the camera rotates around a completely static object or scene.
The following snippet does this for the material test ball scene downloadable on the main website,
complete with motion blur. It assumes that the scene and scheduler have been set up approriately
using one of the previous snippets.

sensor = scene.getSensor()
sensor.setShutterOpen(0)
sensor.setShutterOpenTime(1)

stepSize = 5
for i in range(0,360 / stepSize):

rotationCur = Transform.rotate(Vector(0, 0, 1), i*stepSize);
rotationNext = Transform.rotate(Vector(0, 0, 1), (i+1)*stepSize);

trafoCur = Transform.lookAt(rotationCur * Point(0,-6,4),
Point(0, 0, .5), rotationCur * Vector(0, 1, 0))

trafoNext = Transform.lookAt(rotationNext * Point(0,-6,4),
Point(0, 0, .5), rotationNext * Vector(0, 1, 0))

217

13. Python integration 13.2. Recipes

atrafo = AnimatedTransform()
atrafo.appendTransform(0, trafoCur)
atrafo.appendTransform(1, trafoNext)
atrafo.sortAndSimplify()
sensor.setWorldTransform(atrafo)

scene.setDestinationFile('frame_%03i.png' % i)
job = RenderJob('job_%i' % i, scene, queue)
job.start()

queue.waitLeft(0)
queue.join()

A useful property of this approach is that scene loading and initialization must only take place once.
Performance-wise, this compares favourably with running many separate rendering jobs, e.g. using
the mitsuba command-line executable.

218

14. Acknowledgments 14. Acknowledgments

14. Acknowledgments

I am indebted to my advisor Steve Marschner for allowing me to devote a significant amount of my
research time to this project. His insightful and encouraging suggestions have helped transform this
program into much more than I ever thought it would be.

The architecture of Mitsuba as well as some individual components are based on implementations
discussed in: Physically Based Rendering - From Theory To Implementation by Matt Pharr and Greg
Humphreys.

Some of the GUI icons were taken from the Humanity icon set by Canonical Ltd. The material test
scene was created by Jonas Pilo, and the environment map it uses is courtesy of Bernhard Vogl.

The included index of refraction data files for conductors are copied from PBRT. They are origi-
nally from the Luxpop database (www.luxpop.com) and are based on data by Palik et al. [36] and
measurements of atomic scattering factors made by the Center For X-Ray Optics (CXRO) at Berkeley
and the Lawrence Livermore National Laboratory (LLNL).

The following people have kindly contributed code or bugfixes:

• Miloŝ Haŝan

• Marios Papas

• Edgar Velázquez-Armendáriz

• Jirka Vorba

• Leonhard Grünschloß

Mitsuba makes heavy use of the following amazing libraries and tools:

• Qt 4 by Digia

• OpenEXR by Industrial Light & Magic

• Xerces-C++ by the Apache Foundation

• Eigen by Benoît Jacob and Gaël Guennebaud

• SSE math functions by Julien Pommier

• The Boost C++ class library

• GLEW by Milan Ikits, Marcelo E. Magallon and Lev Povalahev

• Mersenne Twister by Makoto Matsumoto and Takuji Nishimura

• Cubature by Steven G. Johnson

• COLLADA DOM by Sony Computer Entertainment

• libjpeg-turbo by Darrell Commander and others

• libpng by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson and others

• libply by Ares Lagae

219

www.luxpop.com

14. Acknowledgments 14. Acknowledgments

• BWToolkit by Brandon Walkin

• The SCons build system by the SCons Foundation

220

15. License 15. License

15. License

Mitsuba is licensed under the terms of Version 3 of the GNU General Public License, which is repro-
duced here in its entirety. The license itself is copyrighted © 2007 by the Free Software Foundation,
Inc. http://fsf.org/.

15.1. Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.
The licenses for most software and other practical works are designed to take away your freedom

to share and change the works. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program–to make sure it remains free software for
all its users. We, the Free Software Foundation, use the GNU General Public License for most of our
software; it applies also to any other work released this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Li-
censes are designed to make sure that you have the freedom to distribute copies of free software (and
charge for them if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’ sake, the GPL requires that modified versions be
marked as changed, so that their problems will not be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domains in
future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents
to restrict development and use of software on general-purpose computers, but in those that do, we
wish to avoid the special danger that patents applied to a free program could make it effectively propri-
etary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

221

15. License 15.2. Terms and Conditions

15.2. Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a rec-
ognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole,
that (a) is included in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the work with that Major
Component, or to implement a Standard Interface for which an implementation is available to
the public in source code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating system (if any) on
which the executable work runs, or a compiler used to produce the work, or an object code
interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,

