LOWER BOUNDS FOR THE MONOTONE COMPLEXITY OF SOME BOOLEAN FUNCTIONS

UDC 519.95

A. A. RAZBOROV

The combinatorial complexity L_{f} of a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is the least number of logical elements AND, OR and NOT necessary for its realization in the form of a functional scheme. It is well known (see, for example, [1]) that there are Boolean functions whose combinatorial complexity is an exponential function of the number of variables. In a recent article [2], a natural sequence of Boolean functions

$$
\begin{equation*}
f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right), f_{2}\left(x_{1}, \ldots, x_{n_{2}}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n_{m}}\right), \ldots \tag{1}
\end{equation*}
$$

was constructed, with $L_{f_{m}} \geq C^{n_{m}}$, where $C>1$ is a universal constant.
In this note we will restrict ourselves to the consideration of sequences of the form (1) satisfying the following condition: the language $\left\{\left(\varepsilon_{1} \cdots \varepsilon_{n_{m}}\right) \mid m \in \mathbf{N}, f_{m}\left(\varepsilon_{1}, \ldots, \varepsilon_{n_{m}}\right)=\right.$ $1\}$ in the alphabet $\{0,1\}$ can be recognized by a nondeterministic Turing machine in time which is polynomial in the length of the input n_{m} (i.e. it is an $N P$-language). Such sequences will be called constructive.

It is interesting to obtain lower bounds on the combinatorial complexity of functions from the constructive sequence (1), for example, in connection with the following remark (derivable from the results of [3]): if there is a constructive sequence of the form (1) such that

$$
\varlimsup_{m \rightarrow \infty} \frac{\log L_{f_{m}}}{\log n_{m}}=\infty
$$

then $P \neq N P$. Apparently the strongest result obtained in this direction is found in [4], where an example of a constructive sequence (1) is constructed with $L_{f_{m}} \geq 2.5 n_{m}$.

The monotone complexity L_{f}^{+}of a monotone Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is the least number of functional elements OR and AND necessary for its realization in the form of a functional scheme (without the element NOT). Clearly $L_{f}^{+} \geq L_{f}$, and therefore the problem of finding asymptotic lower bounds on L_{f}^{+}for constructive sequences (1) of monotone Boolean functions is simpler. The best bound of this type known until now was obtained in [5]:

$$
L_{f_{m}}^{+} \geq C \frac{n_{m}^{2}}{\log n_{m}}, \quad C>0
$$

for a certain constructive sequence of the form (1).
In this note we shall construct two constructive sequences of monotone Boolean functions for which $L_{f_{M}}^{+} \geq n_{m}^{\left(C \log n_{m}\right)}$, with $C>0$. The general result from which these bounds may be obtained is stated in Theorem 1. Theorems 2 and 3 are devoted to bounds for the monotone complexity of functions from specific constructive sequences. In order to formulate the results, it is convenient to interpret a Boolean function as the set of inputs on which it takes the value 1 .

More precisely, let $R=\left\{e_{1}, \ldots, e_{n}\right\}$ be a finite set, and $B_{n}=P(R)$ its power set. We define a bijection $\chi: B_{n} \rightarrow\{0,1\}^{n}$ in the following way: for $E \in B_{n}$ we set $\chi(E)=$ $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, where $\varepsilon_{i}=0$ if $e_{i} \notin E$, and $\varepsilon_{i}=1$ if $e_{i} \in E$.

To the Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$, of n variables we assign the set $A(f) \in \mathcal{P}\left(B_{n}\right)$ in the following way: $A(f)=\left\{E \in B_{n} \mid f(\chi(E))=1\right\}$. Clearly A gives a bijection between the set of all Boolean functions of n variables and $\mathcal{P}\left(B_{n}\right)$, for which $A\left(f_{1} \& f_{2}\right)=$ $A\left(f_{1}\right) \cap A\left(f_{2}\right)$ and $A\left(f_{1} \vee f_{2}\right)=A\left(f_{1}\right) \cup A\left(f_{2}\right)$. We call the set $M \in \mathcal{P}\left(B_{n}\right)$ monotone if for all $E_{1}, E_{2} \in B_{n}$, from $E_{1} \in M$ and $E_{1} \subseteq E_{2}$ it follows that $E_{2} \in M$. We remark that a Boolean function f is monotone if and only if the set $A(f)$ is monotone. We denote by ${ }^{+}+\left(B_{n}\right)$ the family of all monotone subsets of B_{n}. Among the elements of $\mathcal{P}^{+}\left(B_{n}\right)$ there are, for example, the sets $A(0)=\varnothing, A(1)=B_{n}$, and $A\left(x_{i}\right)=\left\{E \in B_{n} \mid e_{i} \in E\right\}$.
Now suppose some family \mathfrak{M} of monotone subsets of the set B_{n} is given; that is, $\mathfrak{M} \subseteq \mathcal{P}^{+}\left(B_{n}\right)$. We call \mathfrak{M} a regular lattice if the following two conditions are satisfied:
a) $\left\{A(0), A(1), A\left(x_{1}\right), \ldots, A\left(x_{n}\right)\right\} \subseteq \mathfrak{M}$.
b) If \mathfrak{M} is regarded as a partially ordered set under inclusion, them \mathfrak{M} is a lattice with respect to this order.
The operations of taking greatest lower and least upper bounds will be denoted by \square and \sqcup respectively. We introduce the notation

