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LOWER BOUNDS FOR ÒÍÅ MONOTONE COMPLEXITY

OF SOME BOOLEAN FUNCTIONS
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The combinatorial complexity L f î! à Boolean !unction !(Õl, ..., Õï) iB the least ïèò.

ber of logical elementB AND, OR and NOT neceBBary for itB realization in the form of

à functional Bcheme. It iB well known (âåå, for example, [1]) that there are Boolean

functionB whoBe combinatorial complexity iB an exponential function of the number of

variableB. In à recent article [2], à natural Bequence of Boolean functionB

(1) !1(Õ1,...,Õï1)'!2(Õ1,...,Õï2)'...'!ò(Õ1,...,Õïò)'...

was conBtructed, with Lfm ?: ñïò, where ñ > 1 iB à univerBal conBtant.

In thiB note we will reBtrict ourBelveB to the conBideration of BequenceB of the form (1)
BatiBfying the following condition: the language {(ål ...enm)lm Å N, !ò(å1, ...,Å.ïò) =

1} in the alphabet {0,1} can Üå recognized Üó à nondeterminiBtic Thring machine in

time which iB polynomial in the length of the input ïò (i.e. it iB an N P-language). SUCh

BequenceB will Üå called con8tructive.

It iB intereBting to obtain lower boundB on the combinatorial complexity of funCtions

from the conBtructive Bequence (1), for example, in connection with the fol1owing remark

(derivable from the reBultB of [3]): ifthere iB à conBtructive Bequence ofthe form (1) sUCh

that
1-:- logLfmlm = 00,

ò--îî log ïò

then Ð i= N Ð .Apparently the BtrongeBt reBult obtained in thiB direction iB found in [41,

where an example of à conBtructive Bequence (1) iB conBtructed with Lfm ?: 2.5ïò.

The monotone complexity Lt î! à monotone Boolean !unction !(Õl, ...,Õï) is the

least number of functional elementB OR and AND neceBBary for itB realization in the

form of à functional Bcheme (without the element NOT). Clearly Lt ?: Lf, and therefore

the problem of finding asymptotic lower boundB on Lt for conBtructive Bequences (1) of

monotone Boolean functionB iB Bimpler. The beBt bound of thiB type known until llOW

was obtained in [5] :
2

.L f+ ?: ñ -} ïò , ñ > 0,
m ognm

for à certain conBtructive Bequence of the form (1).
In thiB note we Bhall conBtruct two conBtructive BequenceB of monotone Boolean func.

tionB for which LtM ?: n~lognm), with ñ > 0. The general reBult from which these

boundB òàó Üå obtained iB Btated in Theorem 1. TheoremB 2 and 3 are devoted to

boundB for the monotone complexity of functionB from Bpecific conBtructive BequenCes.

In order to formulate the reBults, it iB convenient to interpret à Boolean function as the

Bet of inputB on which it takeB the value 1.
More preciBely, let R = { ål, ..., åï} Üå à finite Bet, and Âï = P(R) itB power set.

We define à bijection õ: Âï -+ {0,1}ï in the fol1owing way: for Å Å Âï we Bet õ(Å) =

(ål, ..., åï), where ei = 0 if ei ~ Å, and ei = 1 if ei Å Å.
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Òî the Boolean function f(Xl, ., ., Õï), of n variables we assign the set Àè) Å Ð(Âï)
in the following way: Àè) = {Å Å Bnlf(X(E)) = 1}. Clearly À gives à bijection
between the set ofall Boolean functions ofn variables aIld Ð(Âï), for which Àè1& f2) =
A(h) n Àè2) and Àè1 v f2) = Àè1) U Àè2). We call the set ì Å Ð(Âï) monotone if
for all El, Å2 Å Âï, from Å1 Å ì and Å1 ~ Å2 it follows that Å2 Å Ì. We remark that
à Boolean function f is monotone if and only if the set Àè) i8 monotone. We denote
Üó Ð+(Âï) the family of all monotone subset8 of Âï. Among the element8 of Ð+(Âï)
there are, for example, the 8et8 À(O) = 0, À(l) = Âï, and A(Xi) = {Å Å Bnlei Å Å}.