222

15. License 15.2. Terms and Conditions

including scripts to control those activities. However, it does not include the work’s System
Libraries, or general-purpose tools or generally available free programs which are used un-
modified in performing those activities but which are not part of the work. For example, Cor-
responding Source includes interface definition files associated with source files for the work,
and the source code for shared libraries and dynamically linked subprograms that the work
is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered
work is covered by this License only if the output, given its content, constitutes a covered work.
This License acknowledges your rights of fair use or other equivalent, as provided by copyright
law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated be-
low. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any appli-
cable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-
nological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s users, your or third parties’
legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice; keep intact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along with the Program.

223

15. License 15.2. Terms and Conditions

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.

b) The work must carry prominent notices stating that it is released under this License and
any conditions added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other way,
but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, pro-
vided that you also convey the machine-readable Corresponding Source under the terms of
this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distri-
bution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for all
the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Correspond-
ing Source from a network server at no charge.

224

15. License 15.2. Terms and Conditions

c) Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the
same place at no further charge. You need not require recipients to copy the Correspond-
ing Source along with the object code. If the place to copy the object code is a network
server, the Corresponding Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of
what server hosts the Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the gen-
eral public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal prop-
erty which is normally used for personal, family, or household purposes, or (2) anything de-
signed or sold for incorporation into a dwelling. In determining whether a product is a con-
sumer product, doubtful cases shall be resolved in favor of coverage. For a particular product
received by a particular user, “normally used” refers to a typical or common use of that class
of product, regardless of the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A product is a consumer prod-
uct regardless of whether the product has substantial commercial, industrial or non-consumer
uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely affects

225

15. License 15.2. Terms and Conditions

the operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent that
they are valid under applicable law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but the entire Program remains gov-
erned by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e) Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the mean-
ing of section 10. If the Program as you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further restriction, you may remove
that term. If a license document contains a further restriction but permits relicensing or con-
veying under this License, you may add to a covered work material governed by the terms of

226

15. License 15.2. Terms and Conditions

that license document, provided that the further restriction does not survive such relicensing
or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately writ-
ten license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this Li-
cense. Any attempt otherwise to propagate or modify it is void, and will automatically ter-
minate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work. These
actions infringe copyright if you do not accept this License. Therefore, by modifying or propa-
gating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding

227

15. License 15.2. Terms and Conditions

Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the con-
tributor, whether already acquired or hereafter acquired, that would be infringed by some man-
ner, permitted by this License, of making, using, or selling its contributor version, but do not
include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run,
modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange
to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or prop-
agate by procuring conveyance of, a covered work, and grant a patent license to some of the
parties receiving the covered work authorizing them to use, propagate, modify or convey a spe-
cific copy of the covered work, then the patent license you grant is automatically extended to
all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, pro-
hibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered work if you are a party

228

15. License 15.2. Terms and Conditions

to an arrangement with a third party that is in the business of distributing software, under
which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the covered work, unless you
entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all.
For example, if you agree to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public Li-
cense into a single combined work, and to convey the resulting work. The terms of this License
will continue to apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of that numbered version or of any
later version published by the Free Software Foundation. If the Program does not specify a ver-
sion number of the GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Pub-
lic License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow
a later version.

15. Disclaimer of Warranty.

229

15. License 15.2. Terms and Conditions

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

18. End of Terms and Conditions / How to Apply These Terms to Your New Programs:

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

230

15. License 15.2. Terms and Conditions

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts
in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

231

References References

References

[1] Ashikhmin, M., and Shirley, P. An anisotropic phong BRDF model. Graphics tools: The jgt
editors’ choice (2005), 303.

[2] Blanco-Muriel, M., Alarcón-Padilla, D., López-Moratalla, T., and Lara-Coira, M.
Computing the solar vector. Solar Energy 70, 5 (2001), 431–441.

[3] Blinn, J. F. Simulation of wrinkled surfaces. In Proceedings of the 5th annual conference on
Computer graphics and interactive techniques (New York, NY, USA, 1978), SIGGRAPH ’78, ACM,
pp. 286–292.

[4] Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. Parallel poisson disk sampling with spec-
trum analysis on surfaces. ACM Trans. Graph. 29, 6 (Dec. 2010), 166:1–166:10.

[5] Cline, D., Talbot, J., and Egbert, P. Energy redistribution path tracing. ACM Trans. Graph.
24, 3 (July 2005), 1186–1195.