$$
\begin{aligned}
& \delta_{-}\left(M_{1}, M_{2}\right) \rightleftharpoons\left(M_{1} \sqcup M_{2}\right) \backslash\left(M_{1} \cup M_{2}\right), \\
& \delta_{+}\left(M_{1}, M_{2}\right) \rightleftharpoons\left(M_{1} \cap M_{2}\right) \backslash\left(M_{1} \sqcap M_{2}\right) .
\end{aligned}
$$

Suppose that we are given some monotone Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ and a regular lattice \mathfrak{M}. The distance $\rho(f, \mathfrak{M})$ between f and \mathfrak{M} is defined to be the least natural number t for which there are elements M, M_{i} and N_{i} of $\mathfrak{M}, i \leq i \leq t$, such that

$$
\begin{align*}
& M \subseteq A(f) \cup \bigcup_{i=1}^{t} \delta_{-}\left(M_{i}, N_{i}\right) \tag{2}\\
& A(f) \subseteq M \cup \bigcup_{i=1}^{t} \delta_{+}\left(M_{i}, N_{i}\right) \tag{3}
\end{align*}
$$

It is relatively simple to prove the following
THEOREM 1. For any monotone Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ and any regular lattice $\mathfrak{M} \subseteq \mathcal{P}^{+}\left(B_{n}\right)$ the inequality $L_{f}^{+} \geq \rho(f, \mathfrak{M})$ holds.
We now turn to the construction of constructive sequences consisting of monotone Boolean functions of sufficiently great monotone complexity. The first example corresponds to finite fragments of the $N P$-complete problem CLIQUE.
Let m and s be natural numbers with $s<m$, and let $V=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set. We set $n=m(m-1) / 2$ and $R=\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i<j \leq m\right\}$ (the order in which the elements of R are indexed is irrelevant). For every $W \subseteq V$ we define $E_{W} \in B_{n}\left(B_{n}=\mathcal{P}(R)\right.$) in the following way:

$$
E_{W} \rightleftharpoons\left\{\left(v_{i}, v_{j}\right) \in R \mid v_{i}, v_{j} \in W\right\} .
$$

Furthermore, we set

$$
\mathfrak{Z}(m, s)=\left\{E \in B_{n} \mid \exists W\left(W \subseteq V \& \operatorname{card} W=s \& E_{W} \subseteq E\right)\right\}
$$

$3(m, s)$ consists of those E for which the graph (V, E) contains a clique of size at least s. It is clear that $\mathfrak{Z}(m, s)$ is monotone. Suppose that $F_{m, s}\left(x_{1}, \ldots, x_{n}\right)=A^{-1}(\mathcal{Z}(m, s))$ is the corresponding monotone Boolean function. A lower bound for $L_{f_{m}, s}^{+}$is obtained on the basis of Theorem 1 using a certain regular lattice $\mathfrak{M}_{m, s}$. We will describe the construction of $\mathfrak{M}_{m, s}$ in general terms.
We introduce the following notation: $\mathfrak{A}=\{W \mid W \subseteq V$ and card $W \leq s-1\} ; r=$ [2se $\ln m]$. We define a binary relation $S \subseteq \mathfrak{A} \times \mathfrak{A}^{r}$ in the following way:
$\left\langle W_{0},\left(W_{1}, \ldots, W_{r}\right)\right\rangle \in S$ if and only if $\forall i, j\left(1 \leq i<j \leq r \Rightarrow W_{i} \cap W_{j} \subseteq W_{0}\right)$.

The fact that $\left\langle W_{0},\left(W_{1}, \ldots, W_{r}\right)\right\rangle \in S$ will be more briefly expressed in the form W_{1}, \ldots, $W_{r} \vdash W_{0}$.