Now 8èððîâå âîòå family ò of monotone 8ub8et8 of the 8et Âï i8 given; that is,
!JJt ~ Ð+(Âï). We call ò à regular lattice if the following two condition8 are 8ati8fied:

à) {À(o), À(l), À(õl), ..., À(õï)} ~ ò.
; Ü) If ò i8 regarded as à partiaIly ordered 8et under inclu8ion, them ò i8 à lattice
with re8pect to thi8 order .

The operation8 of taking greate8t lower and least upper bound8 wiIl Üå denoted Üó ï
and u re8pectively. We introduce the notation

á-(Ì1, Ì2) ~ {Ì1 u M2)\(M1U Ì2),

á+(Ì1, Ì2) ~ (Ì1 n Ì2)\(Ì1 ï Ì2).

SuPPo8e that we are given 8îòå monotone Boolean function f(Xl, ..., Õï) and à reg-
ular lattice ò. ÒÜå distance ðè, ò) between f and ò i8 defined to Üå the least natural
number t for which there are element8 Ì, Mi and Ni of ò, i:::; i:::; t, 8èñÜ that

t
) M~A(f)UUá-(Mi,Ni),

i=l

t ;,t(!
) Àè) ~ ì U u 6+(Mi, Ni): 'Lj'i,-'

i=l
It is relatively 8imple to prove the foIlowing

: THEOREM 1. For àïó monotone Boolean function f(Xl, ..., Õï) and àïó regular
f/attice !m ~ Ð+(Âï) the inequality Lj ~ ðè, ò) holds.

We now turn to the construction of con8tructive 8equences consi8ting of monotone
Boolean function8 of sufficiently great monotone complexity. The fir8t example corre-
8ponds to finite fragment8 of the N P-complete problem CLIQUE.

Let ò and s Üå natural numbers with s < ò, and let v = { Vl, ..., Vm} Üå à finite set.
Weset n = ò(ò-1)/2 and R = {(Vi, vj)11 :::; i < j :::; ò} (the order in which the element8
ofR are indexed i8 irrelevant). For every W ~ v we define Ew Å Âï (Âï = P(R)) in
the following way:

Ew ~ {(Vi,Vj) ERlvi,Vj Å W}.

Furthermore, we set

Ç(ò,Â) = {ÅÅ Bnl3W (W ~ v & card W = s & Ew ~ Å)}.

3( ò, â) con8i8t8 of tho8e Å for which the graph (V, Å) contain8 à clique of 8ize at least
8. It i8 clear that Ç(ò,Â) i8 monotone. Suppo8e that Ðò,8(Õ1,...,õï) = À-1(Ç(ò,â))
i8 the corresponding monotone Boolean function. À lower bound for Ljm.. i8 obtained
on the basi8 of Theorem 1 u8ing à certain regular lattice òò,8. We wiIl de8cribe the
construction of òò,8 in general terms.

We introduce the foIlowing notation: !2{ = {WIW ~ v and card W :::; â- 1}; r ~!
[2se8ln ò] .We define à binary relation S ~ !2{ õ !2{ r in the foIlowing way:

(WO,(W1,...,Wr))ES ifandonlyif 'v'i,j(l:::;i<j:::;r*WinWj~Wo).
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The fact that (Wo, (W1, ..., Wr)) Å s will Üå more briefl.y expressed in the form W1, ...,

Wr f- WO.
Furthermore, if 1:2(1 ~ 1:2(2 and W Å 1:2(, then the expression 1:2(1 f- W signifies that

there are W 1, ..., W r Å 1:2( 1 with W 1, ..., W r f- W. À set 1:2( 1 ~ 1:2( will Üå called clo8ed if
\iW Å 1:2( (1:2(1 f- W => W Å 1:2(1). SinCe the intersection of closed sets is closed, there is à
smallest closed subset l:2(i ~ 1:2( containing 1:2(1, for àïó 1:2(1 ~ 1:2(.

For à closed 1:2(1 ~ 1:2( we define the element rl:2(l' Å P+(Bn) in the following way:

rl:2(l' = {Å Å Bnl3W Å 1:2(1(Ew ~ Å)}.

Finally, we set rotm,8 = {rl:2(l '1I:2(lclosed}.