[6] Cook, R. L., Halstead, J., Planck, M., and Ryu, D. Stochastic simplification of aggregate
detail. In ACM SIGGRAPH 2007 papers (New York, NY, USA, 2007), SIGGRAPH ’07, ACM.

[7] Dür, A. An Improved Normalization For The Ward Reflectance Model. Journal of graphics, gpu,
and game tools 11, 1 (2006), 51–59.

[8] Eason, G., Veitch, A., Nisbet, R., and Turnbull, F. The theory of the back-scattering of light
by blood. Journal of Physics D: Applied Physics 11 (1978), 1463.

[9] Farrell, T., Patterson, M., and Wilson, B. A diffusion theory model of spatially resolved,
steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in
vivo. Medical physics 19 (1992), 879.

[10] Faure, H. Good permutations for extreme discrepancy. Journal of NumberTheory 42, 1 (1992),
47–56.

[11] Geisler-Moroder, D., and Dür, A. A new ward brdf model with bounded albedo. In Com-
puter Graphics Forum (2010), vol. 29, Wiley Online Library, pp. 1391–1398.

[12] Grünschloss, L., Raab, M., and Keller, A. Enumerating quasi-monte carlo point sequences
in elementary intervals. Monte Carlo and Quasi-Monte Carlo Methods (2010).

[13] Hachisuka, T., and Jensen, H. W. Stochastic progressive photon mapping. ACMTrans. Graph.
28, 5 (Dec. 2009), 141:1–141:8.

[14] Hachisuka, T., Ogaki, S., and Jensen, H. W. Progressive photon mapping. ACMTrans. Graph.
27, 5 (Dec. 2008), 130:1–130:8.

[15] Hanrahan, P., and Krueger, W. Reflection from layered surfaces due to subsurface scattering.
In Proceedings of the 20th annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 1993), SIGGRAPH ’93, ACM, pp. 165–174.

[16] Henyey, L., and Greenstein, J. Diffuse radiation in the galaxy. The Astrophysical Journal 93
(1941), 70–83.

232

References References

[17] Irawan, P. Appearance of woven cloth. PhD thesis, Cornell University, Ithaca, NY, USA, 2008.
http://ecommons.library.cornell.edu/handle/1813/8331.

[18] Jakob, W., Arbree, A., Moon, J., Bala, K., and Marschner, S. A radiative transfer frame-
work for rendering materials with anisotropic structure. ACM Transactions on Graphics (TOG),
Proceedings of SIGGRAPH 2010 29, 4 (2010), 53.

[19] Jakob, W., and Marschner, S. Manifold Exploration: a Markov Chain Monte Carlo technique
for rendering scenes with difficult specular transport. ACM Trans. Graph. 31, 4 (July 2012), 58:1–
58:13.

[20] Jarosz, W., Zwicker, M., and Jensen, H. W. The beam radiance estimate for volumetric pho-
ton mapping. Computer Graphics Forum (Proceedings of Eurographics 2008) 27, 2 (Apr. 2008),
557–566.

[21] Jensen, H. W. Global illumination using photon maps. In Proceedings of the eurographics work-
shop on Rendering techniques ’96 (London, UK, UK, 1996), Springer-Verlag, pp. 21–30.

[22] Jensen, H. W., and Buhler, J. A rapid hierarchical rendering technique for translucent mate-
rials. In ACM SIGGRAPH 2005 Courses (New York, NY, USA, 2005), SIGGRAPH ’05, ACM.

[23] Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. A practical model for sub-
surface light transport. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques (New York, NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 511–518.

[24] Joe, S., and Kuo, F. Constructing sobol sequences with better two-dimensional projections.
SIAM Journal on Scientific Computing 30 (2008), 2635.

[25] Kajiya, J., and Kay, T. Rendering fur with three dimensional textures. ACM Transactions on
Graphics 23, 3 (1989), 271–280.

[26] Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. A simple and robust mutation
strategy for the metropolis light transport algorithm. InComputerGraphics Forum (2002), vol. 21,
pp. 531–540.

[27] Keller, A. Instant radiosity. In Proceedings of the 24th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1997), SIGGRAPH ’97, ACM Press/Addison-
Wesley Publishing Co., pp. 49–56.

[28] Kollig, T., and Keller, A. Efficient multidimensional sampling. Computer Graphics Forum
21, 3 (2002), 557–563.