Furthermore, if $\mathfrak{A}_{1} \subseteq \mathfrak{A}_{2}$ and $W \in \mathfrak{A}$, then the expression $\mathfrak{A}_{1} \vdash W$ signifies that there are $W_{1}, \ldots, W_{r} \in \mathfrak{A}_{1}$ with $W_{1}, \ldots, W_{r} \vdash W$. A set $\mathfrak{A}_{1} \subseteq \mathfrak{A}$ will be called closed if $\forall W \in \mathfrak{A}\left(\mathfrak{A}_{1} \vdash W \Rightarrow W \in \mathfrak{A}_{1}\right)$. Since the intersection of closed sets is closed, there is a smallest closed subset $\mathfrak{A}_{1}^{*} \subseteq \mathfrak{A}$ containing \mathfrak{A}_{1}, for any $\mathfrak{A}_{1} \subseteq \mathfrak{A}$.

For a closed $\mathfrak{A}_{1} \subseteq \mathfrak{A}$ we define the element ${ }^{\ulcorner } \mathfrak{A}_{1}{ }^{\urcorner} \in \mathcal{P}^{+}\left(B_{n}\right)$ in the following way:

$$
{ }^{\ulcorner } \mathfrak{A}_{1}{ }^{\urcorner}=\left\{E \in B_{n} \mid \exists W \in \mathfrak{A}_{1}\left(E_{W} \subseteq E\right)\right\} .
$$

Finally, we set $\mathfrak{M}_{m, s}=\left\{{ }^{\ulcorner } \mathfrak{A}_{1}{ }^{`} \mid \mathfrak{A}_{1}\right.$ closed $\}$.
Lemma 1. a) $\mathfrak{M}_{m, s}$ is a regular lattice.
b) The lattice operations in $\mathfrak{M}_{m, s}$ have the following form:

$$
\left\ulcorner\mathfrak{A}_{1}{ }^{\urcorner} \square^{\ulcorner } \mathfrak{A}_{2}\right\urcorner=\left\ulcorner\mathfrak{A}_{1} \cap \mathfrak{A}_{2}{ }^{\urcorner} ; \quad\left\ulcorner\quad\left\ulcorner\mathfrak{A}_{1}\right\urcorner u^{\ulcorner } \mathfrak{A}_{2}\right\urcorner=\left\ulcorner\left(\mathfrak{A}_{1} \cup \mathfrak{A}_{2}\right)^{* *} .\right.\right.
$$

The desired lattice $\mathfrak{M}_{m, s}$ has been constructed. In estimating the quantity $\rho\left(f_{m, s}, \mathfrak{M}_{m, s}\right)$ from below, a key role is played by two lemmas stated below, which we give without proof.

For an arbitrary $\mathfrak{A}_{1} \subseteq \mathfrak{A}$ we denote by \mathfrak{A}_{1}^{b} the subset of the minimal elements of \mathfrak{A}_{1}, i.e.

$$
\mathfrak{A}_{1}^{b}=\left\{W \in \mathfrak{A}_{1} \mid \forall W^{\prime}\left(W^{\prime} \subset W \Rightarrow W^{\prime} \notin \mathfrak{A}_{1}\right)\right\} .
$$

Lemma 2. If \mathfrak{A}_{1} is closed then card $\mathfrak{A}_{1}^{b} \leq(s-1)!r^{s-1}$.
Suppose that $H=[s-1]^{V}$ is the set of functions from V into $\{1, \ldots, s-1\}$. For each function $h \in H$, we define the ((s-1)-partite) graph $E_{h} \in B_{n}$ by the equality

$$
E_{h}=\left\{\left(v_{i}, v_{j}\right) \mid h\left(v_{i}\right) \neq h\left(v_{j}\right)\right\}
$$

Lemma 3. Let $W_{0}, W_{1}, \ldots, W_{r} \in \mathfrak{A}$ and $W_{1}, \ldots, W_{r} \vdash W_{0}$. Then $\operatorname{card}\left\{h \in H \mid E_{w_{0}} \nsubseteq E_{h} \& E_{W_{1}} \not \subset E_{h} \& \cdots \& E_{W_{r}} \nsubseteq E_{h}\right\} \leq\left(1-e^{-s}\right)^{r} \cdot \operatorname{card} H$.
From Lemmas 2 and 3 we obtain the following lower bound on the distance.
Lemma 4. $\rho\left(f_{m, s}, \mathfrak{M}_{m, s}\right) \geq m^{s}\left(s^{3} e^{s} \ln m\right)^{-2 s}$.
From Lemma 4 and Theorem 1 the analogous bound for $L_{f_{m, ~}}^{+}$follows directly. In the next theorem some asymptotic properties of the bounds are established.