LEMMA 1. à) rotm,8 i8 à regular lattice.
Ü) The lattice operation8 in rotm,8 have the !ollowing !îòò:

rQt1' ï rQt2' = Ã'Õ1 n 'Õ2 '; rQt1' u ã'Õ2' = Ã('Õ1 u 'Õ2)"'.

The desired lattice rotm,8 has Üååï conStructed. In estimating the quantity
Ð(!ò,8' rotm,8) from below, à key role is played Üó two lemmas stated below, which

we give without proof.
For an arbitrary 1:2(1 ~ 1:2( we denOte Üó 1:2(~ the subset of the minimal elements of ~1,

i.e.
1:2(~ = {W Å 1:2(11\iW'(W' ñ W => W' ~ 1:2(1)}.

LEMMA 2. I!l:2(l i8 clo8ed then card 1:2(~ ~ (8 -1)!ò8-1.

Suppose that í = [8 -1]Ó is the set of funCtionS from v into {1, ...,8 -1}. For each
funCtion h Å Í, we define the ((8- l)-partite) graph Eh Å Bn Üó the equality

Eh = {(vi,vj)lh(Vi) :f h(vj)}.

LEMMA 3. LetWo,W1,...,WrEl:2(andW1,...,Wrf-WO. Then

card{h Å HIEwo ~ Eh & Ew1 ~ Eh & ...& Ew. ~ Eh} ~ (1- å-8)Ò .card Í.

From Lemmas 2 and 3 we obtain the following lower bound îï the distance.

LEMMA 4. p(fm,8'rotm,8) :?: ffl8(83e81nm)-28.

From Lemma 4 and Theorem 1 the analogous bound for Ltm.. follows directly. In the

next theorem âîòå asymptotic properties of the bounds are established.

THEOREM 2. Âèððî8å that !ò,8(Õ1, ..., Xnm)' with ïò = ò(ò -1)/2, i8 the òîïî-
tone Boolean !unction defined above, corre8ponding to the 8et î! tho8e graph8 îï ò ver-
tice8 which contain à clique î! 8ize at lea8t 8. Then:

à) !îò 8 = conSt and ò-+ 00

Ltm.. :?: O(m8/(logm)28)j

Ü) !îò 8 = [ilnm] and ò-+ 00

L+ :?: O (mClogm ) ñ > Î.fm.. ,

REMARK 1. For comparison we mention the obvious upper bound

2
~ )L+ < ~ .ò .

fm.. -2 8

The corresponding funCtional scheme in the elements AND and OR is easily conStructed
îï the basis of complete item-by-item examination of all elements of the set {WI
card W = 8}.
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REMARK 2 .Both of the sequences of Boolean functions considered in Theorem 2 are

constructive.
Our second example of à constructive sequence with the lower bound n![!lognm) on

its monotone complexity is à sequence of functions computing the logical permanent of à
Boolean matrix. We specify à Boolean function !ò(Õ1,1, ..., Xi,j, ..., Õò,ò) of nm = ò2

variab1es Üó the formUla
m

!m(Xl,l"..,Xi,j,...,Xm,m)= v i~lXi,/1(i).
/1ÅÂò

We will consider the graph-theoretical interpretation of this function.
We choose two disjoint sets of vertices v = {Vl,...'Vm} and w = {Wl,...,Wm}.

Suppose that ei,j = (Vi,Wj) and R = {ei,jl1 :::; i,j :::; ò}. then Âï = P(R) turns out
to Üå exactly the set of all bipartite graphs with parts v and W, and Àèò) coincides
with the set of all bipartite graphs containing à perfect matching ( à per!ect matching in
à graph Å ~ v õ w is à set of ò edges having no vertices in common pairwise).

From the result of [61 the bound Lfm :::; O(ò5) follows for the combinatorial complex-

ity. Îï the other hand, we have

THEOREM 3. Âèððîâå that !m(Xl,l,...,Xi,j,...,Xm,m) is the logical permanent î!
àïò õ ò Boolean matrix. Then Ljm ~ mClogm, with ñ > Î.

The proof is similar in outline to the proof of Theorem 2 (the full proof of TheoremS
1 and 3 will Üå published in an article in Mathematicheskie Zametki 37 (1985)).

Theorem 3 gives an affirmative answer to Pratt's question [71 as to whether the gap
between the combinatorial and the monotone complexity of Boolean function can Üå

suprapolynomial in the number of variables.
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publication.
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