[29] Krivánek, J., Bouatouch, K., Pattanaik, S. N., and Zára, J. Making radiance and irradiance
caching practical: Adaptive caching and neighbor clamping. In Proceedings of the Eurograph-
ics Symposium on Rendering Techniques, Nicosia, Cyprus, 2006 (2006), T. Akenine-Möller and
W. Heidrich, Eds., Eurographics Association, pp. 127–138.

[30] Lafortune, E. P., and Willems, Y. D. Using the modified phong reflectance model for physi-
cally based rendering. Tech. rep., Cornell University, 1994.

233

http://ecommons.library.cornell.edu/handle/1813/8331

References References

[31] Lukáš Hošek and Alexander Wilkie. An analytic model for full spectral sky-dome radiance.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2012) 31, 4 (July 2012).

[32] Mitchell, D. P., and Netravali, A. N. Reconstruction filters in computer-graphics. In Pro-
ceedings of the 15th annual conference on Computer graphics and interactive techniques (New York,
NY, USA, 1988), SIGGRAPH ’88, ACM, pp. 221–228.

[33] Narasimhan, S. G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S. K., and Jensen,
H. W. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph.
25, 3 (July 2006), 1003–1012.

[34] Ngan, A., Durand, F., and Matusik, W. Experimental analysis of brdf models. In Proceedings
of the Eurographics Symposium on Rendering (2005), vol. 2, Eurographics Association.

[35] Oren, M., and Nayar, S. Generalization of Lambert’s reflectance model. In Proceedings of the
21st annual conference on Computer graphics and interactive techniques (1994), ACM, pp. 239–
246.

[36] Palik, E., and Ghosh, G. Handbook of optical constants of solids. Academic press, 1998.

[37] Phong, B.-T. Illumination for Computer Generated Pictures. Communications of the ACM 18,
6 (1975), 311–317.

[38] Preetham, A., Shirley, P., and Smits, B. A practical analytic model for daylight. In Proceed-
ings of the 26th annual conference on Computer graphics and interactive techniques (1999), ACM
Press/Addison-Wesley Publishing Co., pp. 91–100.

[39] Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. Photographic tone reproduction for
digital images. ACM Transactions on Graphics 21, 3 (2002), 267–276.

[40] Saito, M., and Matsumoto, M. Simd-oriented fast mersenne twister: a 128-bit pseudorandom
number generator. Monte Carlo and Quasi-Monte Carlo Methods 2006 (2008), 607–622.

[41] Shirley, P., and Wang, C. Direct lighting calculation by monte carlo integration. In In proceed-
ings of the second EUROGRAPHICS workshop on rendering (1991), pp. 54–59.

[42] Smits, B. An RGB-to-spectrum conversion for reflectances. Graphics tools: The jgt editors’
choice (2005), 291.

[43] Tabellion, E., and Lamorlette, A. An approximate global illumination system for computer
generated films. ACM Trans. Graph. 23, 3 (Aug. 2004), 469–476.

[44] Tevs, A., Ihrke, I., and Seidel, H.-P. Maximum mipmaps for fast, accurate, and scalable
dynamic height field rendering. In Symposium on Interactive 3D Graphics and Games (i3D’08)
(2008), pp. 183–190.

[45] Veach, E., and Guibas, L. Bidirectional estimators for light transport. In Eurographics Render-
ing Workshop Proceedings (1994).

[46] Veach, E., and Guibas, L. J. Metropolis light transport. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques (New York, NY, USA, 1997), SIGGRAPH
’97, ACM Press/Addison-Wesley Publishing Co., pp. 65–76.

234

References References

[47] Walter, B. Notes on the ward brdf. Tech. Rep. PCG-05-06, Program of Computer Graphics,
Cornell University, 2005.

[48] Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refrac-
tion through Rough Surfaces. Rendering Techniques (Proceedings EG Symposium on Rendering)
(2007).

[49] Ward, G., and Heckbert, P. Irradiance gradients. In Eurographics Rendering Workshop (May
1992), pp. 85–98.

[50] Ward, G. J. Measuring and modeling anisotropic reflection. In Proceedings of the 19th annual
conference on Computer graphics and interactive techniques (New York, NY, USA, 1992), SIG-
GRAPH ’92, ACM, pp. 265–272.

[51] Ward, G. J., Rubinstein, F. M., and Clear, R. D. A ray tracing solution for diffuse interreflec-
tion. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 85–92.