THEOREM 2. Suppose that $f_{m, s}\left(x_{1}, \ldots, x_{n_{m}}\right)$, with $n_{m}=m(m-1) / 2$, is the monotone Boolean function defined above, corresponding to the set of those graphs on m vertices which contain a clique of size at least s. Then:
a) for $s=$ const and $m \rightarrow \infty$

$$
L_{f_{m, 0}}^{+} \geq O\left(m^{s} /(\log m)^{2 s}\right)
$$

b) for $s=\left[\frac{1}{4} \ln m\right]$ and $m \rightarrow \infty$

$$
L_{f_{m, \mathrm{~s}}}^{+} \geq O\left(m^{C \log m}\right), \quad C>0
$$

Remark 1. For comparison we mention the obvious upper bound

$$
L_{f_{m, 0}}^{+} \leq \frac{s^{2}}{2} \cdot\binom{m}{s}
$$

The corresponding functional scheme in the elements AND and OR is easily constructed on the basis of complete item-by-item examination of all elements of the set $\{W \mid$ $\operatorname{card} W=s\}$.

REMARK 2. Both of the sequences of Boolean functions considered in Theorem 2 are constructive.

Our second example of a constructive sequence with the lower bound $n_{m}^{\left(C \log n_{m}\right)}$ on its monotone complexity is a sequence of functions computing the logical permanent of a Boolean matrix. We specify a Boolean function $f_{m}\left(x_{1,1}, \ldots, x_{i, j}, \ldots, x_{m, m}\right)$ of $n_{m}=m^{2}$ variables by the formula

$$
f_{m}\left(x_{1,1}, \ldots, x_{i, j}, \ldots, x_{m, m}\right)=\bigvee_{\sigma \in \mathcal{S}_{m}} \&_{i=1}^{m} x_{i, \sigma(i)} .
$$

We will consider the graph-theoretical interpretation of this function.
We choose two disjoint sets of vertices $V=\left\{v_{1}, \ldots, v_{m}\right\}$ and $W=\left\{w_{1}, \ldots, w_{m}\right\}$. Suppose that $e_{i, j}=\left(v_{i}, w_{j}\right)$ and $R=\left\{e_{i, j} \mid 1 \leq i, j \leq m\right\}$. then $B_{n}=P(R)$ turns out to be exactly the set of all bipartite graphs with parts V and W, and $A\left(f_{m}\right)$ coincides with the set of all bipartite graphs containing a perfect matching (a perfect matching in a graph $E \subseteq V \times W$ is a set of m edges having no vertices in common pairwise).
From the result of [6] the bound $L_{f_{m}} \leq O\left(m^{5}\right)$ follows for the combinatorial complexity. On the other hand, we have
THEOREM 3. Suppose that $f_{m}\left(x_{1,1}, \ldots, x_{i, j}, \ldots, x_{m, m}\right)$ is the logical permanent of an $m \times m$ Boolean matrix. Then $L_{f_{m}}^{+} \geq m^{C \log m}$, with $C>0$.
The proof is similar in outline to the proof of Theorem 2 (the full proof of Theorems 1 and 3 will be published in an article in Mathematicheskie Zametki 37 (1985)).
Theorem 3 gives an affirmative answer to Pratt's question [7] as to whether the gap between the combinatorial and the monotone complexity of Boolean function can be suprapolynomial in the number of variables.
In conclusion I would like to thank A. L. Semenov, who interested me in the subject considered here, and S. I. Adyan, for his invaluable help in preparing this work for publication.

Moscow State University
Received 14/JAN/85

BIBLIOGRAPHY

1. Michael S. Paterson, Journées Algorithmiques (Paris, 1975), Astérisque No. 38-39, Soc. Mat. France, Paris, 1976, pp. 183-201.
2. N. K. Kosovskiĭ, Seventh All-Union Conf. Math. Logic, Abstracts of Reports, Novosibirsk, 1984, p. 77. (Russian)
3. J. E. Savage, J. Assoc. Comput. Mach. 19 (1972), 660-674.
4. Wolfgang J. Paul, SIAM J. Computing 6 (1977), 427-433.
5. Ingo Wegener, Theoret. Comput. Sci. 21 (1982), 213-224.
6. John E. Hopcroft and Richard M. Karp, SIAM J. Computing 2 (1973), 225-231.
7. Vaughan R. Pratt, SIAM J. Computing 4 (1975), 326-330.

Translated by G. L. CHERLIN