[52] Weidlich, A., and Wilkie, A. Arbitrarily layered micro-facet surfaces. In Proceedings of the
5th international conference on Computer graphics and interactive techniques in Australia and
Southeast Asia (New York, NY, USA, 2007), GRAPHITE ’07, ACM, pp. 171–178.

[53] Yuksel, C., Kaldor, J. M., James, D. L., and Marschner, S. Stitch meshes for modeling
knitted clothing with yarn-level detail. ACM Trans. Graph. 31, 4 (July 2012), 37:1–37:12.

[54] Zhao, S., Jakob, W., Marschner, S., and Bala, K. Building Volumetric Appearance Mod-
els of Fabric using Micro CT Imaging. ACM Transactions on Graphics (TOG), Proceedings of
SIGGRAPH 2011 30, 4 (2011), 53.

235

	I Using Mitsuba
	1 About Mitsuba
	2 Limitations
	3 License
	4 Compiling the renderer
	4.1 Common steps
	4.1.1 Build configurations
	4.1.2 Selecting a configuration

	4.2 Compilation flags
	4.3 Building on Debian or Ubuntu Linux
	4.3.1 Creating Debian or Ubuntu Linux packages
	4.3.2 Releasing Ubuntu packages

	4.4 Building on Fedora Core
	4.4.1 Creating Fedora Core packages

	4.5 Building on Arch Linux
	4.5.1 Creating Arch Linux packages

	4.6 Building on Windows
	4.6.1 Integration with the Visual Studio interface

	4.7 Building on Mac OS X

	5 Basic usage
	5.1 Interactive frontend
	5.2 Command line interface
	5.2.1 Passing parameters
	5.2.2 Writing partial images to disk
	5.2.3 Rendering an animation

	5.3 Direct connection server
	5.4 Utility launcher
	5.4.1 Tonemapper

	6 Scene file format
	6.1 Property types
	6.1.1 Numbers
	6.1.2 Strings
	6.1.3 Color spectra
	6.1.4 Vectors, Positions
	6.1.5 Transformations

	6.2 Animated transformations
	6.3 References
	6.4 Including external files
	6.5 Aliases

	7 Miscellaneous topics
	7.1 A word about color spaces
	7.1.1 Spectral rendering

	8 Plugin reference
	8.1 Shapes
	8.1.1 Cube intersection primitive (cube)
	8.1.2 Sphere intersection primitive (sphere)
	8.1.3 Cylinder intersection primitive (cylinder)
	8.1.4 Rectangle intersection primitive (rectangle)
	8.1.5 Disk intersection primitive (disk)
	8.1.6 Wavefront OBJ mesh loader (obj)
	8.1.7 PLY (Stanford Triangle Format) mesh loader (ply)
	8.1.8 Serialized mesh loader (serialized)
	8.1.9 Shape group for geometry instancing (shapegroup)
	8.1.10 Geometry instance (instance)
	8.1.11 Hair intersection shape (hair)
	8.1.12 Height field intersection shape (heightfield)

	8.2 Surface scattering models
	8.2.1 Smooth diffuse material (diffuse)
	8.2.2 Rough diffuse material (roughdiffuse)
	8.2.3 Smooth dielectric material (dielectric)
	8.2.4 Thin dielectric material (thindielectric)
	8.2.5 Rough dielectric material (roughdielectric)
	8.2.6 Smooth conductor (conductor)
	8.2.7 Rough conductor material (roughconductor)
	8.2.8 Smooth plastic material (plastic)
	8.2.9 Rough plastic material (roughplastic)
	8.2.10 Smooth dielectric coating (coating)
	8.2.11 Rough dielectric coating (roughcoating)
	8.2.12 Bump map modifier (bump)
	8.2.13 Modified Phong BRDF (phong)
	8.2.14 Anisotropic Ward BRDF (ward)
	8.2.15 Mixture material (mixturebsdf)
	8.2.16 Blended material (blendbsdf)
	8.2.17 Opacity mask (mask)
	8.2.18 Two-sided BRDF adapter (twosided)
	8.2.19 Diffuse transmitter (difftrans)
	8.2.20 Hanrahan-Krueger BSDF (hk)
	8.2.21 Irawan & Marschner woven cloth BRDF (irawan)

	8.3 Textures
	8.3.1 Bitmap texture (bitmap)
	8.3.2 Checkerboard (checkerboard)
	8.3.3 Procedural grid texture (gridtexture)
	8.3.4 Scaling passthrough texture (scale)
	8.3.5 Vertex color passthrough texture (vertexcolors)
	8.3.6 Wireframe texture (wireframe)
	8.3.7 Curvature texture (curvature)

	8.4 Subsurface scattering models
	8.4.1 Dipole-based subsurface scattering model (dipole)

	8.5 Participating media
	8.5.1 Homogeneous participating medium (homogeneous)
	8.5.2 Heterogeneous participating medium (heterogeneous)

	8.6 Phase functions
	8.6.1 Isotropic phase function (isotropic)
	8.6.2 Henyey-Greenstein phase function (hg)
	8.6.3 Rayleigh phase function (rayleigh)
	8.6.4 Kajiya-Kay phase function (kkay)
	8.6.5 Micro-flake phase function (microflake)
	8.6.6 Mixture phase function (mixturephase)

	8.7 Volume data sources
	8.7.1 Constant-valued volume data source (constvolume)
	8.7.2 Grid-based volume data source (gridvolume)
	8.7.3 Caching volume data source (volcache)

	8.8 Emitters
	8.8.1 Point light source (point)
	8.8.2 Area light (area)
	8.8.3 Spot light source (spot)
	8.8.4 Directional emitter (directional)
	8.8.5 Collimated beam emitter (collimated)
	8.8.6 Skylight emitter (sky)
	8.8.7 Sun emitter (sun)
	8.8.8 Sun and sky emitter (sunsky)
	8.8.9 Environment emitter (envmap)
	8.8.10 Constant environment emitter (constant)

	8.9 Sensors
	8.9.1 Perspective pinhole camera (perspective)
	8.9.2 Perspective camera with a thin lens (thinlens)
	8.9.3 Orthographic camera (orthographic)
	8.9.4 Telecentric lens camera (telecentric)
	8.9.5 Spherical camera (spherical)
	8.9.6 Irradiance meter (irradiancemeter)
	8.9.7 Radiance meter (radiancemeter)
	8.9.8 Fluence meter (fluencemeter)
	8.9.9 Perspective pinhole camera with radial distortion (perspective_rdist)

	8.10 Integrators
	8.10.1 Ambient occlusion integrator (ao)
	8.10.2 Direct illumination integrator (direct)
	8.10.3 Path tracer (path)
	8.10.4 Simple volumetric path tracer (volpath_simple)
	8.10.5 Extended volumetric path tracer (volpath)
	8.10.6 Bidirectional path tracer (bdpt)
	8.10.7 Photon map integrator (photonmapper)
	8.10.8 Progressive photon mapping integrator (ppm)
	8.10.9 Stochastic progressive photon mapping integrator (sppm)
	8.10.10 Primary Sample Space Metropolis Light Transport (pssmlt)
	8.10.11 Path Space Metropolis Light Transport (mlt)
	8.10.12 Energy redistribution path tracing (erpt)
	8.10.13 Adjoint particle tracer (ptracer)
	8.10.14 Adaptive integrator (adaptive)
	8.10.15 Virtual Point Light integrator (vpl)
	8.10.16 Irradiance caching integrator (irrcache)

	8.11 Sample generators
	8.11.1 Independent sampler (independent)
	8.11.2 Stratified sampler (stratified)
	8.11.3 Low discrepancy sampler (ldsampler)
	8.11.4 Halton QMC sampler (halton)
	8.11.5 Hammersley QMC sampler (hammersley)
	8.11.6 Sobol QMC sampler (sobol)

	8.12 Films
	8.12.1 High dynamic range film (hdrfilm)
	8.12.2 Tiled high dynamic range film (tiledhdrfilm)
	8.12.3 Low dynamic range film (ldrfilm)
	8.12.4 MATLAB / Mathematica film (mfilm)

	8.13 Reconstruction filters
	8.13.1 Reconstruction filter comparison 1: frequency attenuation and aliasing
	8.13.2 Reconstruction filter comparison 2: ringing
	8.13.3 Specifying a reconstruction filter

	II Development guide
	9 Code structure
	10 Coding style
	11 Designing a custom integrator plugin
	11.1 Basic implementation
	11.2 Visualizing depth
	11.3 Nesting

	12 Parallelization layer
	13 Python integration
	13.0.1 Accessing signatures in an interactive Python shell
	13.1 Basics
	13.2 Recipes
	13.2.1 Loading a scene
	13.2.2 Rendering a loaded scene
	13.2.3 Rendering over the network
	13.2.4 Constructing custom scenes from Python
	13.2.5 Taking control of the logging system
	13.2.6 Rendering a turntable animation with motion blur

	14 Acknowledgments
	15 License
	15.1 Preamble
	15.2 Terms and Conditions

